
Speed Scaling with an Arbitrary Power Function

Nikhil Bansal∗ Ho-Leung Chan† Kirk Pruhs‡

“What matters most to the computer design-
ers at Google is not speed, but power, low
power, because data centers can consume as
much electricity as a city.”
—Dr. Eric Schmidt, CEO of Google [12].

Abstract

All of the theoretical speed scaling research to date has

assumed that the power function, which expresses the power

consumption P as a function of the processor speed s, is

of the form P = s
α, where α > 1 is some constant.

Motivated in part by technological advances, we initiate

a study of speed scaling with arbitrary power functions.

We consider the problem of minimizing the total flow plus

energy. Our main result is a (3+ǫ)-competitive algorithm for

this problem, that holds for essentially any power function.

We also give a (2+ǫ)-competitive algorithm for the objective

of fractional weighted flow plus energy. Even for power

functions of the form s
α, it was not previously known

how to obtain competitiveness independent of α for these

problems. We also introduce a model of allowable speeds

that generalizes all known models in the literature.

1 Introduction

Energy consumption has become a key issue in the
design of microprocessors. Major chip manufacturers,
such as Intel, AMD and IBM, now produce chips with
dynamically scalable speeds, and produce associated
software that enables an operating system to manage
power by scaling processor speed. Within the last few
years there has been a significant amount of research
on the scheduling problems that arise in this setting.
Generally these problems have dual objectives as one
wants both to optimize some schedule quality of service
objective (for example, total flow) and some power
related objective (for example, the total energy used).

∗IBM T.J. Watson Research, P.O. Box 218, Yorktown Heights,

NY. nikhil@us.ibm.com
†Max-Planck-Institut für Informatik. hlchan@mpi-inf.mpg.de.

This paper was done when the author was in University of

Pittsburgh.
‡Computer Science Department, University of Pittsburgh.

kirk@cs.pitt.edu. Supported in part by an IBM faculty award,

and by NSF grants CNS-0325353, CCF-0514058, IIS-0534531, and

CCF-0830558.

Scheduling algorithms for these problems have two
components: A job selection policy that determines
which job to run and a speed scaling policy to determine
the speed at which the processor is run.

All of the theoretical speed scaling research to date
has assumed that the power function, which expresses
the power consumption P as a function of the processor
speed s, is of the form P = sα, where α > 1
is some constant. Let us call this the traditional
model. The traditional model was motived by the
fact that in CMOS based processors, the well known
cube-root rule states that the speed is approximately
the cube root of the power. So historically P =
s3 was a reasonable assumption. In the literature
one finds different variations on this traditional model
based on which speeds are allowable. Most of the
literature assumes the unbounded speed model, in which
a processor can be run at any real speed in the range
[0,∞). Some of the literature assumes the bounded
speed model in which the allowable speeds lie in some
real interval [0, T ]. Some of the literature on offline
algorithms, assumes the discrete speeds model in which
there are a finite number of allowable speeds.

Our main contribution in this paper is to initiate
theoretical investigations into speed scaling problems
with more general power functions, and develop algo-
rithmic analysis techniques for this setting. For an ex-
planation of the historical technological motivation for
the traditional model, and the current technological mo-
tivations for considering more general power functions,
see section 1.3. A secondary contribution is to intro-
duce a model for allowable speeds that generalizes all of
various models found in the literature.

We will consider the objective of minimizing a linear
combination of total (possibly weighted) flow and total
energy used. Our third contribution is to improve on the
known results for this important fundamental problem.
Optimizing a linear combination of energy and total flow
has the following natural interpretation. Suppose that
the user specifies how much improvement in flow, call
this amount ρ, is necessary to justify spending one unit
of energy. For example, the user might specify that he
is willing to spend 1 erg of energy from the battery for
a decrease of 4 micro-seconds in flow. Then the optimal
schedule, from this user’s perspective, is the schedule

693 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



that optimizes ρ = 4 times the energy used plus the
total flow. By changing the units of either energy or
time, one may assume without loss of generality that
ρ = 1. Weighted flow generalizes both total flow, and
total/average stretch, which is another common QoS
measure. The stretch/slowdown of a job is the flow
divided by the work of the job. When the user is
aware of the size of a job (say if the user knows that
he/she is downloading a video file instead of a text file)
then perhaps slowdown is a more appropriate measure
of the happiness of a user than flow. Many server
systems, such as operating systems and databases, have
mechanisms that allow the user or the system to give
different priorities to different jobs. For example, Unix
has the nice command. In a speed scaling setting, the
weight of a job is indicative of the flow versus energy
trade-off for this job. The user may be willing to spend
more energy to reduce the flow of a higher priority job,
than for a lower priority job.

