Simultaneous Approximations for Adversarial and Stochastic
Online Budgeted Allocation

Vahab S. Mirrokni *

Abstract

Motivated by online ad allocation, we study the problem
of simultaneous approximations for the adversarial and
stochastic online budgeted allocation problem. This problem
consists of a bipartite graph G = (X, Y, E), where the nodes
of Y along with their corresponding capacities are known
beforehand to the algorithm, and the nodes of X arrive
online. When a node of X arrives, its incident edges, and
their respective weights are revealed, and the algorithm can
match it to a neighbor in Y. The objective is to maximize the
weight of the final matching, while respecting the capacities.

When nodes arrive in an adversarial order, the best
competitive ratio is known to be 1 — 1/e, and it can
be achieved by the Ranking [18], and its generalizations
(Balance [16, 21]). On the other hand, if the nodes arrive
through a random permutation, it is possible to achieve
a competitive ratio of 1 — € [9]. In this paper we design
algorithms that achieve a competitive ratio better than
1 —1/e on average, while preserving a nearly optimal worst
case competitive ratio. Ideally, we want to achieve the best
of both worlds, i.e, to design an algorithm with the optimal
competitive ratio in both the adversarial and random arrival
models. We achieve this for unweighted graphs, but show
that it is not possible for weighted graphs.

In particular, for unweighted graphs, under some mild
assumptions, we show that Balance achieves a competitive
ratio of 1 — ¢ in a random permutation model. For weighted
graphs, however, we prove this is not possible; we prove that
no online algorithm that achieves an approximation factor
of 1 — % for the worst-case inputs may achieve an average
approximation factor better than 97.6% for random inputs.
In light of this hardness result, we aim to design algorithms
with improved approximation ratios in the random arrival
model while preserving the competitive ratio of 1 — % in the
worst case. To this end, we show the algorithm proposed
by [21] achieves a competitive ratio of 0.76 for the random
arrival model, while having a 1 — % ratio in the worst case.

~ *Google Research, 76 9th Ave,
Email:mirrokni@google. com.
TDepartment of Management Science and Engineering, Stan-
ford University. Supported by a Stanford Graduate Fellowship.
Email:shayan@stanford.edu.
tPart of this work was done while the author was a summer

New York, NY 10011,

intern at Microsoft Research New England.
SMIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA. Email:morteza@mit.edu.

Shayan Oveis Gharantf

Morteza Zadimoghaddam *3

1 Introduction

Online bipartite matching is a fundamental optimiza-
tion problem with many applications in online resource
allocation, especially the online allocation of ads on the
Internet. In this problem, we are given a bipartite graph
G = (X,Y, E) with a set of fixed nodes (or bins) Y, a
set of online nodes (or balls) X, and a set E of edges
between them. Any fixed node (or bin) y; € Y is as-
sociated with a total weighted capacity (or budget) c;.
Online nodes (or balls) x; € X arrive online along with
their incident edges (z;,y;) € E(G) and their weights
w; ;. Upon the arrival of a node z; € X, the algo-
rithm can assign z; to at most one bin y; € ¥ where
(xi,y;) € E(G) and the total weight of nodes assigned
to y; does not exceed c;. The goal is to maximize the
total weight of the allocation. This problem is known
as the AdWords problem, and it has been studied under
the assumption that % — 0, in [21, &, 9].
Under the most basic online model, known as
the adversarial model, the online algorithm does not
know anything about the z;’s or E(G) beforehand. In
this model, the seminal result of Karp, Vazirani and
Vazirani [18] gives an optimal online 1 — 1-competitive
algorithm to maximize the size of the matching for
unweighted graphs where w;; = 1 for each (z;,y;) €
E(G). For weighted graphs, Mehta et al. [21, §]
presented the first 1 — %—approximation algorithm to
maximize the total weight of the allocation for the
AdWords problem and this result has been generalized
to more general weighted allocation problems [8, 12].
Other than the adversarial model, motivated by
applications in online advertising, various stochastic
online models have been proposed for this problem. In
such stochastic models, online nodes x; € X arrive
in a random order, or according to an iid model. In
the random order model, given a random permutation
o € Sy, the ball 7, ;) arrives at time ¢ fort = 1,2,...,n,
and in the iid stochastic models, online nodes are drawn
iid from a known or an unknown distribution. These
stochastic models are particularly motivated in the
context of online ad allocation. In this context, online
nodes correspond to page-views, search queries, or
online requests for ads. In these settings, the incoming

mirrokni@google.com
shayan@stanford.edu
morteza@mit.edu

traffic of page-views may be predicted with a reasonable
precision using a vast amount of historical data. Two
general techniques have been applied to get improved
approximation algorithms for these online stochastic
problems: primal-based and dual-based techniques. The
dual-based technique is based on solving a dual linear
program on a sample instance, and using this dual
solution in the online decisions. This method was
pioneered by Devanur and Hayes [9] for the AdWords
problem and extended to more general problems [11, 1,
26]. Tt gives a 1 — e-approximations for the random
arrival model if the number of balls n is a prior
information to the algorithm, and %%J_T > O(%)7
where m := |Y|. The primal-based technique is based
on solving an offline primal instance, and applying this
solution in an online manner. This method applies
the idea of power-of-two choices, and gives improved
approximation algorithms for the iid model with known
distributions. This technique was initiated by Feldman
et al [13] for the online (unweighted) matching problem
and has been improved [4, 22, 14, 15] and extended to
more the weighted settings [14].

All these stochastic models and their algorithms are
useful only if the incoming traffic of online nodes (e.g.
page-views) can be predicted with a reasonably good
precision. In other words, such algorithms may rely
heavily on a precise forecast of the online traffic pat-
terns, and may not react quickly to sudden changes in
the traffic. In fact, the slow reaction to such traffic
spikes impose a serious limitation in the real-world use
of stochastic algorithms in practical applications, and
both primal-based and dual-based techniques described
above suffer from this limitation. This is a common
issue in applying stochastic optimization techniques to
the online resource allocation problems (see e.g., [27]).
Various methodologies such as robust or control-based
stochastic optimization [5, 6, 27, 25] have been applied
to alleviate this drawback. In this paper, we study
this problem from a more idealistic perspective and
aim to design algorithms that simultaneously achieve
optimal approximation ratios for both the adversarial
and stochastic models. It is not hard to see the pre-
viously known primal-based and dual-based techniques
for stochastic models do not result in a bounded ap-
proximation ratio for the adversarial model. Our goal
is to design algorithms that achieve good performance
ratios both in the worst case and in the average case.
Such a result would resolve an open problem posed by
Devanur et. al [10].

Our Contributions and Techniques. In this pa-
per, we study simultaneous approximation algorithms
for the adversarial and stochastic models for the on-
line budgeted allocation problem. Our goal is to design

algorithms that achieve a competitive ratio strictly bet-
ter than 1 — 1/e on average, while preserving a nearly
optimal worst case competitive ratio. Ideally, we want
to achieve the best of both worlds, i.e, to design an
algorithm with the optimal competitive ratio in both
the adversarial and random arrival models. Toward
this goal, we show that this can be achieved for un-
weighted graphs, but not for weighted graphs. Never-
theless, we present improved approximation algorithms
for weighted graphs.

