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Abstract—The forecasting of electricity demand has become one
of the major research fields in electrical engineering. Accurately
estimated forecasts are essential part of an efficient power sys-
tem planning and operation. In this paper, a modified version of
the support vector regression (SVR) is presented to solve the load
forecasting problem. The proposed model is derived by modify-
ing the risk function of the SVR algorithm with the use of locally
weighted regression (LWR) while keeping the regularization term
in its original form. In addition, the weighted distance algorithm
based on the Mahalanobis distance for optimizing the weighting
function’s bandwidth is proposed to improve the accuracy of the
algorithm. The performance of the new model is evaluated with
two real-world datasets, and compared with the local SVR and
some published models using the same datasets. The results show
that the proposed model exhibits superior performance compare
to that of LWR, local SVR, and other published models.

Index Terms—Load forecasting, locally weighted regression
(LWR), locally weighted support vector regression (LWSVR), sup-
port vector regression (SVR), time series reconstruction, weighted
distance.

I. INTRODUCTION

LOAD forecasting has always been the essential part of an
efficient power system planning and operation. It is always

defined as basically the science or art of predicting the future
load on a given system for a specified period of time ahead.
Operation decisions in power systems, such as unit commit-
ment, reducing spinning reserve, economic dispatch, automatic
generation control, reliability analysis, maintenance scheduling,
and energy commercialization, depend on the future behavior
of loads. Therefore, accurate load forecasting helps the elec-
tric utility to make these operation decisions properly. The time
series of power load is affected by many factors such as eco-
nomic, temperature, etc., thus making it difficult to be accurately
predicted.

Several short-term load forecasting (STLF) methods includ-
ing traditional and artificial intelligence-based methods have
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been proposed during the last four decades. The relationship
between electric load and its exogenous factors is complex and
nonlinear, making it quite difficult to be modeled through tradi-
tional techniques such as linear or multiple regression [1], au-
toregressive moving average (ARMA), exponential smoothing
methods [2], Kalman-filter-based methods [3], etc. On the other
hand, various artificial intelligence techniques were used for
STLF; among these methods, artificial neural networks (ANNs)
have received the largest share of attention. The ANNs that
have been successfully used for STLF are based on multilayered
perceptrons [4]. The neural fuzzy network, which has a good
performance in time series prediction [5], [6], has also been
used for load forecasting. Its application in hourly load fore-
casting for 24 h ahead [7] has shown a better accuracy than that
of the backpropagation neural network. Radial basis functions
(RBFs) [8] have been also used for day-ahead load forecasting,
giving better results than that of the conventional neural net-
works. In addition, the Bayesian neural network approach has
been applied to STLF with success [9].

Support vector machine (SVM), which is proposed by
Vapnik and coworkers [10], is a novel powerful machine learn-
ing method based on statistical learning theory (SLT). SVM re-
places the empirical risk minimization (ERM) principle, which
is generally employed in traditional ANN, by structural risk
minimization (SRM) principle. The most important concept of
SRM is the application of minimizing an upper bound to the
generalization error instead of minimizing the training error. On
the basis of this principle, SVM will be equivalent to solving a
linear constrained quadratic programming problem, so that the
solution of SVM is always unique and globally optimal. Orig-
inally, SVM has been developed for solving the classification
problems and achieved good performances [11]–[13]. With the
introduction of Vapnik’s ε-insensitive loss function, SVM has
been extended to solve the regression problems called support
vector regression (SVR) [14]. Recently, SVR has been applied
to various applications with excellent performances [15], [16].
Least-square SVM [17] and weighted least-square SVM [18] are
also effective algorithms. The SVR has shown a high accuracy
achieved when applied to solve the STLF problem [19], [20].

Because of the complexity of the historical load data and the
uncertainty of the influencing factors, such as weather, economi-
cal, and random factors, the time series reconstruction technique
can be applied to the power load forecasting. The correlation
dimension method and the mutual information method are used
to choose the optimal embedding dimension and time delay con-
stant for the power load data. Our previous works [15], [21], [22]
have shown that the local prediction methods based on phase
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reconstruction can provide generally better results than those
obtained with global methods based on phase reconstruction.

Locally weighted regression (LWR) [23] is a kind of locally
weighted learning methods. LWR forms a local model around
a point of interest whereby only training data that are closest to
that point will be used in handling each query, instead of using all
training data [24]. After answering the query, the aforesaid local
model is discarded. To answer a new query, a new local model
is created, which means that every set of training and generation
period is unique and independent of others. LWR is a method for
estimating a regression surface through multivariate smoothing:
the response variable is smoothed dynamically, as a function
of the predictor variables [23]. LWR consists of developing a
moving local model to a set of nearest neighbors.