1.1 The Literature on Flow + Energy in the

Traditional Model Let us start with results in the
unbounded speed model. Pruhs, Uthaisombut and
Woeginger [15] gave an efficient offline algorithm to
find the schedule that minimizes average flow subject
to a constraint on the amount of energy used, in the
case that jobs have unit work. This algorithm can also
be used to find optimal schedules when the objective
is a linear combination of total flow and energy used.
They observed that in any locally-optimal schedule,
essentially each job i is run at a power proportional to
the number of jobs that would be delayed if job i was
delayed. Albers and Fujiwara [1] proposed the natural
online speed scaling algorithm that always runs at a
power equal to the number of unfinished jobs (which is
lower bound to the number of jobs that would be delayed
if the selected job was delayed). They did not actually
analyze this natural algorithm, but rather analyzed
a batched variation, in which jobs that are released
while the current batch is running are ignored until
the current batch finishes. They showed that for unit

work jobs that this batched algorithm is O
((

3+
√

5
2

)α)

-

competitive by reasoning directly about the optimal
schedule. This gave a competitive ratio of about
400 when the cube-root rule holds. They also gave
an efficient offline dynamic programming algorithm.
Bansal, Pruhs and Stein [4] considered the algorithm
that runs at a power equal to the unfinished work (which
is in general a bit less than the number of unfinished
jobs for unit work jobs). They showed that for unit
work jobs, this algorithm is 2-competitive with respect
to the objective of fractional flow plus energy using an
amortized local competitiveness argument. A job that

is say 2/3 completed at time t, only contributes 1/3
to the increase in fractional flow at time t. They then
showed that the natural algorithm proposed in [1] is
4-competitive for total flow plus energy for unit work
jobs.

For the more general setting where jobs have arbi-
trary sizes and arbitrary weights and the objective is
weighted flow plus energy, Bansal, Pruhs and Stein [4]
considered the algorithm that uses Highest Density First
(HDF) for job selection, and always runs at a power
equal to the fractional weight of the unfinished jobs.
They showed that this algorithm is O( α

log α
)-competitive

for fractional weighted flow plus energy using an amor-
tized local competitiveness argument. Using the known
resource augmentation analysis of HDF [5], they then

showed how to obtain an O( α2

log2 α
)-competitive algo-

rithm for (integral) weighted flow plus energy. The com-
petitive ratio was a bit less than 8 when the cube-root
rule holds.

Recently, Lam et al. [11] improved the competitive
ratio for total flow plus energy for arbitrary work and
unit weight jobs. They considered the job selection algo-
rithm Shortest Remaining Processing Time (SRPT) and
the speed scaling algorithm of running at a power pro-
portional to the number of unfinished jobs, and proved
that this is O( α

log α
)-competitive for flow time plus en-

ergy. When the cube-root rule holds, this competitive
ratio was about 3.25. Their improvement came by rea-
soning directly about integral flow time instead of argu-
ing first about fractional flow time. Speed scaling pa-
pers prior to [11] used potential functions related to the
fractional amount of unfinished work or weight. The
main reason for this was that such a potential func-
tion varies continuously with time which substantially
simplifies the proofs as one only needs to consider in-
stantaneous states of the online and offline algorithms.
The main technical contribution of [11] was the intro-
duction of a different form of continuously varying po-
tential function that depends on the integral number of
unfinished jobs.