For weighted graphs we prove that no algorithm
can simultaneously achieve nearly optimal competitive
ratios on both the adversarial and random arrival mod-
els. In particular, we show that no online algorithm
that achieve an approximation factor of 1 — % for the
worst-case inputs may achieve an average approxima-
tion factor better than 97.6% for the random inputs (See
Corollary 5.1). More generally, we show that any algo-
rithm achieving an approximation factor of 1 — € in the
stochastic model may not achieve a competitive ratio
better than 4,/¢ in the adversarial model (See Theorem
5.1). In light of this hardness result, we aim to design
algorithms with improved approximation ratios in the
random arrival model while preserving the competitive
ratio of 1— é in the worst case. To this end, we show an
almost tight analysis of the algorithm proposed in [21]
in the random arrival model. In particular, we show
its competitive ratio is at least 0.76, and is no more
than 0.81 (See Theorem 3.1, and Lemma 5.1). Com-
bining this with the worst-case ratio analysis of Mehta
et al. [21] we obtain an algorithm with the competitive
ratio of 0.76 for the random arrival model, while hav-
ingal-— % ratio in the worst case. It is worth noting
that unlike the result of [9] we do not assume any prior
knowledge of the number of balls is given to the algo-
rithm.

On the other hand, for unweighted graphs, under
the assumption of large degrees and an additional mild
assumption, we show a generalization of an algorithm
in [16] achieves a competitive ratio of 1 — € in the
random arrival model (See Theorem 4.1). Combining
this with the worst-case ratio analysis of [16, 21], we
obtain an algorithm with the competitive ratio of 1—e in
the random arrival model, while preserving the optimal
competitive ratio of 1 — % in the adversarial model.
Previously, a similar result was known for a more
restricted stochastic model where all bins have equal
capacities [23]. For the case of small degrees, an upper
bound of 0.82 is known for the approximation ratio
of any algorithm for the online stochastic matching
problem (even for the under the iid model with known
distributions) [22].

Our proofs consist of three main steps. (i) The main

technique is to define an appropriate potential function
as an indefinite integral of a scoring function, and inter-
pret the online algorithms as a greedy algorithm acting
to improve these potential functions by optimizing the
corresponding scoring functions (see Section 2); these
potential functions may prove useful elsewhere. (ii) The
second important component of the proof is to write a
factor-revealing mathematical program based on the po-
tential function and its changes. (iii) Finally, the last
part of the proofs involve changing the factor-revealing
programs to a constant-size LP and solve it using a
solver (in the weighted case), or analyzing the math-
ematical program explicitly using an intermediary al-
gorithm with an oracle access to the optimum (in the
unweighted case). The third step of the proof in the
weighted case is inspired by the technique employed by
Mahdian and Yan [20] for unweighted graphs, however,
the set of mathematical programs we used are quite dif-
ferent from theirs.

All of our results hold under two mild assump-
tions: (i) large capacities (i.e., % — 0), and
(ii) a mild lower bound on the value of OPT: the ag-
gregate sum of the largest weight ball assigned to each
bin by the optimum is much smaller than OPT, i.e.,
Zj maX.ope(iy=j Wi,; < OPT. Both of these assump-
tions are valid in real-world applications of this problem
in online advertising. The first assumption also appears
in the AdWords problem, and the second assumption
aims to get rid of some degenerate cases in which the
optimum solution is very small. Both of these assump-
tions are necessary for our results for the weighted case.

Other Related Work. For unweighted graphs,
it has been recently observed that the Karp-Vazirani-
Vazirani 1 — %—competitive algorithm for the adversarial
model also achieves an improved approximation ratio
of 0.70 in the random arrival model [17, 20]. This
holds even without the assumption of large degrees.
It is known that without this assumption, one cannot
achieve an approximation factor better than 0.82 for
this problem (even in the case of iid with known
distributions) [22]. This is in contrast with our result
for unweighted graphs with large degrees.

Dealing with traffic spikes and inaccuracy in fore-
casting the traffic patterns is a central issue in oper-
ations research and stochastic optimization. Various
methodologies such as robust or control-based stochas-
tic optimization [5, 6, 27, 25] have been proposed. These
techniques either try to deal with a larger family of
stochastic models at once [5, 6, 27], try to handle a large
class of demand matrices at the same time [27, 2, 3], or
aim to design asymptotically optimal algorithms that
re-act more adaptively to traffic spikes [25]. These
methods have been applied in particular for traffic engi-

neering [27] and inter-domain routing [2, 3]. Although
dealing with similar issues, our approach and results
are quite different from the approaches taken in these
papers. For example, none of these previous mod-
els give theoretical guarantees in the adversarial model
while preserving an improved approximation ratio for
the stochastic model. Finally, an interesting related
model for combining stochastic and online solutions for
the Adwords problem is considered in [19], however their
approach does not give an improved approximation al-
gorithm for the iid model.

1.1 Notation Let G(X,Y, E) be a (weighted) bipar-
tite graph, where X := {x1,...,z,} is the set of online
nodes (or balls), and Y := {y1,...,ym} is the set of
fixed nodes (or bins). For each pair of nodes z;,y;, w; ;
represents the weight of edge (z;,y;). Each online node
y; is associated with a weighted capacity (or budget)
¢;j > 0. The online matching problem is as follows: first
a permutation o € S, is chosen (the distribution may
be chosen according to any unknown distribution): at
times t = 1,2,...,n, the ball z,() arrives and its inci-
dent edges are revealed to the algorithm. The algorithm
can assign this ball to at most one of the bins that are
adjacent to it. The total weight of balls assigned to each
bin y; may not exceed its weighted capacity c;. The ob-
jective is to maximize the weight of the final matching.

Given the graph G, the optimum offline solution
is the maximum weighted bipartite matching in G
respecting the weighted capacities, i.e, the total weight
of balls assigned to to a bin y; may not exceed c;. For
each ball x;, let opt(i) denote the index of the bin that
x; is being matched to in the optimum solution, and
alg(i) be the index of the bin that x; is matched to in
the algorithm. Also for each node y; € Y, let 0; be the
weighted degree of y; in the optimum solution. Observe
that for each j, we have 0 < 0; < ¢;. By definition, we
have the size of the optimum solution is OPT =}, o;.
Throughout the paper, we use OPT as the total weight
of the optimal solution, and ALG as the total weight of
the output of the online algorithm.