In this paper, we proposed a new approach to a load forecast-
ing by combining the SVR and LWR, which can be called as
locally weighted support vector regression (LWSVR). LWSVR
is an ameliorated SVR, which endows a weight factor to each
train load datum. The weighting function’s bandwidth plays
an important role in local modeling. So, the weighted distance
algorithm that uses the Mahalanobis distance is proposed to
optimize this bandwidth. Two datasets have been used for eval-
uating the proposed model. The first dataset is related to a daily
peak load forecasting competition (European Network of Excel-
lence on Intelligent Technologies for Smart Adaptive Systems
(EUNITE) competition), with load and temperature data from
the Eastern Slovakian Electricity Corporation [25], while the
second dataset corresponds to the load and temperature series,
on an hourly basis, from a North American electric utility [26].

The paper is organized as follows. Section II summarizes the
previous related work. Section III outlines the basics of time
series reconstruction. Section IV describes the LWSVR algo-
rithm. Section V presents the weighted distance algorithm used
to optimize the bandwidth. Experimental results and compar-
isons on load forecasting problem are presented in Section VI.
Finally, Section VII concludes the paper.

II. RELATED WORK

In global predictors, a prediction model is trained based on
the entire data history and used to predict the load at a spe-
cific time with a fixed data window. Such an approach has the
disadvantage that if new information is taken into considera-
tion, all parameters of the model may need to be updated, and
also a lengthy parameter reestimation stage is required. Another
disadvantage is concerned with its disability of capitalizing the
historical information of the time series directly, as only the
current window is used for prediction at a specific time.

To overcome the drawbacks of the global predictors, the local
predictors can be used [15]. They overcome the drawbacks of
global predictors by utilizing part of the relevant history directly
in the prediction model. Specifically, only the set of points of
the reconstructed space that are close enough to the point under
prediction is used to fit the local function. Another advantage
of the local predictors is that the training set for each point
on the reconstructed trajectory is much smaller than the global
predictors, which require the use of all available training exam-

ples, and they can save memory space through decomposing the
prediction problem to several smaller ones.

In the last few years, the local predictor approach has in-
terested many researchers to solve the nonlinear time series
prediction problem such as [27] and [28]. McNames et al. [29]
introduced the local averaging model for time series prediction.
This method, which can be used with smaller neighborhoods, is
more stable and often more accurate than local linear model for
very short dataset. Therefore, this model was used in [29] to gen-
erate the winning entry of the Katholieke Universiteit Leuven
time series prediction competition. Lau et al. [15] combined the
strength of SVR and local predictor. The proposed algorithm, lo-
cal SVR, gave a better prediction results than other local models
when it is applied to nonlinear time series prediction.

In our previous work [21], [22], we combined a proven pow-
erful regression algorithm (SVR) with a local prediction frame-
work to solve the STLF problem. In this approach, the embed-
ding dimension and the time delay constant for the power load
data are computed first, and then the continuous power load
data are used for the phase space reconstruction. In addition,
the neighboring points are presented by Euclidian distance. Ac-
cording to these neighboring points, the local model is set up.

In all aforementioned techniques, the regularization param-
eter of SVR is constant, so that all training data contribute to
the accuracy of the model to the same extent. However, in many
cases, the effects of the training points are different where some
training points are more important than others. Therefore, the
model should have higher accuracy for these training points.

To achieve this goal, some trials are made to modify the stan-
dard SVR by weighting the SVR’s regularization parameter. Tay
et al. [30] introduced a modified SVM for financial time series
forecasting, which is called C-ascending SVM. In this method,
each data are weighted using one of the two designed weight-
ing functions. They are linear weight function and exponential
weight function. Then, the recent historical data points have
larger weights than the distant historical data. Lee et al. [31]
proposed the weighted SVM for quality estimation in the poly-
merization process. The proposed method combines the SVM
and LWR. Each data are weighted according to its distance to the
current prediction point. Hu et al. [32] introduced the weighted
SVM-based fuzzy C-mean clustering algorithm to solve STLF
problem. In this approach, the training samples are clustered into
several subsets with consideration of homogenous characteris-
tics. In addition, according to the time, each data are weighted.
The older data points have smaller weights than the new ones.
Unfortunately, the earlier trials were used as global predictors
except [31].

