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Abstract

We present an improved average case analysis of the maximum cardinality matching prob-
lem. We show that in a bipartite or general random graph on n vertices, with high probability
every non-maximum matching has an augmenting path of length O(log n). This implies
that augmenting path algorithms like the Hopcroft–Karp algorithm for bipartite graphs and
the Micali–Vazirani algorithm for general graphs, which have a worst case running time of
O(m

√
n), run in time O(m log n) with high probability, where m is the number of edges in

the graph. Motwani proved these results for random graphs when the average degree is at
least ln(n) [Average Case Analysis of Algorithms for Matchings and Related Problems, Jour-
nal of the ACM, 41(6), 1994]. Our results hold, if only the average degree is a large enough
constant. At the same time we simplify the analysis of Motwani.

1 Introduction

We consider the problem of computing a matching of maximum cardinality in an undirected graph
G = (V,E) with vertex set V and edge set E. A matching is a subset M ⊆ E of the edges of
G such that no two edges in M have a vertex in common. The edges in M are called matching
edges, edges not in M are called free edges. A vertex is matched if it has an incident matching
edge, otherwise it is free.

Augmenting Path Algorithms. Most matching algorithms are augmenting path algorithms. An
augmenting path for a non-maximum matching M is a simple path between two free vertices,
where the edges along the path are alternately free edges and matching edges. For every non-
maximum matching, an augmenting path exists (e.g., obtained by taking the symmetric difference
of the set of matching edges with the edge set of an arbitrary optimal matching). By making
each free edge a matching edge and vice versa along such a path, a matching that is larger by one
edge is obtained. Augmenting path algorithms search for augmenting paths and augment, until the
matching is maximum. The algorithms differ in the way they search for augmenting paths.

Complexity. Maximum matchings can be computed efficiently. Let n and m denote the num-
ber of vertices and edges of G, respectively. In bipartite graphs, the algorithm of Hopcroft and
Karp [HK73] computes a maximum matching in time O(m

√
n). For dense graphs, i.e., with

m = Θ(n2), slightly better algorithms are known. Cheriyan and Mehlhorn [CM96] obtained
O(n2.5/ log n) and Feder and Motwani [FM95] achieved, via graph compression, O(m

√
n/ϕ(n,m)),
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where ϕ(n,m) = log n/ log(n2/m). In general graphs, Edmonds’ blossom-shrinking algo-
rithm [Edm65b, Edm65a, Gab76] computes a maximum matching in time O(nmα(m,n)), where
α(m,n) denotes the inverse of Ackermann’s function. Micali and Vazirani [MV80] gave an
O(m

√
n) algorithm, which is similar to the algorithm of Hopcroft and Karp for bipartite graphs.

The algorithms of Hopcroft and Karp [HK73] and Micali and Vazirani [MV80] are of particu-
lar interest in this paper. The algorithms run in phases. In each phase we first construct a maximal
set of vertex-disjoint shortest augmenting paths, and then augment the current matching along
these paths. A phase requires time O(m). In both algorithms the length of the shortest augment-
ing path strictly increases from one phase to the next and thus a bound on the maximal length of
shortest augmenting paths implies a bound on running time: If every non-maximum matching in a
bipartite (general) graph has an augmenting path of length at most f(n), then the Hopcroft–Karp
(Micali–Vazirani) algorithm runs in time O(m · f(n)).

In practice, augmenting path algorithms perform significantly better than suggested by the
worst case running times, see, e.g., [MN99, CGM+98]. The worst case running time seems to be
an over-pessimistic estimation of the actual running time in practice. We are therefore interested
in the average case behavior of augmenting path algorithms.