Throughout this paper, we make the assumption
that the weights of the edges are small compared to the
capacities, i.e., max; ; w; ; is small compared to min; c;.
Also we assume that the aggregate sum of the largest
weight ball assigned to each bin by the optimum is much
smaller than OPT i.e., Zj maxX; ope(i)—=j Wi,; < OPT. In
particular, let

Wj j Zj maX;.opt(i)=5 Wi,j
max —=,

1,7 Cj OPT

L (1.1)

v 2 max

The guarantees of our algorithm are provided for the

case when v — 0. For justifications behind this assump-
tion, see the discussion at the end of the introduction
before discussing other related work.

2 Main Ideas

In this section, we describe the main ideas of the proof.
We start by defining the algorithms as deterministic
greedy algorithms optimizing specific scoring functions.
We define a concave potential function as an indefinite
integral of the scoring function, and show that a “good”
greedy algorithm must try to maximize the potential
function. In Section 2.1, we show that if o is chosen
uniformly at random, then we can lower-bound the in-
crease of the potential in an e fraction of process; finally
in Section 2.2 we write a factor-revealing mathemat-
ical program based on the potential function and its
changes.

We consider a class of deterministic greedy algo-
rithms that assign each incoming ball z,) based on
a “scoring function” defined over the bins. Roughly
speaking, the scoring function characterizes the “qual-
ity” of a bin, and a larger score implies a better-quality
bin. Unless otherwise specified, we assume that the
scoring function is independent of the particular label-
ing of the bins, and it is a non-negative, non-increasing
function of the amount that is saturated so far (roughly
speaking, the greedy algorithms try to prevent over-
saturating a bin when the rest are almost empty). How-
ever, all of our arguments in this section can also be
applied to the more general scoring functions that may
even depend on the overall capacity ¢; of the bins. We
also assume that the scoring function and its derivative
are bounded (i.e., |f'()],|f()] < 1), and f(1) < 0. At
a particular time ¢, let r;(t) represent the fraction of
the capacity of the bin y; that is saturated so far. Let
f(r;j(t)) be the score of y; at time ¢t. When the ball
Ty(141) arrives, the greedy algorithm simply computes
the score of all of the bins and assigns 7,41 to the bin
yj maximizing the product of wy(i41y,; and f(r;(t)).

Kalyanasundaram, and Pruhs [16] designed the al-
gorithm Balance using the scoring function f,(r;(t)) :=
1—r;(t) (i-e., the algorithm simply assigns an in-coming
ball to the neighbor with the smallest ratio if its ratio is
less than 1, and drops the ball otherwise). They show
that for any unweighted graph G, Balance achieves a
1—1/e competitive ratio against any adversarially cho-
sen permutation o. Mehta et al. [21] generalized this
algorithm to weighted graphs by defining the scoring
function f,,(r;(t)) = (1 — e!~"®). Their algorithm,
denoted by Weighted-Balance, achieves a competitive
ratio of 1 — 1/e for the AdWords problem in the ad-
versarial model. We note that both of the algorithms
never over-saturate bins (i.e., 0 < r;(¢t) < 1). Other

scoring functions have also been considered for other
variants of the problem (see e.g. [19, 12]). Intuitively,
these scoring functions are chosen to ensure that the al-
gorithm assigns the balls as close to opt(z,;)) as possi-
ble. When the permutation is chosen adversarially, any
scoring function would fail to perfectly monitor the op-
timum assignment (as discussed before, no online algo-
rithm can achieve a competitive ratio better than 1—1/e
in the adversarial model). However, we hope that when
o is chosen uniformly at random, for any adversarially
chosen graph G, the algorithm can almost capture the
optimum assignment. In the following we try to formal-
ize this observation.

We measure the performance of the algorithm at
time ¢ by assigning a potential function that in some
sense compares the quality of the overall decisions of the
algorithm w.r.t. the optimum. Assuming the optimum
solution saturates all of the bins (i.e., ¢; = o0;), the
potential function achieves its maximum at the end of
the algorithm if the balls are assigned exactly according
to the optimum. A closer value of the potential function
to the optimum means a better assignment of the balls.
We define the potential function as the weighted sum
of the indefinite integral of the scoring functions of the
bins chosen by the algorithm:

7 (t)
o0 =, [)i = e, Py 0),

In particular, we use the following potential function for
Balance and the Weighted-Balance, respectively:

5 e -)
Z cj(r; — e =1y,

J

Pult) 1 = (2.2)

Puw(t): = (2.3)

Observe that since the scoring function is a non-
increasing function of the ratios, its antiderivative F(.)
will be a concave function of the ratios. Moreover, since
it is always non-negative the value of the potential func-
tion never decreases in the running time of the algo-
rithm. By this definition the greedy algorithm can be
seen as an online gradient descent algorithm which tries
to maximize a concave potential function; for each ar-
riving ball z, 4y, it assigns the ball to the bin that makes
the largest local increase in the function.

To analyze the performance of the algorithm we
lower-bound the increase in the value of the potential
function based on the optimum matching. This allows
us to show that the final value of the potential function
achieved by the algorithm is close to its value in the
optimum, thus bound the competitive ratio of the

algorithm. In the next subsection, we use the fact
that ¢ is chosen randomly to lower-bound the increase
in en steps. Finally, in SubSection 2.2 we write a
factor-revealing mathematical program to compute the
competitive ratio of the greedy algorithm.

2.1 Lower bounding the increase in the poten-
tial function In this part, we use the randomness de-
fined on the permutation o to argue that with high prob-
ability the value of the potential function must have a
significant increase during the run of the algorithm. Let
& be the event that the arrival process of the balls is
approximately close to its expectation. To show that £
occurs with high probability, we only consider the distri-
bution of arriving balls at 1/¢ equally distance times; as
a result we can monitor the amount of increase in the po-
tential function at these time intervals. For a carefully
chosen 0 < € < 1, we divide the process into 1/e slabs
such that the k*" slab includes the [kne + 1, (k + 1)ne]
balls. Assuming o is chosen uniformly at random, we
show a concentration bound on the weight of the balls
arriving in the k** slab. Using this, we lower bound
o((k + 1)ne) — ¢(kne) in Lemma 2.2.

First we use the randommness to determine the
weight of the balls arriving in the k' slab. Let I,
be the indicator random variable indicating that the
it" ball will arrive in the k** slab. Observe that
for any k, the indicators I; j, are negatively correlated:
knowing that I; , = 1 can only decrease the proba-
bility of the occurrence of the other balls in the k*?
slab (i.e., P[L x|y = 1] < P [I;1]). Define N; =
Zi:opt(i):j wj, j1; 1 as the sum of the weight of the balls
that are matched to the j** bin in the optimum and
arrive in the k' slab. It is easy to see that E, [N;] =
€ - 0j, moreover, since it is a linear combination of neg-
atively correlated random variables it will be concen-
trated around its mean. Define h(k) := 3, [N — €o;l.
The following Lemma shows that h(k) is very close to
zero for all time slabs k with high probability. In-
tuitively, this implies that, with high probability, the
weight of the balls assigned to each bin in the optimum
solution is distributed almost equally in all slabs.