The study presented here extends our previous work [21], [22]
by modifying the risk function of the standard SVR with the use
of LWR while keeping the regularization term in its original
form. In addition, to optimize the weighting function’s band-
width, the weighted distance algorithm that uses the Maha-
lanobis distance is presented.

Our approach is different from the previous works. First, we
reconstruct the phase space of time series using the embedding
dimension (d) and the time delay constant (m). Here, the cor-
relation dimension method and the mutual information method
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are used to calculate d and m, respectively. Second, the Euclid-
ian distance is used to find the neighboring points for each query
point. Then, each point in the neighborhood is weighted accord-
ing to its distance from the query point to calculate the new
regularization parameter of SVR. Moreover, these neighboring
points are used only to train the prediction model instead of us-
ing all available training points, so that the drawbacks of global
predictors can be overcome. Finally, the weighted distance al-
gorithm is used to optimize the bandwidth of the weighting
function, so that we can overcome the disadvantage of using
this bandwidth as a fixed value.

III. TIME SERIES RECONSTRUCTION

A commonly used tool for the study of complex time series
and dynamical systems is the phase space reconstruction tech-
nique that stems from the embedding theorem developed by
Takens [33] and Sauer et al. [34]. Suppose we have an univari-
ate time series x(t) for t = 1, 2, . . . , N, where N is the length of
the dataset, and regarding the embedding theorem, x(t) can be
extending to a vector z(t) in a d-dimensional space as follows:

z(t) = [x(t), x(t − m), x(t − 2m), . . . , x(t − (d − 1)m)]
(1)

where d is called the embedding dimension of the system and
m is the delay constant. The time delay constant and the embed-
ding dimension are two important parameters for reconstructing
phase space. In this paper, the correlation dimension method and
the mutual information method are used to compute d and m,
respectively.

For the multivariate time series, assuming that there are n
time series, they are {xi(t)} (i = 1, 2, . . . , n). According to
the embedding theorem developed by Takens [33] and Sauer
et al. [34], the reconstructed vector of multivariate time series
in the phase space could be denoted as [35]

zi(t) = [xi(t), xi(t − mi),

xi(t − 2mi), . . . , xi(t − (di − 1)mi)] (2)

where i = 1, 2, . . . , n; t = 1, 2, . . . , L. The variables di and mi

are the selected embedding dimension and time delay constant of
the ith time series, respectively. L is the length of the embedded
points generated in the phase space, which can be computed
using the formula L = N − maxi=1,...,n [(di − 1)mi ]. z(t) is
now an L × D matrix, where D =

∑n
i=1 di . The details of how

to choose the proper values of d and m using the correlation
dimension method and mutual information method have been
reported in [15].

IV. LOCALLY WEIGHTED SUPPORT VECTOR REGRESSION

A. Support Vector Regression

There are two key features in the implementation of SVR.
They are quadratic programming and kernel functions. By solv-
ing a quadratic programming problem with linear equality and
inequality constraints, the SVR’s parameters can be obtained.
The flexibility of kernel functions allows the technique to search
a wide range of the solution space [36].

Fig. 1. ε-insensitive tube for SVR.

Suppose there is a set of training data {xi, yi}N
i=1 , where

each xi ∈ �n denotes the input space of the sample and has
a corresponding target value yi ∈ � for i = 1, . . . , N , with N
corresponding to the size of the training data. The SVR’s basic
idea is to find a nonlinear map from input space to output space
and map the input data to a higher dimensional feature space
through this map. Then the following estimate function is used
to make linear regression in that feature space [14] as

f(x) = 〈w, φ(x)〉 + b (3)

where φ(x) denotes the high-dimensional feature space, which
is nonlinearly mapped from the input space, w contains the
coefficients that have to be estimated from the data, and b is a
real constant. The objective is to minimize the following risk
function [10]:

min
w,b,ξi ,ξ ∗

i

1
2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )

subject to




yi − 〈w, φ(xi)〉 + b ≤ ε + ξ∗i

〈w, φ(xi)〉 + b − yi ≤ ε + ξi

ξi , ξ
∗
i ≥ 0

(4)

where xi is mapped to higher dimensional space by the function
φ, ξi is the lower training error (ξ∗i is the upper) subject to the
ε-insensitive tube |y − 〈w, φ(x)〉 + b)| ≤ ε, the term 1/2‖w‖2

is called the regularization term, and C is the regularization
constant that determines the tradeoff between the flatness of f
and its accuracy in capturing the training data.