Random Graph Models. We define the probability distribution on graphs according to the model
introduced by Erdős and Rényi [ER59]. We consider both bipartite and general graphs. We
denote by G(n;n) the set of all undirected bipartite graphs with n vertices on each side, and
by G(n;n; p) the probability distribution on G(n;n), where each of the n2 potential edges is
present with probability p, independent of other edges. Similarly, we denote by G(n) the set of all
undirected graphs with n vertices and by G(n; p) the probability distribution on G(n), where each
of the n(n − 1)/2 potential edges is present with probability p, independent of other edges. The
average degree of each vertex in a graph drawn from G(n;n; p) or G(n; p) is pn and p(n − 1),
respectively. We will use c to denote the average degree of a random graph.

Our Results. We prove that in a random graph drawn from G(n;n; c/n) or from G(n; c/(n−1)),
with high probability every non-maximum matching has an augmenting path of length O(log n),
if only c is above a certain constant. For bipartite graphs, our analysis requires that c ≥ 8.83, for
general graphs it requires that c ≥ 32.67. It follows that under these conditions, the running time
of the algorithms of Hopcroft and Karp on bipartite random graphs and Micali and Vazirani on
general random graphs is O(m log n) with high probability.

We conjecture the existence of short augmenting paths for every value of c. Observe that for
tiny values of c, for example c < 1, all paths are of length O(log n) and hence also all augmenting
paths must be short. It is conceivable that our analysis can be strengthened so as to cover all values
of c; we comment further on this in our conclusions.

Related Work. Motwani [Mot94] presented the first average case analysis for matching algorithms.
He showed that every non-maximum matching in a random graph from G(n;n; c/n) or from
G(n; c/(n − 1)) with c ≥ lnn has a logarithmic length augmenting path with high probability.
The analysis rests on two key observations: (i) expander graphs1 admit short augmenting paths
with respect to any non-maximum matching, and (ii) random graphs with c ≥ lnn are structurally
so similar to expander graphs that the short augmenting path property carries over. Motwani’s
analysis breaks down when c is significantly below lnn. When c is constant, for example, with
high probability a constant fraction of the vertices is isolated and a constant fraction of the vertices
has degree one, and such graphs are certainly not structurally similar to expanders.

1In an expander graph the cardinality of the set of neighbors of any vertex set S with |S| ≤ n/2 is at least (1+ε)|S|
for some positive constant ε.
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Novelty. Nevertheless, on a high level our approach is similar to that of Motwani. We grow alter-
nating trees as they are constructed in augmenting path algorithms at two free vertices connected
by an augmenting path and show that the trees meet with high probability after Θ(log n) layers.
Our main technical lemma states that such trees exhibit exponential growth after Θ(log n) layers;
we remark that they may stay skinny for up to Θ(log n) layers. In the proof, we exploit sev-
eral structural properties of these trees, such as connectivity, degree-one descendence due to the
matching edges, etc. In contrast to this, Motwani works with expansion for plain sets of vertices,
which only holds for c ≥ lnn and gives rise to several complications in the analysis, which we
can avoid here. Our analysis is therefore at the same time stronger and simpler.

2 Main Result

In this section we state our main result, Theorem 1, explain the central ideas of its proof, and give
an overview of the rest of the paper.

Theorem 1. There is a constant c0 such that a random graph from G(n;n; c/n) or from G(n; c/(n−
1)), where c ≥ c0, with high probability2 has the property that every non-maximum matching has
an augmenting path of length O(log n). In a graph with this property, a maximum matching can
be computed in O(m log n) time, where m is the number of edges.

Remark 1. For a random graph from G(n;n; c/n), the theorem holds for c ≥ 8.83. For a random
graph from G(n; c/(n − 1)), it holds for c ≥ 32.67.

A central notion in our analysis will be that of an augmenting path tree. Augmenting path
trees arise in the standard breadth-first search for augmenting paths for a given non-maximum
matching: start from a free vertex, add all its neighbours, if none of them is free (otherwise an
augmenting path is found) add all the incident matching edges and their other endpoints, and so
on. We first give the formal definition, then Figure 1 provides an example.

Definition 1. For a rooted tree T , let Even(T ) denote the set of vertices at even non-zero levels
(i.e., excluding the root), and let Odd(T ) denote the set of vertices at odd levels, where the root
has level 0, its children have level 1, and so on. The largest level of a vertex in T is denoted by
depth(T ).