Bansal et al. [2] extended the results of [4] for
the unbounded speed model to the bounded speed
model. The speed scaling algorithm was to run at
the minimum of the speed recommended by the speed
scaling algorithm in the unbounded speed model and
the maximum speed of the processor. The contribution
there was to develop the algorithmic analysis techniques
necessary to analyze this algorithm. The results for the
bounded speed model in [2] were improved in [11], again
by reasoning directly about integral flow. Again [11]
showed competitive ratios of O( α

log α
). When the cube-

root rule holds, the obtained competitive ratio was 4.

694 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



1.2 Our Results We assume that the allowable
speeds are a countable collection of disjoint subintervals
of [0,∞). We assume that all the intervals, except possi-
bly the rightmost interval, are closed on both ends. The
rightmost interval may be open on the right if the power
P (s) approaches infinity as the speed s approaches the
rightmost endpoint of that interval. We assume that P
is non-negative, and P is continuous and differentiable
on all but countably many points. We assume that ei-
ther there is a maximum allowable speed T , or that the
limit inferior of P (s)/s as s approaches infinity is not
zero (if this condition doesn’t hold then, then the opti-
mal speed scaling policy is to run at infinite speed). Let
us call this the general model. We give two main results
in the general model.

Theorem 1.1. Consider the scheduling algorithm that
uses Shortest Remaining Processing Time (SRPT) for
job selection and power equal to one more than the
number of unfinished jobs for speed scaling. In the
general model, this scheduling algorithm is (3 + ǫ)-
competitive for the objective of total flow plus energy
on arbitrary-work unit-weight jobs.

Theorem 1.2. Consider the scheduling algorithm that
uses Highest Density First (HDF) for job selection and
power equal to the fractional weight of the unfinished
jobs for speed scaling. In the general model, this schedul-
ing algorithm is (2 + ǫ)-competitive for the objective of
fractional weighted flow plus energy on arbitrary-work
arbitrary-weight jobs.

We establish these results through an amortized
local competitiveness argument. As in [2], our potential
function is based on the integral number of unfinished
jobs. However, our potential function is quite different
and more general than the potential function considered
in [2]. While Theorem 1.1 deals with integral flow,
Theorem 1.2 only holds for fractional weighted flow.
Obtaining a competitive ratio independent of α for the
objective of (integral) weighted flow plus energy is ruled
out since resource augmentation is required to achieve
O(1)-competitiveness for the objective of weighted flow
on a fixed speed processor [3].

Let us consider what these theorems say in the
traditional model. Theorem 1.1 slightly improves the
best known competitive ratios, when the cube root
rule holds, in both the unbounded and bounded speed
models. The potential functions used in all previous
papers are specifically tailored toward the function
P = sα. Moreover, these potential functions can
not be used to show competitive ratios of o( α

ln α
) for

arbitrary work jobs. So while the competitive ratios
were O(1)-competitive for a fixed α, they were not O(1)-
competitive for a general power function of the form

sα. Our new potential function not only allows us to
break the barrier of α

ln α
, and it allows us to obtain O(1)-

competitiveness for general power functions.

1.3 Technological Motivations The power used by
a processor can be partitioned into dynamic power, the
power used by switching when doing computations, and
static/leakage power, which is the power lost in absence
of any switching. Historically (say up until 5 years ago)
the static power used by a processor was negligible com-
pared to the dynamic power. Dynamic power is roughly
proportional to sV 2, where V is the voltage. However
as the minimum voltage required to drive the micropro-
cessor at a desired speed is approximately proportional
to the frequency [7], this leads to the well known cube-
root rule that the speed s is roughly proportional to the
cube-root of the power P , or equivalently, P = s3, the
power is proportional to the speed cubed [7].

However, currently the static power used by the
common processors manufactured by Intel and AMD
is now comparable to the dynamic power. The reason
for this is that to increase processor speeds, transistor
sizes and desired transistor switching delays must de-
crease. To obtain a smaller switching delay, the thresh-
old voltage for the transistor must be decreased. Un-
fortunately, subthreshold leakage current increases ex-
ponentially as threshold voltage decreases [13, 8]. This
suggests modeling the speed to power function as some-
thing like P (s) = sα + c, where there is some range
of speeds [smin, smax] that the processor can run at.
Here α ≈ 3 comes from the cube-root rule for dynamic
power, and c is a constant specifying the static power
loss. There is however, good motivation for considering
more general speed to power functions. We will state
three more examples here.