LemMA 2.1, Let h(k) = >, |Njx — €oj|. For any

§ >0, P, [Vk,h(k) < 22OPT] > 1 6.

Proof. 1t suffices to upper-bound P [h(k) > %OPT] <
d¢; the lemma can then be proved by a simple applica-
tion of the union bound. First we use Azuma-Hoeffding
concentration bound to compute E[|N; , — €o;]; then
we simply apply the Markov inequality to upper-bound
h(k).

Let WJ = 2

2 Zi:opt(i):j wi,j7 for any j7 ka we show

E[|N,; — €o;|] < 3W;. Since N;j is a linear combina-
tion of negatively correlated random variables I; ;, for
opt(i) = j, and E[N, ;] = €-0; by a generalization
of the Azuma Hoeffding bound to negatively correlated
random variables [24] we have

E[|Nji —eoj|] < W; {ZP ([N — E[N;p]| =1 W]
=0

0o l2W].2
S
<W; {1 +2 E e Tiopt(i)=i Vi }
=1

< W, (1 + 2Ze—lz> < 3W;. (2.4)

=1

Let Wimax(j) = maX;.opt(i)=; wi,j. Since sz is twice the
sum of the square of the weights assigned to the j**

bin, we can write W; < \/meax(j)oj. Therefore, by
the linearity of expectation we have

E [h(k)] < Z3W <5y wmaxm?/v +70;

1
<5y, D Wmax(j) + %OPT} < 570PT,
J

where the last inequality follows from assumption (1.1).
Since h(k) is a non-negative random variable, by the
Markov inequality we get P [h(k) > i’—gOPT] < de. The
lemma simply follows by applying this inequality for all
k €{0,...,1/€e} and using the union bound. O

Let &€ be the event that Vk, h(k) < ‘Z—gOPT. The
next lemma shows that conditioned on &, one can lower-
bound the increase in the potential function in any slab
(i.e., ¢((k + 1)ne) — ¢(kne) for 0 < k < 1/e):

LEMMA 2.2. If f(.) is a mnon-increasing function,
f(1) <0, [fOLI)] < 1 for the range of ratios
that may be encountered in the running time of the
algorithm, and & occurs, then for any 0 < k < 1/e,
to = kne, and t1 = (k + 1)ne we have

B(t1) = dlto) = €3 £(ry(t2))o; - %OPT.

Proof. First we compute the increase of the potential
function at time ¢t + 1, for tg < ¢t < t;. Then, we
lower-bound the increase using the monotonicity of the
scoring function f(.). Finally, we condition on £ and
lower-bound the final expression in terms of OPT.

Let o(t + 1) = i, and suppose that z; is assigned to
Yopt(i) in the optimum. If the algorithm does not assign
T;, we have r4,,(;) > 1, thus

gb(t + 1) - ¢(t) =02=> wi,opt(i)f(ropt(i) (t)) (25)

The last inequality follows from the lemma’s assumption
f(r) <0 for r > 1. On the other hand if the algorithm
assigns z; to the j bin (i.e., alg(i) = j), using the
mean value theorem of the calculus we have
o1-+1) - 0(0) =, { }

i

~ {u;,) f'(r*)}

,7(t)+w; j/c;j]. Since the algorithm
(t)) we get

F(ri(t) + “’—) — F(ry(t))

- Wi

1
Cj

Frs@) + 5

for some r* € [r;(t)
maximizes w; ; f(r;

Ot + 1) — () = Wi opt(i) [(Topiy (1)) —

Wi, j
¢j

> wi,opt(i)f(Topt(i) (t)) — Wj 5
> Wy opi(i) [(Tope(iy (t1)) — ywij, (2.6)

where the second inequality follows by the lemma’s
assumption |f’(r)] < 1, and the last inequality follows
from equation (1.1).

Putting equations (2.5), (2.6) together, we can
monitor the amount of increase in the potential function
in the k' slab as follows:

t1—1
d)(tl) - ¢(t0) > Z wo’(t),opt(a(t))f(ropt(a(t))(t)) - ’YOPT
t=to
>3 Y f(ri(t)we,; — YOPT
7 to<t<ty

opt(o(t))=j

= Z J(rj(t1))Njr —yOPT

where the first inequality follows from the fact that
ALG < OPT, the second inequality follows by the
lemma’s assumption that f(.) is a non-increasing func-
tion , and the equality follows from the definition of
Nj . By lemma 2.1 we know Nj 1 is highly concentrated
around e-0;. Conditioned on &£, we have h(k) < %OPT,
thus:

B(t1) — ¢(to) > EZ f(rj(ti))o; — Z [Njx — €04

> €3 f(ry(t)o; — (k) = 7OPT

6y
— —OPT
650

> ey fri(t)o;
J
where the first inequality follows by the lemma’s as-
sumption |f(.)| < 1.
O

2.2 Description of the factor-revealing Mathe-
matical Program In this section, we propose a factor-
revealing mathematical program that lower-bounds
the competitive ratio of the algorithms Balance and
Weighted-Balance. In Sections 3 and 4, we derive a
relaxation of the program and analyze that relaxation.
Interestingly, the main non-trivial constraints are the
lower bounds on the amount of the increase in the po-
tential function.

The details of the program is described in MP(1).
It is worth noting that the one to the last constraint in
this program follows from the monotonicity property of
the ratios.

The following proposition summarizes the argu-
ments in SubSection 2.1, and shows that MP(1) is a
relaxation for any deterministic greedy algorithm that
works based on a scoring function. It is worth noting
that the whole argument still follows even if the scoring
function is not necessarily non-negative; we state the
proposition in this general form.

PROPOSITION 2.1. Let f be any non-increasing, scor-
ing function of the ratios r;(t) of the bins such that
[f(), |f(r)] < 1 for the range of ratios that may be
encountered in the running time of the algorithm. For
any (weighted) graph G = (X,Y), and e > 0, with prob-
ability at least 1 — §, MP(1) is a factor-revealing math-
ematical program for the greedy deterministic algorithm
that uses scoring function f(.).

Since the function F(.) is not necessarily a linear
function, MP(1) may not be solvable in polynomial
time. In Section 4, we write a simple relaxation that is
composed of the lower bound on the amount of increase
in the potential function (second equation); after adding
a new constraint, we solve the program analytically for
unweighted graphs. For weighted graphs, we write a
constant-size LP relaxation of the program that lower-
bounds the optimum solution (after losing a small
error). Finally, we solve the constant-size LP by an
LP solver, and thus obtain a nearly tight bound for the
competitive ratio of the Weighted-Balance (see Section
3 for more details).