An augmenting path tree is a rooted tree T of even depth, where each vertex of Odd(T )
has exactly one child; in particular, |Odd(T )| = |Even(T )|. An augmenting path tree is for a
particular matching, if its root is free with respect to that matching, and all edges between an odd
level and the next larger even level are in the matching.

Our approach to proving Theorem 1 is as follows. Given a non-maximum matching, we
pick the two free vertices of an augmenting path, and from each of these vertices we grow two
augmenting path trees T1 and T2. The following lemma names a set of properties, which are
sufficient for the existence of a short augmenting path.

Lemma 1. Let T1 and T2 be two augmenting path trees for a given non-maximum matching in
a given graph. Then the following properties imply that there is an augmenting path of length at
most depth(T1) + depth(T2) + 1.

(a) T1 and T2 are (vertex and edge) disjoint;

2that is, with probability at least 1 − n−β , for a β ≥ 1 that can be fixed arbitrarily, independent of c and c0. A
similar remark applies to Lemmas 2 and 3 that follow.
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Figure 1: Left: An augmenting path tree T with |Even(T )| = |Odd(T )| = 8; observe that T
has |Even(T )| + |Odd(T )| = 2|Even(T )| edges. Right: The tree with vertices on odd levels
“removed”, as used in the proof of Lemma 2.

(b) One of the following holds:

(b1) either there is a free vertex adjacent to Even(T1) or to Even(T2),

(b2) or there is an edge between Even(T1) and Even(T2).

Proof. If property (b1) holds, there is an augmenting path via just one of the trees, of length at most
max{depth(T1),depth(T2)}+1. If property (b2) holds, then owing to (a) there is an augmenting
path from the root of T1 to the root of T2 of length at most depth(T1) + depth(T2) + 1.

Our construction of the trees T1 and T2 with these properties will be incremental, terminating
as soon as property (b1) or (b2) is fulfilled. In Section 3, we will give the construction for bipartite
random graphs. In Section 4, we deal with general random graphs.

The main difficulty will be to prove that the construction terminates with at most logarith-
mic depth for both trees. The key will be the following lemma, which establishes an expansion
property for augmenting path trees, when the average degree is above a certain constant.

While the lemma is formulated and proven completely independently from its later use, some
readers might prefer to first study the construction from Section 3 in more detail, see how the
lemma is used there, and then come back to this section. In the lemma below, as well as in our
constructions, we will use ΓG(X) to denote the neighbourhood of a vertex set X in G, i.e., the set
of vertices adjacent to X in G.

Lemma 2. For each ε > 0 and β > 1 + ε, there exist constants α and c0 such that a random
graph G from G(n;n; c/n) or from G(n; c/(n − 1)), where c ≥ c0, with high probability has the
following property: for each augmenting path tree T with α · log n ≤ |Even(T )| ≤ n/β, it holds
that |ΓG(Even(T ))| ≥ (1 + ε) · |Even(T )|.

Remark 2. For a random graph from G(n;n; c/n), for ε = 0.001 and β = 2.57, the lemma holds
with c0 = 8.83. For a random graph from G(n; c/(n−1)), for ε = 2.01 and β = 6.03, the lemma
holds with c0 = 32.67. These will be the settings when we apply the lemma in Sections 3 and 4.
The derivation of these constants is explained at the end of Section 3.

Proof. If a graph G does not have the property from the lemma, the following bottleneck3 con-
stellation occurs in G:

3In his work, Motwani uses this name in a related context.
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(i) an augmenting path tree T with α log n ≤ |Even(T )| ≤ n/β;

(ii) a set Γ ⊇ Odd(T ) with |Γ| ≤ (1 + ε) · |Even(T )|;

(iii) for each vertex from Γ\Odd(T ), an edge to a vertex from Even(T );

(iv) no edge between Even(T ) and V \Γ, where V is the set of all vertices of G.