The constraints of (4) imply that the most of the data xi are
placed inside the tube ε. If xi is outside the tube, there is an error
ξi or ξ∗i that we tend to minimize in the objective function. This
can be seen in Fig. 1. SVR avoids underfitting and overfitting of
the training data by minimizing the regularization term 1/2‖w‖2

as well as the training error C
∑N

i=1(ξi + ξ∗i ).
Introducing Lagrange multipliers αi and α∗

i with αiα
∗
i = 0

and αi, α
∗
i ≥ 0 for i = 1, . . . , N , and according to the Karush–

Kuhn–Tucker optimality conditions [14], the SVR training pro-
cedure amounts to solve the convex quadratic problem

min
α,α∗




1
2

N∑
i,j=1

(αi − α∗
i )(αj − α∗

j )Q(xi, xj )

+ ε

N∑
i=1

(αi + α∗
i ) −

N∑
i=1

yi(αi − α∗
i )
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subject to




N∑
i=1

(αi − α∗
i ) = 0

0 ≤ αi, α
∗
i ≤ C

(5)

where Q(xi, xj ) = 〈φ(xi), φ(xj )〉 is the kernel function that
is the inner product of the points φ(xi) and φ(xj ) mapped into
feature space. Using the kernels, all necessary computations can
be undertaken directly in the input space, without calculating
the explicit map φ(x). The typical examples of kernel function
are linear, polynomial, Gaussian, etc. [14]. Choosing a good
one for SVR algorithm is a problem itself. Therefore, different
types like linear, polynomial, and Gaussian are tested before
choosing the best one. We found that the Gaussian kernel gives
better results than other types in the range of 8.91%–10.43%.
So, in all test cases in this paper, we employ the commonly used
Gaussian kernel defined as

Q(xi, x) = exp
(
−‖xi − x‖2

2σ2

)
. (6)

Finally, the regression output takes the following form:

f̂(x) =
N∑

i=1

(αi − α∗
i )Q(xi, x) + b. (7)

B. Local Support Vector Regression

Local prediction is predicting the future based only on a
subset of training data to find a local f̂ , which approximate the
function f locally in the reconstructed embedded space. This
subset (neighborhoods) is chosen on the basis of the Euclidian
distance between the testing data and the training data in the
input space. In the local SVR model, the dynamics of time
series systems can be captured step by step locally in the phase
space and the drawbacks of global methods can be overcome.

The local SVR model can be summarized as follows [21],
[22]. First, reconstruct the time series using d and m as de-
scribed in Section III. For each query vector q, the K nearest
neighbors {z1

q , z2
q , . . . , zK

q } among the training inputs are cho-
sen using the Euclidian distance as the distance metric between
the q and each z in the reconstructed time series. Using these
K nearest neighbors, train the SVR to obtain support vector
and corresponding coefficients. Finally, the output f̂(q) can be
computed by (7).

C. Locally Weighted Regression

LWR is derived from standard linear regression. This algo-
rithm fits a surface to “local” points using distance-weighted
regression. LWR is based on the assumption that the neighbor-
ing values of the predictor variables are the best indicators of
the response variable in that range of predictor values [23].

To estimate the value of the function f̂(x) at any value of x in
the d-dimensional space, the K (neighborhood size) data points
whose xi values are closest to x are used (1 < K 	 N ). Each
point in the neighborhood is weighted according to its distance
from x. The points that are close to x have large weights, and
the points far from x have small weights [31].

Many weighting functions are proposed by the researchers
[23], [37]. Out of these weighting functions, Gaussian kernel,
tricube kernel, and quadratic kernel are the most popular [24].
The widely used weighting function is the Gaussian kernel
weighting function [37], which can be defined as follows:

W (dE ) = e−( d E
h )2

(8)

where h is the bandwidth parameter that plays an important role
in local modeling. From (8), the weight of the data point (xi, yi)
is then

Wi = W
(√

(x − xi)T (x − xi)
)
. (9)

Thus, Wi has its maximum value when xi is closest to x, and
decreases as xi increases in distance from x.