Example 1: In general, the higher speed that one can
scale a core or a processor, the greater the static power
(because the threshold voltage must be less). It has
been proposed that it might be advantageous to build
a processor consisting of different circuitry for running
jobs at different speeds speed ranges [6, 8]. Each
circuitry would have different speed ranges, different
static powers due to the different threshold voltages,
and different power functions. Thus the speed scaling
algorithm might be able to choose among a collection
of power functions of the form Pi(s) = ais

α + ci,
where each Pi(s) is applicable over a collection Si =
{si,1, . . . , si,ki

} of speeds. (Note that in this context
that we can not scale our units so that the multiplicative
constant is always 1). In this setting, the power function
of might be of the form:

P (s) = min
i:s∈Si

ais
α + ci

695 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Example 2: Subthreshold leakage current/power is not
independent of temperature. The temperature in turn
depends on the speed that the processor is run. Some
discussion of how leakage current/power is related to
temperature can be found in [8], but it seems that this
issue is perhaps not so well understood. But in any
case, there appears to be no reason to presume that the
resulting power function would be of the form sα.

Example 3: Another motivation for considering gen-
eral speed to power functions is at the data center level.
The opening quote indicates the importance of power
management at the data center level. A nice investi-
gation, by Google researchers, into the energy that a
data center could save from speed scaling can be found
in [9]. Ultimately what a data center operator might
care about is the cost of the energy used, not the actual
amount of energy used. These can be quite different
because normally the contract that the data center has
with the electrical suppliers can have drastic increases
in cost if various power thresholds are exceeded. So
here the relevant function that one would care about is
the speed to cost (say measured in dollars per second)
function, not the speed to power function. There is no
reason why these contracts need to have a cost that rises
as sα.

2 Preliminaries

An instance consists of n jobs, where job i has a release
time ri, and a positive work yi. In some cases each
job may have a positive integer weight wi. An online
scheduler is not aware of job i until time ri, and, at time
ri, learns yi and weight wi. For each time, a scheduler
specifies a job to be run and a speed at which the
processor is run. We assume that preemption is allowed,
that is, a job may be suspended and later restarted from
the point of suspension. A job i completes once yi units
of work have been performed on i. The speed is the rate
at which work is completed; a job with work y run at a
constant speed s completes in y

s
seconds. The flow Fi of

a job i is its completion time minus its release time. The
total flow is

∑n

i=1 Fi. The weighted flow is
∑n

i=1 wi ·Fi.
Let us quickly review amortized local competitive-

ness analysis. Consider an objective G. Let GA(t) be
the increase in the objective in the schedule for algo-
rithm A at time t. So when G is total flow plus energy,
GA(t) is P (st

a) + nt
a, where st

a is the speed for A at
time t and nt

a is the number of unfinished jobs for A at
time t. This is because energy is power integrated over
time, and total flow is the number of unfinished jobs
integrated over time. Let OPT be the offline adversary
that optimizes G and A be some algorithm. To prove A
is c-competitive it suffices to give a potential function

Φ(t) such that the following two conditions hold.

Boundary condition: Φ is zero before any job is
released and Φ is non-negative after all jobs are finished.

General condition: At any time t,

(2.1) GA(t) +
dΦ(t)

dt
≤ c · GOPT (t)

To prove the general condition, it suffices to show that Φ
does not increase when a job arrives or is completed by
A or OPT, and Equation 2.1 is true during any period of
time without job arrival or completion. By integrating
Equation 2.1, we can see that A is c-competitive for H.
For more information see [14].

3 Flow Plus Energy

Our goal in this section is to prove Theorem 1.1, that
in the general model SRPT plus the natural speed
scaling algorithm is (3+ǫ)-competitive for the objective
of total flow plus energy. We start by showing that
this algorithm is 3-competitive if P also satisfies the
following additional special conditions:

• P is defined, and continuous and differentiable at
all speeds in [0,∞).

• P (0) = 0.

• P is strictly increasing.