We will show that the probability that any such bottleneck constellation occurs is polynomially
small in n. We first give the proof for a bipartite random graph, and then describe the (few) changes
required for a general random graph.

If a fixed bottleneck constellation occurs in a graph from G(n;n), the following events occur,
where we write l = |Even(T )| and r = |Γ|: (i) the 2l edges from T are present, (ii) the r − l
edges from Γ\Odd(T ) to Even(T ) are present, and (iii) none of the l(n − r) edges between
Even(T ) and V ′\Γ are present, where V ′ is the side of the bipartite graph containing Γ and we
exploit that in a bipartite graph Even(T ) and Γ lie on opposite sides of the graph. It follows that
the probability that each of these, obviously independent, events occurs in a random graph from
G(n;n; c/n) is at most

(c/n)l+r · (1 − c/n)l(n−r),

which, using that l ≤ n/β, l ≤ r ≤ (1 + ε) · l, and 1 − c/n ≤ e−c/n, is bounded by

n−(l+r) · c(2+ε)·l · e−c(1−(1+ε)/β)·l = n−(l+r) ·
(

c2+ε

ec(1−(1+ε)/β)

)l

.

The number of potential bottleneck constellations, i.e., the number of different bottleneck
constellations in the complete bipartite graph on 2n vertices, with |Even(T )| = l and |Γ| = r
is (i) the number of augmenting path trees T with |Even(T )| = l, times (ii) the number of ways
to choose the r − l vertices for Γ\Odd(T ) from V ′\Odd(T ), where V ′ are the vertices on that
side of the bipartite graph containing Odd(T ) (vertices on the other side of the graph cannot be in
the neighbourhood of Even(T )), times (iii) the number of ways to choose for each of these r − l
vertices an edge to one of the l vertices from Even(T ).

Clearly, the number for (iii) is lr−l, and the number for (ii) is
(

n−l
r−l

)

≤
(

n
r−l

)

. To count the
number of augmenting path trees T with |Even(T )| = l, observe that via “removing” the vertices
in Odd(T ), as illustrated by an example in Figure 1, each such tree corresponds to a unique
combination of a tree on l + 1 vertices, and a sequence of l distinct vertices. By Cayley’s theorem
[AZ04] the number of trees on l+1 vertices is (l+1)l−1, and the number of sequences of l distinct
vertices from one side of a graph from G(n;n) is n · (n − 1) · · · (n − l + 1) ≤ nl.

The total number of potential bottleneck constellations in a G(n;n) graph is hence at most
(

n

l + 1

)

· (l + 1)l−1 ·
(

n

r − l

)

· lr−l · nl ≤ nr+l+1 · er+1 ·
(

l

r − l

)r−l

≤ nr+l+1 · er+1 ·
(

ε−ε
)l

,

where we used the estimate
(

n
k

)

≤ (en/k)k and where the last inequality holds4 for r ≤ (1+ ε) · l
and ε ≤ 1/e.

Combining the bounds, we conclude that a random graph from G(n;n; c/n) contains any
bottleneck constellation with |Even(T )| = l and |Γ| = r, with probability at most

en ·
(

ε−εe1+εc2+ε

ec(1−(1+ε)/β)

)l

= en · ql,

4Let r = (1 + κ) · l with 0 ≤ κ ≤ ε. If κ = 0, the claim is obvious (recall 00 = 1). If κ > 0, we have
(l/(r − l))r−l = (1/κ)κ·l ≤ (1/ε)ε·l, since (1/κ)κ is increasing for κ ≤ 1/e.
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where q is just an abbreviation for the fractional term. For sufficiently large c, we have q < 1; in
particular, this holds for the values stated in the remark to the lemma: ε = 0.001, β = 2.57, and
c ≥ 8.83.

We finally sum over all r, l with α · log n ≤ l ≤ n/β and l ≤ r ≤ (1 + ε) · l, and get a total
probability of at most

en3 · qα log n = en3−α log(1/q),

which for sufficiently large α is polynomially small in n. This finishes the proof of Lemma 2 for
bipartite random graphs.