D. Locally Weighted Support Vector Regression

The presented model is derived by modifying the risk func-
tion of the standard SVR with the use of LWR. The constant C
in (4) is the regularization constant that determines the tradeoff
between the flatness of f and its accuracy in capturing the train-
ing data. When C is A constant, all training data contribute to
the accuracy of the model to the same extent [31]. In the load
forecasting problem, it is common that some training points
are more important than others [21], [22]. Therefore, the model
should have higher accuracy for the training input data that are
closer to the new input point for prediction.

To achieve this goal, C is computed as a function of the
distance between input data points and the concept of LWR is
used. In the presented approach, the modified risk function can
be formulated as follows:

1
2
‖w‖2 +

N∑
i=1

Ci(ξi + ξ∗i ) (10)

and

Ci = Wi × C (11)

where Wi is the weight function obtained from (9). Replacing
the constant C in (5) using (11), the dual problem’s constraints
can be written as

subject to




N∑
i=1

(αi − α∗
i ) = 0

0 ≤ αi, α
∗
i ≤ Ci.

By solving this problem, the regression output can be obtained
using (7).

V. WEIGHTED DISTANCE ALGORITHM FOR

OPTIMIZING THE BANDWIDTH

A bandwidth parameter h defines the scale or range over
which generalization is performed. This is a very important
parameter that plays an important role in local modeling. If h is
infinite, then the local modeling becomes global. On the other
hand, if h is too small, then it is possible that we will not have
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adequate number of data points in the neighborhood for a good
prediction.

There are several ways to use this parameter like fixed band-
width selection where h is constant, nearest neighbor bandwidth
selection where h is set to be the distance between the query
point and the Kth nearest point, global bandwidth selection
where h is calculated globally by an optimization process [24],
etc. In fixed bandwidth selection method, h is chosen as a con-
stant value; therefore, the training data with constant size and
shape are used. However, it is the easiest way to adjust the
radius of the weighting function, and its performance is unsat-
isfactory for nonlinear system as the density and distribution
of data points are unlikely to be identical at every place of the
dataset [38]. In this paper, we used the weighted distance al-
gorithm that uses the Mahalanobis distance for optimizing the
bandwidth (h) to improve the accuracy of our proposed method
(i.e., the improvement in the accuracy using this method over
the nearest neighbor bandwidth selection method is in the range
of 2.50%–4.00%).

The Mahalanobis distance is based on correlation between
variables by which different patterns can be identified and ana-
lyzed. With this measure, the problem of scale and correlation
inherent in Euclidean distance is no longer an issue. In the
Euclidean distance, the set of points that have equal distance
from a given location is a sphere. The Mahalanobis distance
stretches this sphere correct for the respective scales of the dif-
ferent variables and account for correlation among variables.

The standard Mahalanobis distance can be defined as

MD(x) =
√

(x − µ)T S−1(x − µ) (12)

where x is a vector of data, µ is a mean, and S−1 is inverse
covariance matrix.

Defining the Mahalanobis distance between the query point
xq and data point x as MDq =

√
(x − xq )T S−1(x − xq ),

where x belongs to the K nearest neighbors of the query point
xq and S−1 is computed after removing the mean from each
column, the bandwidth hq is the function of MDq given as

hq = Θ(MDq ) (13)

where MDmin ≤ MDq ≤ MDmax and MDmin is the distance
between xq and the closest neighbor, while MDmax is the dis-
tance between xq and the farthest neighbor.

According to the LWR method, the point corresponding to
MDq = MDmin is most important that is hmax = Θ(MDmin) =
1, while the point corresponding to MDq = MDmax is the least
important, i.e., hmin = Θ(MDmax) = δ, where δ is a real con-
stant. This constant is a low-sensitivity parameter. Therefore,
after few trials, we fix it to 0.01, which gives the best results.

The bandwidth hq can be selected as a function of MDq as
follows [38]:

hq = Θ(MDq ) = a

(
1 − b MDq

MDq

)2

+ c (14)

Fig. 2. Flowchart of the proposed model.

where a, b, and c are constants. By applying the boundary con-
ditions, we can calculate these constants and get [38]

hq = Θ(MDq ) = (1 − δ)
(

MDmin(MDmax − MDq )
MDq (MDmax − MDmin)

)2

+ δ.