In the rest of this section, we write a simpler factor

- VOPTevealing mathematical program MP(2) for Weighted-

Balance that will be used later in Section 3. In particu-
lar, we simplify the critical constraint that measures the
increase in the potential function by further removing
the term —%YOPT. In the next lemma we show that

12V) of

€24

the optimum value of MP(2) is at least (1 —
MP(1):

LEMMA 2.3. For any weighted graph G, if f(r)
1 —e"1, then MP(1) > (1 — a) min{1, MP(2)}, where

MP(1)
s.t.

minimize g > ri(n)e;
> ¢ F(r;(t)
€20 f(rj((k + 1)ne)) —

05
Zj 05

ri(t)
rj(n)

6
S 0pT

MP(2)
s.t.

minimize Zj ri(n)c;

Z]‘ c;(ri(t) — e (-1)

€ Zj Oj(l - e’”j((k-i-l)ne)—1)
05

Zj 0y

r;(t)

rj(n)

A AN I VANRVARI!

o= /21,
Proof. Wlog we can replace OPT = 1 in MP(1). Let
s1 1= {r;(t), ¢, 05, #(t)} be a feasible solution of MP(1).
If >2,rj(n)e; > (1 — @) we are done; otherwise we
construct a feasible solution sy of MP(2) such that the
value of s; is at least (1 — «) of the value of s3. Then
the lemma simply follows from the fact that the cost of
the value of the optimum solution of MP(1) is at least
(1 —) of the value of the optimum of MP(2).

Define sy := {r;(t),c;/(1 — a),0j,9(t)/(1 — a)}.
Trivially, so satisfies all except (possibly) the second
constraint of MP(2). Moreover, the value of s7 is (1 —«)
times the value of sy. It remains to prove the feasibility
of the second constraint of MP(2), i.e.,

e(1—a) Zo 1—e"i (k+Dn)=1y < G((k41)ne)—p(kne),
j

for all k € [1/€]. Since s; is a feasible solution of MP(1)
we have

o((k + 1)ne) — ¢(kne)

60[2

_ o ri((k+1)ne)—1
e) 5

_ erj((kJrl)ne)fl) (27)

£ 2

1= 2 ,
{ 52 oj(l—rj((k—i-l)ne)}
where the last inequality follows from the assumption
that 0 < r;(t) < 1, and the fact that 1—e®~1 > 1(1—x)
for z € [0,1]. On the other hand, since >, r;(n)c; <
1 — «, we can write:

Z ¢jri(n

Zoﬂ

((k + Dne)

= ¢(t) vt € [n]v

< B((k+ o) — d(kne) ke[l -1,
< ¢ Vj € [m],

= OPT,

< rj(t+1) Vi, t € [n—1],
< 1 Vi € [m].
(1) Vvt € [n],

d((k + 1)ne) — ¢p(kne) Vk € [%],

¢ vj € [m],

1.

ri(t+1) Vi, t € [n—1],

1 Vj € [m].

The lemma simply follows from putting the above
inequality together with equation (2.7). O

3 The Competitive Ratio of Weighted-Balance

In this section, we lower-bound the competitive ratio
of the Weighted-Balance algorithm in the random ar-
rival model. More specifically, we prove the following
theorem:

THEOREM 3.1. For any weighted graph G = (X,Y, E),
the competitive ratio of Weighted-Balance in the ran-
dom arrival model is at least 0.76(1 — O(¥/7)).

To prove the bound in this theorem, we write a constant-
size linear programming relaxation of the problem based
on MP(2) and solve the program by an LP solver.
The main two difficulties with solving program MP(2)
are as follows: first, as we discussed in Section 2.2,
MP(2) is not a convex program; second, the size of the
program (i.e., the number of variables and constraints)
is a function of the size of the graph G.

Our relaxation is based on a simple observation
that the main constraints in MP(2), those lower-
bounding the increase in the potential function, are
lower-bounding the increase only at constant (1/e)
number of values. Hence, we do not need to keep track
of the ratios and the potential function for all ¢ € [n];
it suffices to monitor these values at 1/e critical times
(i.e., at times kne for k € [1/¢]), for a constant ¢. In
those critical times it suffices to approximately monitor
the ratios of the bins by discretizing the ratios into 1/e
slabs.

For any integers 0 < ¢ < 1/€,0 <k < 1/¢, let ¢; be
the sum of the capacities of the bins of ratio r;(kne) €
[ie, (14 1)€), and o, i, be the sum of the weighted degree
of the bins of ratio r;(kne) € [ie, (i+1)e) in the optimum

solution, i.e.,

ok = D

jirj(kne)€lie,(i41)¢€)

Y o

jirj(kne)€lie,(i41)¢€)

Cj,

Ok = (3.8)

Now we are ready to describe the constant-size LP
relaxation of MP(2). We write the LP relaxation in
terms of the new variables c¢;,0;%. In particular,
instead of writing the constraints in terms of the actual
ratios of the bins, we round down (or round up)
the ratios to the nearest multiple of € such that the
constraint remains satisfied. The details are described
in LP(1).

In the next Lemma, we show that the LP(1) is a
linear programming relaxation of the program MP(2):

LEMMA 3.1. For any weighted graph G, LP(1) >
MP(2).

Proof. We show that for any feasible solution s :=
{r;(t), cj,05,¢(t)} of MP(2) we can construct a feasible
solution s" = {c} ;,0; ;,¢'(k)} for LP(1) with a smaller
objective value. In particular, we construct s’ simply
using equation (3.8), and letting ¢’ (k) := ¢(kne). First
we show that all constraints of LP(1) are satisfied by s,
then we show that the value of LP(1) for s’ is smaller
than the value of MP(2) for s.

The first constraint of LP(1) simply follows from
rounding down the ratios in the first constraint of
MP(2) to the nearest multiple of e. The equation
remains satisfied by the fact that the potential function
¢(.) is increasing in the ratios (i.e., F,(r) = r —e" !
is increasing in r € [0,1]). Similarly, the second
contraint of LP(1) follows from rounding up the ratios
in the second constraint of MP(2), and noting that
the scoring function is decreasing in the ratios (i.e.,
fw(r) = 1 — "1 is decreasing for r € [0,1]). The
third and fourth constraints can be derived from the
corresponding constraints in MP(2). Finally, the last
constraint follows from the monotonicity property of the
ratios (i.e., r;(t) is a non-decreasing function of ¢).

It remains to compare the values of the two solu-
tions s, and s’. We have

1 1 1/e—1 _
1= 1/e ¢'(E) - iz::o i (ie/e —e* ™)
< o o - T ey

where the inequality follows from the fact that r/e—e" !

is a decreasing function for r € [0,1], and the last
inequality simply follows from the definition of ¢, (.)
(i.e., the first constraint of MP(2)). O

Now we are ready to prove Theorem 3.1:

Proof of Theorem 3.1. By Proposition 2.1, for any
€ > 0, with probability 1 — § the competitive ratio of
Weighted-Balance is lower-bounded by the optimum of
MP(1). On the other hand, by Lemma 2.3 the optimum

solution of MP(1) is at least (1— \/g) of the optimum
solution of MP(2). Finally, by Lemma 3.1 the optimum
solution of MP(2) is at least the optimum of LP(1).
Hence, with probability 1 — § the competitive ratio of
Weighted-Balance is at least (1— \/%) of the optimum
of LP(1).