In a random graph from G(n; c/(n−1)), the bound on the probability that a fixed constellation
with |Even(T )| = l and |Γ| = r occurs, is

(c/(n − 1))l+r · (1 − c/n)l(n−r) ≤ (n − 1)−(l+r) ·
(

c2+ε

ec(1−(1+ε)/β)

)l

.

The number of bottleneck constellations can be bounded just like before by

(

n

l + 1

)

· (l + 1)l−1 ·
(

n

r − l

)

· lr−l · nl ≤ nr+l+1 · er+1 ·
(

l

r − l

)r−l

≤ nr+l+1 · er+1 · 1.45l,

where the last inequality now holds5 for r ≤ (1 + ε) · l, but without restriction on ε (for arbitrary
random graphs, we will apply the lemma with ε > 2). The probability that a random graph from
G(n; c/(n − 1)) contains any bottleneck constellation with |Even(T )| = l and |Γ| = r is hence
at most

4e3n ·
(

e1.38+εc2+ε

ec(1−(1+ε)/β)

)l

= 4e3n · ql,

where the additional 4e2 factor comes from (n−1)−(l+r)·nr+l = (1+1/(n−1))r+l ≤ (1+1/(n−
1))2n ≤ 4 · (1 + 1/(n − 1))2(n−1) ≤ 4e2, the 1.38 is just a number ≥ 1 + ln 1.45, and q is again
an abbreviation for the fractional term. For sufficiently large c, and in particular for ε = 2.01,
β = 6.03 and c ≥ 32.67, we have q < 1, and a summation over all r, l with α log n ≤ l ≤ n/β
and l ≤ r ≤ (1 + ε) · l gives us at most 4e3n3 · qa log n = 4e3n3−α log(1/q), which for sufficiently
large α is a negligible probability. This proves Lemma 2 also for arbitrary random graphs.

The following simple property of random graphs was already stated and proven in [Mot94,
Lemma 3(d)], except that Motwani did not make the threshold on c explicit. We remark that
this threshold is one of the major bottlenecks for reducing the threshold on c in our main result,
Theorem 1.

Lemma 3. For every β > 1, and for c > 2 · β2 · H(1/β) · ln 2, where H(x) = −x log2 x −
(1 − x) log2(1 − x) is the binary entropy function, a random graph from G(n;n; c/n) or from
G(n; c/(n−1)) with high probability has the property that every two disjoint sets of vertices, both
of size at least n/β, have an edge between them.

Proof. The probability that no edge runs between two disjoint sets of sizes l and r is at most
(1− c/n)lr . If two disjoint subsets of size at least n/β and with no edge between them exist, then

5Let r = (1 + κ) · l with 0 ≤ κ ≤ ε. Then (l/(r − l))r−l = (1/κ)κ·l ≤ 1.45l since (1/κ)κ ≤ e1/e ≤ 1.45.
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there exist also two subsets of size exactly dn/βe with no edge between them (just remove the
necessary number of vertices from each set), and this happens with probability at most

(

n

dn/βe

)2

· (1 − c/n)dn/βe2 .

Now
(n
k

)

≤ 2n·H(k/n), where H is the binary entropy function as stated in the lemma.6 Fur-
thermore, an easy calculation shows that the derivative of H(x)/x is x−2 log2(1 − x), hence
H(x)/x is monotonically decreasing on (0, 1), and we have

(

n

dn/βe

)

≤ 2n·H(dn/βe/n) = 2H(dn/βe/n)·n/dn/βe·dn/βe ≤ 2β·H(1/β)·dn/βe

The quantity (1 − c/n)dn/βe2 we bound by e−c/β·dn/βe. This give us the following bound on the
above probability

(

2β·H(1/β) · e−c/(2β)
)2dn/βe

.

This is a negligible probability, provided that the term in parantheses is less than 1, i.e., c >
2 · β2 · H(1/β) · ln 2. We remark that, had we estimated the binomial coefficient via the standard
(n
k

)

≤ (en/k)k , we would have obtained the slightly more restrictive condition c > 2β(1 + lnβ).