(15)
The Gaussian kernel weighting function that is used in this

paper can be written as follows:

W (MDq ) = e

−

(
MDq

( 1−δ )

(
MDmin ( MDma x −MDq )
MDq ( MDma x −MDmin )

)2
+ δ

)2

. (16)

Fig. 2 presents the computation procedure of the proposed
model that can be divided to four main stages. The first stage
reconstructs the multivariate time series using the embedding
dimension and the time delay constant. The second stage finds
the K closest vectors, or nearest neighbors, of the observed
variables in the dataset for each query vector, and calculates
the bandwidth parameter (h) and weighting function of each
point in the neighborhood. Then it calculates the modified risk
function of SVR. The third stage trains the SVR with modified
risk function using only the K nearest neighbors. The fourth



ELATTAR et al.: ELECTRIC LOAD FORECASTING BASED ON LOCALLY WEIGHTED SUPPORT VECTOR REGRESSION 443

TABLE I
PHASE RECONSTRUCTION PARAMETERS FOR EACH DATASET

stage evaluates the model using the query vector as the input to
estimate the process output.

VI. EXPERIMENTAL RESULTS

A. Datasets

To evaluate the performance of the proposed LWSVR model,
two different datasets are used. The first one is the data provided
by the EUNITE network during the daily peak load competition
[25], while the second one is the hourly load and temperature
from North American electric utility [26].

For the first dataset, the organizer of the competition had pro-
vided the following data to the competitors: half hourly electric-
ity load demand from January 1997 to December 1998, average
daily temperature from 1995 to 1998, and holiday’s information
from 1997 to 1999. While for the second dataset, the hourly
load and temperature from January 1985 to March 1991 are
available.

Certain characteristics can be reported about the datasets be-
fore evaluating our proposed model. The load in both datasets
has some seasonal patterns: the electricity demand in winter
period is higher than the electricity demand in summer period.
This implies the relation between electricity usage and weather
conditions in different seasons. Also, the load has daily and
weekly periodicity. Load demand in weekdays (monday–friday)
is usually higher than that of weekend. In addition, electricity
demand in sunday is a little lower than that on saturday in the
first dataset, while it is a little higher than that on saturday in the
second dataset.

B. Parameters

To implement a good model, there are some important pa-
rameters to choose. Choosing the proper values of d and m is a
critical step in the algorithm. The correlation dimension method
and the mutual information method are used to selecte d and
m, respectively, and the optimal values of these parameters are
shown in Table I. Using the obtained values of d and m, the
multivariate time series can be reconstructed as described in
Section III.

Also, choosing K is a very important step in order to establish
the local prediction model. There are some methods used in
literature to find this parameter such as cross validation [39] and
bootstrap [40]. This parameter should be high for low-density
datasets, while it should be low for high density ones. So, in this

paper, we calculate K using the following method [21]:

K = round

(
α

N × kmax × Dmax

N∑
i=1

km a x∑
k=1

Dk (xi)

)
(17)

where N is the number of training points, kmax is the maximum
number of nearest neighbors, Dk (xi) is the distance between
each training point x and its nearest neighbors, while Dmax is
the maximum distance, 1

N ×km a x

∑N
i=1

∑km a x
k=1 Dk (xi) is the av-

erage distance around the points, which is inversely proportional
to the local densities, and α is a constant. The two constants kmax
and α are very low-sensitivity parameters. kmax can be chosen
as a percentage of the number of training points (N ) for effi-
ciency, while α can be chosen as a percentage. In this paper,
kmax and α are always fixed for all test cases at 30% of N and
75, respectively. Table I shows the value of K for each test case
used in this paper.

There are some key parameters for SVR, which are C, ε,
and σ in the Gaussian kernel function. The selection of these
parameters is important to the generalization of the forecasting.
Therefore, in order to get these parameters, we divided the train-
ing data into two subsets. One of them is used to train the model
while the other is used to validate the model. Based on this par-
tition, the suitable parameters are chosen using the following
procedures [41].

1) Set initial values of C and ε. Then, adjust the value of σ
till a minimum validation error is achieved.

2) Fix the value of ε and use the value of σ as calculated in the
previous step. Then, adjust the value of C till a minimum
validation error is achieved.

3) Use the values of σ and C as calculated in the previous two
steps. Then, adjust the value of ε till a minimum validation
error is achieved.