The constant-size linear program LP(1) can be
solved numerically for any value of ¢ > 0. By solving
this LP using an LP solver, we can show that for
e = 1/250 the optimum solution is greater than 0.76.
By taking § = 4'/2, the competitive ratio of Weighted-
Balance in random arrival model is at least 0.76(1 —

O()- 0

REMARK 3.1. We remark that the optimum solution of
LP(1) beats the 1 —1/e factor even for e = 1/8; roughly
speaking this implies that even if the permutation o is
almost random, in the sense that each 1/8 fraction of the
input almost has the same distribution, then Weighted-
Balance beats the 1 — 1/e factor.

4 The Competitive Ratio of Balance

In this section we show that for any unweighted graph
G, under some mild assumptions, the competitive ratio
of Balance approaches 1 in the random arrival model.

THEOREM 4.1. For any unweighted bipartite graph G =
(X,Y, E), the competitive ratio of Balance in the ran-

71/7Zi0j)_

dom arrival model is at least 1 — O(~—gF

First we prove the above theorem for all-saturated in-
stances; we assume that the optimum solution saturates
all of the bins (i.e., ¢; = o; for all j).

LEMMA 4.1. For any 6 > 0, with probability 1 — & the
competitive ratio of Balance on all-saturated instances
in the random arrival model is at least 1 — (3, where

B = 3(v/0)Y6.

Then we prove Theorem 4.1 via a simple reduction to
the all-saturated instances.

To prove Lemma 4.1, we analyze a slightly different
algorithm Balance’ that always assigns an arriving ball
(possibly to an over-saturated bin); this will allow us to

LP(1) minimize
s.t. Eii%_l c; g (ie — e 1)
Z;izfl 60i,k+1(1 o €(i+1)671)
0;.k
il oin
1/e—1
=i ClLk

INIV A

IA

keep track of the number of assigned balls at each step
of the process. In particular we have

Veen]: Y ery(t) =t, (4.9)

where r;(t) does not necessarily belong to [0,1]. The
latter may violate some of our assumptions in Section
2. To avoid that, we provide an additional knowledge of
the optimum solution to Balance’ such that it satisfies
the conditions of Lemma 2.2, and it achieves exactly the
same weight as Balance.

Before describing Balance’ we prove a simple struc-
tural lemma:

LEMMA 4.2. Let G = (X, Y,E), z € X, and X' =
X\ {z}. For any permutation o € Six| let o’ be the
projection of o onto X'. If the matchings obtained by
running Balance on o and o’ are mot identical, then
they differ by a single alternating path starting at x.

The lemma can be proved similar to [7, Lemma 2],
we leave the details to the full version of this paper.
Applying the lemma repeatedly to remove balls which
are not matched in the optimum, it follows that the
competitive ratio of Balance is determined by the
graphs where optimum matches all of the balls. In the
rest of this section we assume that optimum matches all
of the balls.

Next we describe Balance’, then we show it is a
feasible algorithm for the potential function framework
studied in Section 2. When a ball x; arrives at time ¢ 41
(i.e., o(t + 1) =), similar to Balance, Balance’ assigns
it to a bin y; maximizing w; ; f..(r;(t)). Unlike Balance
if r;(t) > 1 (i.e., all neighbors of z; are saturated),
Balance’ does not drop z;, and assigns it to the bin
Yopt(i)- Since the optimum matches all of the balls,
Yopt(i) is well-defined for all of the balls.

First note that although Balance’ magically knows
the optimum assignment of a ball once all of its neigh-
bors are saturated, it achieves the same weight matching
as Balance. This simply follows from the fact that over-
saturating bins does not increase our gain, and does
not alter any future decisions of the algorithm. Next we
show that Balance’ satisfies the conditions of Lemma

1%1/6 {¢(%) - lei%*l Ci,k(iE/e _ eie—l)}

o(k) vk € [1]
o(k+1)—¢(k) Vkel[t-1]
Cik vie[t-1]ke [}
1 Vk € [1]:

1/5—1

L5 curt vie[l-1]ke[t-1]

2.2, and we write a simple mathematical programming
relaxation for it.

By Lemma 2.2, we just need to verify that
[Fu ()]s 1f2 ()] <1 for all the ratios we might be encoun-
tered in the running time of Balance’. Since f,(r) =
(1—7), and the ratios are always non-negative, it is suf-
ficient to show that the ratios are always upper-bounded
by 2. To prove this, we crucially use the fact that Bal-
ance’ has access to the optimum assignment for the balls
assigned to the over-saturated bins. Observe that the
set of balls assigned to a bin after it is being saturated,
is always a subset of the balls assigned to it in the op-
timum. Since the ratio of all bins are at most 1 in the
optimum, they will not be more than 2 in Balance’.

By Lemma 2.2, and equation (4.9), with probability

1—46, MP(3) is a mathematical programming relaxation
of Balance’ in the all-saturated instances. Now we are
ready to prove Lemma 4.1.
Proof of Lemma 4.1. First we sum up all 1/e equations
of the second constraint of MP(3), and show that ¢,,(n)
is very close to zero (intuitively, the algorithm almost
manages to optimize the potential function). Then, we
simply apply the Cauchy-Schwarz inequality to ¢, (n)
to bound the loss of Balance’.

We sum up the equations of the second constraint of
MP(3) for all k € {0,1,...,% —1}; the RHS telescopes
and we obtain:

6y
1/e—1

—€ Z chrj((k‘—i— 1)ne)
k=0 j

6 1/e—1
>nl— 5 —en Y (k+1)
€
k=0

Gy
%)

where the first inequality follows by the assumption that
the instance is all-saturated, and the second inequality
follows from applying the first constraint of MP(3)
for t = (k + 1)ne, and the assumption that optimum

matches all of the bins. Since ¢,(0) = —1 >ie(1—

r;(0))? = —n/2, we obtain ¢, (n) > —n(§ + S).

MP(3)
s.t.

minimize _; min{r;(n), 1}c;
>, 6ri(t)
€>;¢(1—ri((k+1)ne)) — %OPT

Since only the non-saturated bins incur a loss to the
algorithm, the number of non-matched balls is equal to

Loss(Balance’) = Z ¢ (1 —rj(n)).
rj(n)<l

Using the lower-bound on ¢, (n) we have

Yo oal=rn) < | Y l—rm)? > ¢

rj(n)<l rj(n)<1 rj(n)<1

S v _2¢u(n) "n

/ 12y
< -
<n e+625,

where the first inequality follows by the Cauchy-Schwarz
inequality, and the second inequality follows from the
definition of ¢,(n). The lemma simply follows from
choosing € = 2(27/6)'/3 in the above inequality. O
Proof of Theorem 4.1. Let G (X,Y) be an
unweighted graph; similar to Lemma 4.1 we analyze
Balance’ on G. For every bin y; we introduce ¢; — o;
dummy balls that are only adjacent to the j** bin, and
let G' = (X',Y) be the new instance. First we show
that the expected number of non-dummy balls matched
by Balance’ in G’ is at most the expected size of the
matching that Balance’ achieves in G. We analyze the
performance of Balance’ on G simply using Lemma 4.1,
and eliminating the effect of dummies.