3 Constructing the Trees for Bipartite Random Graphs

For a given non-maximum matching of a graph G from G(n;n), consider an augmenting path
and pick its two free endpoints, f1 and f2. Note that since every augmenting path has odd length,
in a bipartite graph these two free vertices lie on opposite sides of G. The following procedure
constructs T1 and T2.

0. Initially let T1 and T2 be the trees with f1 and f2 as the only vertex and root, respectively.
Each of the following iterations will add two more levels to T1 and to T2.

1. Let Γ(T ) = ΓG(Even(T ))\Odd(T ), for T = T1, T2.

2. If Γ(T1) or Γ(T2) contains a free vertex, STOP.

3. If Γ(T1) contains a vertex which is already in Even(T2), or vice versa, STOP.

4. If there is a matching edge between Γ(T1) and Γ(T2), add it to (say) T1, together with the
endpoint and edge connecting it to T1, then STOP.

5. Otherwise add to T all the vertices from Γ(T ), and for each such vertex, add one edge con-
necting it to Even(T ), for T = T1, T2.

(The vertices added in this step constitute a new odd level below the largest even level of
T before the step: if any of them were adjacent to a vertex in a smaller level then it would
have been added to T in an earlier iteration.)

6This bound for the binomial coefficient, which is stronger than the more well-known
(

n
k

)

≤ (en/k)k, can be
derived from Stirling’s approximation for the factorial; see, for example, [MS77, Lemma 7 on p. 309].
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6. Add the matching edges incident to Γ(T ) together with their other endpoints to T , for T =
T1, T2.

(Note that neither can these endpoints be in T before step 5 — because all vertices there
were matched by edges in the tree, except the root vertex, which is free; cf. Figure 1 — nor
can there be a matching edge between two vertices from Γ(T ), because they are all on the
same side of the bipartite graph.)

7. Repeat 1.–6.

We first show that this construction fulfills the properties of Lemma 1. When the procedure
stops in step 2, we have property (b1). When it stops in step 3 or 4, we have an edge between
Even(T1) and Even(T2), which is property (b2). Since the roots of T1 and T2 lie on opposite
sides of the bipartite graph G, we have Even(T1)∩Even(T2) = Odd(T1)∩Odd(T2) = ∅. Steps
3 and 4 ensure that Odd(T1) ∩ Even(T2) = Odd(T2) ∩ Even(T1) = ∅, hence we have complete
disjointness of T1 and T2, which is property (a).

It remains to show that the procedure terminates within O(log n) iterations (note that by what
we have shown so far, the procedure could run forever, namely when at some point Γ(T ) = ∅
in step 1). Since each iteration adds two levels to each tree, the depth of the trees would then be
O(log n), which by Lemma 1 would prove Theorem 1.

By construction, in step 6 of every iteration at least the matching edge of the augmenting path
starting in f1 is added to T1, and the same holds for f2 and T2. After α log n iterations therefore,
|Even(T )| ≥ α · log n. Consider an iteration i, for i > α · log n, which passes steps 2–4. Let T
denote one of the trees (the following argument holds for T1 as well as for T2) at the beginning of
the iteration, and let T ′ denote the tree at the end of the iteration, with two new levels added to it.
We apply Lemma 2 with ε = 0.001 and β = 2.57; the value for ε is just a small one satisfying the
requirement ε > 0 of Lemma 2, the choice for β will be explained in the next but one paragraph.
When |Even(T )| < n/β, Lemma 2 gives that |ΓG(Even(T ))| ≥ (1 + ε) · |Even(T )|. Since
|Even(T ′)| = |Even(T )| + |Γ(T )| = |Even(T )| + |ΓG(Even(T ))\Odd(T )| = |ΓG(Even(T ))|,
we have |Even(T ′)| ≥ (1+ε) · |Even(T )|. This proves that when the procedure runs for α log n+
log1+ε(n/β) = O(log n) iterations, then certainly |Even(T )| ≥ n/β, for T = T1, T2.