C. Numerical Results

For all performed experiments, we quantified the prediction
performance with mean absolute error (MAE), mean abso-
lute percentage error (MAPE), normalized mean square error
(NMSE), and relative error percentage (REP). They can be de-
fined as

MAE =
1
N

N∑
i=1

|Ai − Fi | (18)

MAPE =
1
N

N∑
i=1

|Ai − Fi |
Ai

× 100 (19)

NMSE =
1

∆2N

N∑
i=1

(Ai − Fi)2 (20)

∆2 =
1

N − 1

N∑
i=1

(Ai − A)2

REP =

√∑N
i=1(Ai − Fi)2∑N

i=1 A2
i

× 100 (21)
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TABLE II
COMPARISON OF THE LWSVR MODEL AND OTHER MODELS USING THE

DATASET OF EUNITE COMPETITION

Fig. 3. Comparison of LWSVR model and other models using the dataset of
EUNITE competition.

where Ai , Fi , and A are the actual value, the forecasted value,
and the mean of the actual values, respectively, N is the testing
dataset size, and i denotes the test instance index.

We designed two cases to evaluate the performance of the
proposed model.

Case 1: In this case, we used the dataset provided in EUNITE
competition. Our goal in this case as well as the goal of the
competition is to forecast the maximum daily load for January
1999. To achieve this goal, the load and temperature information
of winter data (from January to March and October to December
in 1997 and 1998) are used as a training period.

The performance of the LWSVR model is compared with
LWR and local SVR models. This comparison is shown in
Table II and depicted in Fig. 3.

These results show that the LWSVR model outperforms LWR
and local SVR models. It improves the MAPE over LWR and
local SVR models by 24.72% and 12.42%, respectively. In ad-
dition, the absolute percentage errors (APEs) between the fore-
casted load and actual load values of January 1999 for each
method are calculated. Fig. 4 presents box plots of the APE
results for LWR, local SVR, and LWSVR methods. These re-
sults confirm the superiority of our proposed method over other
methods. Moreover, the actual load and forecasted load values
of the peak daily load of January 1999 are plotted in Fig. 5. The
results of Fig. 5 show that our prediction values are very close
to the actual values.

The Mann–Whitney U test [42] is carried to confirm the sig-
nificance of forecasting accuracy of the LWSVR over LWR and
local SVR methods. Mann–Whitney U test is an approach for

Fig. 4. APE results of January 1999 for each method.

Fig. 5. Forecasted and actual maximum daily load in January 1999.

assessing the significance of a difference in the central tendency
of two data series. The test is conducted at the 0.05 signifi-
cance levels in one-tail test. The P values for (LWSVR versus
LWR) and (LWSVR versus Local SVR) are 0.0095 and 0.0147,
respectively, which is less than 0.05. Therefore, the LWSVR
model provides significantly better forecast results than LWR
and Local SVR.

To further study the superiority of LWSVR over other pub-
lished models, its performance is compared with some published
models that employ the dataset of EUNITE competition. These
models are:

1) model A [19]: SVM;
2) model B [43]: SVM optimized by genetic algorithm;
3) model C [44]: SVM -based input dimension reduction;
4) model D [45]: extended Bayesian training method.
All of these models are global models. During the EUNITE

competition, the real temperature of January 1999 was not pro-
vided to the competitors, so that the load data were only used
by some competitors like Chen et al. [19] to forecast the max-
imum daily load in January 1999. SVM was employed in [19]
to generate the winning entry of the EUNITE competition using
the load data from January to March and October to December
in 1997 and 1998, without using the temperature information.
Genetic algorithm was used in [43] to choose the optimal values
of the SVM’s parameters. A new model was proposed in [44]
to load forecasting by establishing the feature selection model
and using floating search method to find the feature subset. Then
SVM can be used to forecast the load using a small sample of the
data. Moreover, after the competition was closed, the real tem-
perature of January 1999 was available. This encourage some
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TABLE III
COMPARISON OF THE LWSVR MODEL AND OTHER MODELS USING THE DATASET OF EUNITE COMPETITION (MAPE)

TABLE IV
COMPARISON OF THE LWSVR MODEL AND OTHER MODELS USING THE

DATASET OF NORTH AMERICAN ELECTRIC UTILITY

researchers like Ferreira and da Silva [45] to use the tempera-
ture information to forecast the maximum daily load of January
1999. The extended Bayesian training method was used in [45]
and gave better results than that of the competition’s winner.

More details about the data used and the training period of
each model can be found in Table III. Moreover, the Gaussian
kernel function (6) is not only used in all our experiments, but
also in [19], [43], and [44]. To compare our proposed model with
models A, B, C, and D, we used the same experimental setup as
used in each model. This comparison is shown in Table III. The
results of Table III show that the LWSVR outperforms other
models.