Fix a permutation o € S|x/|; let W'(o) be the
number of non-dummy balls matched by Balance’ on
o. Similarly, let W(o[X]) be the size of the matching
obtained on o[X] in G, where o[X] is the projection of
o on X. By applying Lemma 4.2 repeatedly to the
dummy balls, W' (o) < W(o[X]) for all 0 € §x/|.
Hence, to compute the competitive ratio of Balance’ on
@, it is sufficient to upper-bound the expected number
of non-dummy balls that are not-matched by Balance’
in G’. The latter is certainly not more than the total
loss of Balance’ on G' which is no more than 83, ¢; by
Lemma 4.1. Therefore, for any § > 0, with probability

1 — 4, the competitive ratio of Balance’ on G is at least
1_ B Zj Cj

. The lemma follows by choosing § = /7. O

5 Hardness Results

In this section, we show that there exists a family
of weighted graphs G such that for any ¢ > 0, any
online algorithm that achieves a 1 — € competitive
ratio in the random arrival model, does not achieve an

=
< du((k + 1)ne) — gu(kne)

t € [n],
vk € [1—1],

approximation ratio better than a function g(e¢) in the
adversarial model, where g(e) — 0 as ¢ — 0. More
specifically, we prove something stronger:

THEOREM 5.1. For any constants d,e¢ > 0, there exists
family of weighted bipartite graphs G = (X,Y, E) such
that any (randomized) algorithm that achieves a 1 — €
competitive ratio (in expectation) on at least a & fraction
of the permutations, does not achieve more than 4./€
(in expectation) for a particularly chosen permutation
in another graph G'.

As a corollary, observe that any algorithm that achieves
the competitive ratio of 1 — 1/e in the adversarial
model can not achieve an approximation factor better
than 0.976 in the random arrival model. Moreover,
at the end of this section, we show that for some
family of graphs the Weighted-Balance algorithm does
not achieve a competitive ratio better than 0.81 in the
random arrival model (see Lemma 5.1 for more details).
This implies that our analysis of the competitive ratio
of this algorithm is tight up to an additive error of 5%.
We start by presenting the construction of the hard
examples:

EXAMPLE 5.1. Fix a large enough integer ! > 0, and let
a = /€; let Y := {y1,y2} with capacities ¢c; = ca = 1.
Let C and D be two types of balls (or online nodes),
and let the set of online nodes X correspond to a set of
I copies of C and I/« copies of D. Fach type C ball has
a weight of 1 in y1, and a weight of 0 in ys, while a type
D ball has a weight of 1 in y1 and a weight of a in ys.

First of all, observe that the optimum solution
achieves a matching of weight 2/ simply by assigning all
type C balls to y;, and type D balls to yo. On the other
hand, any algorithm that achieves a competitive ratio
of 1 — € in the random arrival model should match the
balls in a way “very similar” to this strategy. However, if
the algorithm uses this strategy, then an adversary may
construct an instance by preserving the first [balls of the
input followed by !/a dummy balls. In this new instance
it is “more beneficial” to assign all of the first [balls to
y1. In the following we formalize this observation.
Proof of Theorem 5.1. Let G be the graph constructed
in Example 5.1, and let A be a (randomized) algorithm
that achieves a 1 — e competitive ratio (in expectation)
on at least § fraction of permutations o € S,, where
n = {41/, for some constant 6 > 0. First we show that
there exists a particular permutation o* such that there

are at most [« balls of type C among {o*(1),...,0%()},
and algorithm A achieves at least (1 —¢€)2l on o*. Then
we show that the (expected) gain of A from the first [
balls is at most 411/e. Finally, we construct a new graph
G' = (X',Y) and a permutation ¢’ such that the first
I balls in ¢’ is the same as the first [balls of o*. This
will imply that A does not achieve a competitive ratio
better than 4,/€ on G'.

To find o* it is sufficient to show that with prob-
ability strictly greater than 1 — ¢ the number of type
A balls among the first [balls of a uniformly random
chosen permutation o is at most [«. This can be proved
simply using the Chernoff-Hoeffding bound. Let B; be
a Bernoulli random variable indicating that z,;) is of
type C, for 1 <i <. Observe that E, [B;] = %, and
these variables are negatively correlated. By a general-
ization of Chernoff-Hoeffding bound [24] we have

P < 4,

l
Lo
ZBi > al] <e &
i=1

where the last inequality follows by choosing [large
enough. Hence, there exists a permutation ¢* such that
the number of type C' balls among its first balls is at
most la, and A achieves (1 — €)2l on o*.

Next we show that the (expected) gain of A from
the first I balls of o* is at most 2l(a + €/a) = 4l /e.
This simply follows from the observation that any ball
of type D that is assigned to y; incurs a loss of a. Since
the expected loss of the algorithm is at most 2le on o™,
the expected number of type D balls assigned to y; (in
the whole process) is no more than %6 We can upper-
bound the (expected) gain of the algorithm from the
first { balls by la + %6 + la, where the first term follows
from the upper-bound on the number of C' balls, and the
last term follows from the upper-bound on the weight
of any ball assigned to ys.

It remains to construct the adversarial instance G’
together with the permutation ¢’. G’ has the same set
of bins, while X’ is the union of the first [balls of o*
with {/a dummy balls (a dummy ball has zero weight
in both of the bins). We construct ¢’ by preserving the
first [balls of 0* (i.e., o5y = Toeyy for 1 < i < 1),
filling the rest with the dummy balls. First, observe
that the optimum solution in G’ achieves a matching of
weight [simply by assigning all of the first [balls to y;.
On the other hand, as we showed the (expected) gain of
the algorithm A is no more than 2la+ 2 = 41\/e on G'.
Therefore, the competitive ratio of A in this adversarial
instance is no more than 4,/c. O

The following corollary can be proved simply by
choosing ¢ small enough in Theorem 5.1:

0.632

0.76 0.97 1

Figure 1: The diagram represents the provable upper
and lower bounds for simultaneous approximations of
the adversarial and random arrival model on weighted
graphs. The horizontal axis represents the competitive
ratios in the random arrival model, and the vertical
axis represents the competitive ratios in the adversarial
order model. The red solid curve represents the upper
bound on achievable competitive ratio in the adversarial
order model for any guarantee on the competitive ratio
of the random arrival model (see Theorem 5.1). The
blue dotted line represents the simultaneous competitive
ratio that is achieved by an algorithm randomizing
between Balance and the dual-based 1—e-approximation
of Devanur and Hayes [9)].

COROLLARY 5.1. For any constant € > 0, any algo-
rithm that achieves a competitive ratio of 1—e in the ran-
dom arrival model does not achieve strictly better than
4+/€ in the adversarial model. In particular, any algo-
rithm that achieves a competitive ratio of 1 — é in the
adversarial model does mot achieve strictly better than
0.976 in the random arrival model.