Consider the first iteration, where both |Even(T1)| and |Even(T2)| are at least n/β. By prop-
erty (a), already established above, the two sets are disjoint, hence by Lemma 3, with high proba-
bility there is an edge between them. With such an edge, the procedure stops in step 3. This proves
that with high probability the procedure terminates within O(log n) iterations, and hence with two
trees of depth O(log n). This finishes the proof of Theorem 1 for random bipartite graphs.

We finally comment on our choice of β = 2.57 above, and how it leads to the requirement
c ≥ 8.83 in Theorem 1. Both Lemma 2 and Lemma 3 put a lower bound on c. For Lemma 2,
this bound comes from the quantity q, defined in the proof of that lemma, which has to be strictly
less than 1; this quantity depends on both β and c, hence let us write q(β, c). Lemma 3 gives an
explicit lower bound on c, depending only on β; let us write c(β) for this bound. We are looking
for the smallest β, where q(β, c(β)) < 1, which, in turn, will give us the smallest c for which our
argument goes through. Using Gnuplot [Gnu], we find that we can choose β as small as 2.57; then
for c ≥ 8.83, both lemmas (just) hold. For the analysis of the construction for arbitrary random
graphs, given in the next section, the values are found in the same manner, though with a different
q (see the proof of Lemma 2), and with ε = 2.01, because the construction there requires that
ε > 2.
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4 Constructing the Trees for Arbitrary Random Graphs

For a given non-maximum matching of a graph G from G(n), consider an augmenting path and
pick its two free endpoints, f1 and f2. The procedure for constructing T1 and T2 is similar as for
bipartite graphs but with three complications: (i) two vertices from the neighborhood of Even(T1)
or of Even(T2) may be incident to the same matching edge, so that we can add only one of them to
the tree (step 5 below), (ii) the disjointness of the neighborhoods of Even(T1) and Even(T2) has
to be taken care of explicitly now (step 6 below), and (iii) because only part of the neighborhood
of Even(T ) is eventually added to T , for T = T1, T2, starting from the free vertices alone it could
now indeed happen that Γ(T1) = ∅ or Γ(T2) = ∅ in one of the first α log n iterations; therefore in
step 0 we now start with a piece of size 2dα log ne of the augmenting path for each tree.

0. Let T1 be the prefix of length 2dα log ne of the augmenting path starting at f1, and let T2

be the suffix of length 2dα log ne. If the two are not disjoint, i.e., the length of the aug-
menting path is 4α log n or less, remove T1 ∩ T2 from one of the trees and STOP (the
properties of Lemma 1 are then fulfilled). Otherwise, T1 and T2 are (edge and vertex) dis-
joint, |Even(T1)|, |Even(T2)| ≥ α log n, and each of the following iterations will grow T1

and T2 by at most two levels each.

1. Let Γ(T1) = ΓG(Even(T1))\(T1 ∪ Odd(T2)), and let Γ(T2) = ΓG(Even(T2))\(T2 ∪
Odd(T1)).

2. If Γ(T1) or Γ(T2) contains a free vertex, STOP.

3. If Γ(T1) contains a vertex which is already contained in Even(T2), or vice versa, STOP.

4. If there is a matching edge between Γ(T1) and Γ(T2), add it, together with the endpoint and
edge connecting it to (say) T1, then STOP.

5. Let Γ′(T ) be a maximal subset of Γ(T ) in which no two vertices match each other, for
T = T1, T2; then |Γ′(T )| ≥ d|Γ(T )|/2e.

6. Let Γ′′(T1) ⊆ Γ′(T1) and Γ′′(T2) ⊆ Γ′(T2) such that |Γ′′(T1)| = |Γ′′(T2)| ≥ bmin{|Γ′(T1)|,
|Γ′(T2)|}/2c and Γ′′(T1) ∩ Γ′′(T2) = ∅.