Case 2: In this case, we used the dataset of the North American
electric utility. At this electric power utility, the daily forecasts
were made at 8:00 A.M. Forecasts were produced for the entire
next day, starting at midnight and through the following mid-
night, and hence, they were made from 16 to 40 h in the future.
On Friday, the forecasts were produced for the entire weekend
as well as Monday (16–88 h into the future). The objective is to
forecast the hourly load, from 16 up to 40 h (steps) ahead for
weekdays and from 16 up to 88 h (steps) ahead for weekends
during the test period that goes from November 1990 to March
1991.

To compare the proposed LWSVR with some published mod-
els that employ the same dataset, we used the same experimental
setup as used in [45] (model D) and [46] (model E), which use
a multiple regression model called EGRV. That is, the hourly
load and temperature data from the month to be forecasted and
from two month earlier, along with the data corresponding to
the same window in the previous year are used as a training
period. First, we calculate the error of each day during the test-
ing period. Then the average error of each day of the week
(Monday to Sunday) during the testing period is calculated. Fi-
nally, the overall mean performance for the entire testing period
for each model can be calculated. These results are summarized
in Table IV and depicted in Fig. 6.

It can be seen from these results that the LWSVR model gives
better performance than LWR, local SVR, model D [45], and

Fig. 6. Comparison of LWSVR model and other models using the dataset of
North American electric utility.

Fig. 7. Average prediction MAPE of every day of the week during the testing
period.

model E [46]. It improves the performance (MAPE) over LWR,
local SVR, model D [45], and model E [46] by 23.14%, 11.27%,
25.82%, and 23.47%, respectively.

Fig. 7 shows the average prediction MAPE of every day of
the week (Monday–Sunday) during the testing period. These
results confirm the superiority of the LWSVR model over other
models.

In addition, the MAPE of the whole testing data for the 24 h is
calculated. Fig. 8 presents box plots of these MAPE results for
model E [46], LWR, local SVR, and LWSVR methods. From
these results, we can note that the LWSVR model exhibits a bet-
ter performance than LWR, local SVR and Model E [46]. Most
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Fig. 8. Comparison of the LWSVR model and other models (MAPE of the
24 h).

Fig. 9. Forecasted and actual hourly load from November 27, 1990 to
December 3, 1990.

MAPE values of the proposed model are under 4, while in local
SVR, half MAPE values are under 4. Also, we can note that most
MAPE values of Model E [46] are over 4. The Mann–Whitney U
test [42] is conducted at the 0.05 significance levels in one-tailed
test to confirm the significance of forecasting accuracy of the
LWSVR over Model E [46], LWR, and local SVR methods. The
P values for (LWSVR versus Model E [46]), (LWSVR versus
LWR), and (LWSVR versus Local SVR) are 0.0025, 0.0031, and
0.0063, respectively, which is less than 0.05. These results show
that the LWSVR model provides significantly better forecast
results than model E [46], LWR, and local SVR.

Fig. 9 presents one example for the dataset of the North
American electric utility. It shows the forecasted hourly load
versus the actual load of the period from November 27, 1990
to December 3, 1990. These results show that our prediction
values are very close to the actual values.

VII. CONCLUSION

In this paper, we have proposed a new approach that can
be used to solve the load forecasting problem. The approach
combines the SVR and LWR, and employs the weighted dis-
tance algorithm that uses the Mahalanobis distance to optimize
the weighting function’s bandwidth. In the proposed model,
the phase space is reconstructed based on multivariate time se-
ries using the embedding dimension and time delay constant
for each scalar time series. In addition, the neighboring points
are selected using Euclidian distance. Then the new regulariza-

tion constant of SVR is calculated using the weighting function
whose bandwidth is optimized using the weighted distance al-
gorithm. According to these neighboring points and the new
regularization constant, the LWSVR model is set up.

Two different real-world datasets have been used to eval-
uate the performance of the proposed model. The proposed
model has been compared with LWR, local SVR and some
published papers employing the same datasets. The numerical
results, achieved on the basis of different measuring errors, box
plots, and Mann–Whitney U test, show the superiority of the
proposed model over LWR, local SVR, and other published
models. The effectiveness of the proposed model comes from
weighting the SVR’s regularization parameter using the LWR
method where each point in the neighborhood is weighted ac-
cording to its distance from the current query point. The points
that are close to the current query point have larger weights than
others. Moreover, by using the weighted distance algorithm, the
drawback of using the weighting function’s bandwidth as a fixed
value has been overcome. This has led to improve the accuracy
of the proposed model.
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