Figure 1 depicts a summery of the hardness and algo-
rithmic results for online matching problem on weighted
graphs. See the description under Figure 1 for details.

Next we present a family of examples where the
Weighted-Balance does not achieve a factor better than
0.81 in the random arrival model.

EXAMPLE 5.2. Fiz a large enough integer n > 0, and
a < 1; let Y = {y1,y2} with capacities ¢; = n, and
co = n?. Let X be a union of n identical balls each of

weight 1 for y1 and a for ys.

LEMMA 5.1. For a sufficiently large n, and a partic-
ularly chosen o > 0, the competitive ratio of the
Weighted-Balance in the random arrival model for Ez-
ample 5.2 is no more than 0.81.

Proof. First observe that the optimum solution achieves
a matching of weight n simply by assigning all balls to
y1. Intuitively, Weighted-Balance starts with the same
strategy, but after partially saturating v, it sends the
rest to yo (note that each ball that is sent to y, incurs
a loss of 1 — « to the algorithm). Recall that r1(n) is
the ratio of y; at the end of the algorithm. The lemma
essentially follows from upper-bounding r1(n) by 1 +
1/n+In(1—a(1—e'/"=1)). Since the algorithm achieves
a matching of weight exactly r1(n)n+(1—r1(n))na, and
OPT = n, the competitive ratio is r1(n) + (1 —r1(n))a.
By optimizing over «, one can show that the minimum
competitive ratio is no more than 0.81, and it is achieved
by choosing a =~ 0.55.

It remains to show that r1(n) < 1+ 1/n+ In(1 —
a(l —e/"=1)). Let t be the last time where a ball is
assigned to y; (i.e., ri(t —1) +1/n = ri(t) = r1(n)).
Since the ball at time ¢ is assigned to y;, we have

L fulri(t = 1)) > a- fulralt = 1) > - fu(1),

where the last inequality follows by the fact that the
ratio of the second bin can not be more than o -n/cy <
1/n, and fy,(.) is a non-increasing function of the ratios.
Using fu(r)=1—¢""! and ri(t — 1)+ 1/n = ri(n) we
obtain that r1(n) <1+ 1/n+1In(1 —a(l —e/""1)). O

References

[1] S. Agrawal, Z. Wang, and Y. Ye. A dynamic
near-optimal algorithm for online linear programming.
CoRR, 20009.

[2] D. Applegate and E. Cohen. Making routing robust to
changing traffic demands: algorithms and evaluation.
IEEE/ACM Trans. Netw., 16(6):1193-1206, 2006.

[3] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Récke.
Optimal oblivious routing in polynomial time. J.
Comput. Syst. Sci., 69(3):383-394, 2004.

[4] B. Bahmani and M. Kapralov. Improved bounds for
online stochastic matching. In ESA, 2010.

[5] A. Ben-Tal and A. Nemirovski. Robust optimization
- methodology and applications. Math. Program.,
92(3):453-480, 2002.

[6] D. Bertsimas, D. Pachamanova, and M. Sim. Robust
linear optimization under general norms. Oper. Res.
Lett., 32(6):510-516, 2004.

[7] B. Birnbaum and C. Mathieu. On-line bipartite match-
ing made simple. SIGACT News, 39:80-87, 2008.

[8] N. Buchbinder, K. Jain, and J. Naor. Online Primal-
Dual Algorithms for Maximizing Ad-Auctions Rev-
enue. In ESA, page 253. Springer, 2007.

[9] N. Devanur and T. Hayes. The adwords problem:
Online keyword matching with budgeted bidders under
random permutations. In EC, 2009.

[10] N. R. Devanur, K. Jain, B. Sivan, and C. A. Wilkens.
Near optimal online algorithms and fast approximation
algorithms for resource allocation problems. In EC,
pages 29-38, 2011.

[11] J. Feldman, M. Henzinger, N. Korula, V. S. Mirrokni,
and C. Stein. Online stochastic packing applied to
display ad allocation. In Proceedings of the 18th annual
European conference on Algorithms: Part I, ESA’10,
pages 182-194, Berlin, Heidelberg, 2010. Springer-
Verlag.

[12] J. Feldman, N. Korula, V. Mirrokni, S. Muthukrishnan,
and M. Pal. Online ad assignment with free disposal.
In WINE, 20009.

[13] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukr-
ishnan. Online stochastic matching: Beating 1 - 1/e.
In FOCS, 2009.

[14] B. Haeupler, V. Mirrokni, and M. ZadiMoghaddam.
Online stochastic weighted matching: Improved ap-
proximation algorithms. In WINE, 2011.

[15] P. Jaillet and X. Lu. Online stochastic matching: New
algorithms with better bounds. 2011.

[16] B. Kalyanasundaram and K. Pruhs. On-line net-
work optimization problems. In Developments from a
June 1996 seminar on Online algorithms: the state of
the art, pages 268-280, London, UK, 1998. Springer-
Verlag.

[17] C. Karande, A. Mehta, and P. Tripathi. Online
bipartite matching with unknown distributions. In
STOC, 2011.

[18] R. Karp, U. Vazirani, and V. Vazirani.
algorithm for online bipartite matching.
1990.

[19] M. Mahdian, H. Nazerzadeh, and A. Saberi. Allocating
online advertisement space with unreliable estimates.
In EC, pages 288-294, 2007.

[20] M. Mahdian and Q. Yan. Online bipartite matching
with random arrivals: A strongly factor revealing lp
approach. In STOC, 2011.

[21] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani.
Adwords and generalized online matching. J. ACM,
54(5):22, 2007.

[22] V. H. Menshadi, S. Oveis Gharan, and A. Saberi.
Online stochastic matching: Online actions based on
offline statistics. In SODA, 2011.

[23] R. Motwani, R. Panigrahy, and Y. Xu. Fractional
matching via balls-and-bins. In APPROX-RANDOM,
2006.

[24] A. Panconesi and A. Srinivasan. Randomized dis-
tributed edge coloring via an extension of the chernoff-
hoeffding bounds. Siam Journal on Computing,
26:350-368, 1997.

[25] B. Tan and R. Srikant. Ounline advertisement, opti-
mization and stochastic networks. CoRR, 2010.

[26] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram.
Optimal online assignment with forecasts. In EC, 2010.

[27] H. Wang, H. X. 0002, L. Qiu, Y. R. Yang, Y. Zhang,
and A. G. Greenberg. Cope: traffic engineering in
dynamic networks. In SIGCOMM, pages 99-110, 2006.

An optimal
In STOC,

	Introduction
	Notation

	Main Ideas
	Lower bounding the increase in the potential function
	Description of the factor-revealing Mathematical Program

	The Competitive Ratio of Weighted-Balance
	The Competitive Ratio of Balance
	Hardness Results