(This takes from Γ′(T1) and Γ′(T2) two maximally large subsets that are disjoint and of
equal size, where the worst case is when Γ′(T1) and Γ′(T2) are equal and of odd size.)

7. Add to T all the vertices from Γ′′(T ), and for each such vertex, add one edge connecting it
to Even(T ), for T = T1, T2.

(Note that unlike for the bipartite case, now vertices added in this step are not necessarily
adjacent to the largest level of T before the step, since no longer the complete neighbourhood
Γ(T ) from step 1 is added in every iteration.)

8. Add the matching edges incident to Γ′′(T ) together with their other endpoints, to T , for
T = T1, T2.

9. Repeat 1.–8.

Like in the bipartite case, it is easy to see that the properties of Lemma 1 are fulfilled. After
step 0, T1 and T2 are disjoint, and by steps 3, 4, 5, and 6, disjoint sets of vertices are added to T1
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and T2 in steps 7 and 8, which yields property (a). When the procedure stops in step 2, we have
property (b1), if it stops in step 3 or 4, we have property (b2).

Let T denote one of the trees at the beginning of a fixed iteration, assuming that it has
passed steps 2–4. Assume that |Even(T )| < n/β. Then by Lemma 2, applied with ε =
2.01 and β = 6.19, |ΓG(Even(T ))| ≥ (3 + 9ε′)|Even(T )|, where ε′ = 0.001. Steps 0 and
6 ensure that at the beginning and end of every iteration, |Even(T1)| = |Even(T2)|, so that
|Even(T1)|, |Odd(T1)|, |Even(T2)|, |Odd(T2)| are all equal, and thus |T1 ∪ Odd(T2)| = |T2 ∪
Odd(T1)| = 3|Even(T )|+1. Hence after step 1, |Γ(T )| ≥ |ΓG(Even(T ))|−(3|Even(T )|+1) ≥
9ε′|Even(T )| − 1 ≥ 8ε′|Even(T )|, where we assume without loss of generality that α ≥ 1/ε′

and hence ε′|Even(T )| ≥ ε′α log n ≥ 1. Then after step 5, |Γ′(T )| ≥ 4ε′|Even(T )|, and
since this holds for T = T1 and for T = T2, after step 6, |Γ′′(T )| ≥ b4ε′|Even(T )|/2c ≥
2ε′|Even(T )| − 1 ≥ ε′|Even(T )|. In step 8, one vertex per vertex in Γ′′(T ) is added, so that, if T ′

denotes the tree at the end of the iteration, we have

|Even(T ′)| = |Even(T )| + |Γ′′(T )| ≥ |Even(T )| + ε′|Even(T )| = (1 + ε′)|Even(T )|.

This proves that within O(log n) iterations, either the procedure terminates or at some point
|Even(T1)| = |Even(T2)| ≥ n/β.

As for the bipartite case, once Even(T1) and Even(T2) contain n/β or more vertices each, by
Lemma 3 there will be an edge between the two sets, and the procedure will stop in step 3. This
proves that with high probability the procedure terminates within O(log n) iterations, so that upon
termination both trees have depth O(log n). This finishes the proof of Theorem 1 for arbitrary
random graphs.

5 Conclusion

We proved that in a random graph on n vertices with high probability every non-maximum match-
ing has an augmenting path of length O(log n). Motwani could prove this when the average degree
is at least lnn, whereas we only require that c is above a certain constant. Our expansion lemma
is more powerful than Motwani’s and at the same time makes the whole analysis simpler; in fact,
the present writeup contains all proofs with all details.

While the expansion property on which the analysis in [Mot94] is built does not hold when c
is significantly smaller than lnn, our condition on c does not appear to reflect a principal limit of
our analysis. More refined versions of Lemma 2 and of Lemma 3 might well be able to do without
any condition on c. For Lemma 2, an idea would be to consider augmenting path trees which have
expansion not on every level but only over a certain constant number of levels. For Lemma 3, one
might be able to exploit the special structure of the two large sets between which we need an edge.
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