• P is strictly convex. That is, for a < b and for all
p ∈ (0, 1), is the case that pP (a) + (1 − p)P (b) >
P (pa + (1 − p)b).

• P is unbounded. That is, for all c, the exists a
speed s such that P (s) > c.

Then in section 3.1 we show how to extend the analysis
to the case when these special conditions do not hold,
at the cost of an arbitrarily small increase in the
competitive ratio.

Definition of online algorithm A: Algorithm A
schedules the unfinished job with the least remaining
unfinished work, and runs at speed st

a where

st
a =

{

P−1(nt
a + 1) if nt

a ≥ 1
0 if nt

a = 0

where nt
a is the number of unfinished jobs for A at

time t. As P (0) = 0, and P is strictly increasing,
continuous and unbounded, P−1(i) exists and is unique
for all integers i ≥ 1. Thus, A is well defined.
Definition of potential function Φ: Let OPT be
the offline adversary that minimizes total flow plus
energy. We can assume without loss of generality that

696 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



OPT runs SRPT. At any time t, let nt
o be the number

of unfinished jobs in OPT. Let nt
a(q) and nt

o(q) be
the number of unfinished jobs with remaining size at
least q in A and OPT, respectively, at time t. Let
nt(q) = max{0, nt

a(q) − nt
o(q)}. We define the the

potential function

Φ(t) = 3

∫ ∞

0

f(nt(q))dq

where f is defined by

f(0) = 0

∀i ≥ 1, f(i) − f(i − 1) = P ′(P−1(i))

and P ′(x) is the derivative of P (x). Note that
P ′(P−1(i)) simply means substituting x = P−1(i) into
P ′(x). Since P (x) is differentiable, P ′(x) is well-defined.
Hence, f is well-defined for all integer i. As both P ′(x)
and P−1(i) are increasing, we have f(i) − f(i − 1) ≥
f(j)−f(j−1) if i > j. We denote ∆(i) = f(i)−f(i−1)
for simplicity.

We now wish to establish a crucial technical lemma,
Lemma 3.1, which relies on the well known Young’s
inequality.

Theorem 3.1. (Young’s Inequality[10]) Let g be a
real-valued, continuous, and strictly increasing function
on [0, c] with c > 0. If g(0) ≥ 0, and a, b such that
a ∈ [0, c], and b ∈ [g(0), g(c)], then

∫ a

0

g(x)dx +

∫ b

g(0)

g−1(x)dx ≥ ab

where g−1 is the inverse function of g.

Lemma 3.1. Let P be a strictly increasing, strictly
convex, continuous and differentiable function. Let
i, sa, so ≥ 0 be any real. Then

P ′(P−1(i))(−sa + so)

≤ (−sa + P−1(i))P ′(P−1(i)) + P (so) − i

Proof. Since P is strictly increasing and strictly convex,
P ′(0) ≥ 0 and P ′(x) is strictly increasing. Thus, by
Young’s Inequality with g(x) = P ′(x), a = so and
b = P ′(P−1(i)), we have

soP
′(P−1(i))

≤

∫ so

0

g(x)dx +

∫ P ′(P−1(i))

P ′(0)

g−1(x)dx

= P (so) +
[

xg−1(x)
]g(P−1(i))

g(0)
−

∫ g(P−1(i))

g(0)

xd(g−1(x))

= P (so) + g(P−1(w))P−1(i) −

∫ P−1(i)

0

g(y)dy

= P (so) + g(P−1(i))P−1(i) − i

The first equality is obtained by integration by parts and
the second equality is obtained by letting y = g−1(x).
The lemma follows by adding −saP ′(P−1(i)) to both
sides.

We are now ready to proceed with our amortized
local competitiveness argument. For the boundary
condition, we observe that before any job is released
and after all jobs are finished, nt(q) = 0 for all q, so
Φ = 0. For the general condition, we observe that when
a job is released, nt(q) is not changed for all q, so Φ
is unchanged. When a job is completed by A or OPT,
nt(q) is changed only at the single point of q = 0, which
does not affect the integration, so Φ is also unchanged.
It remains to show at any time t during a time interval
without job arrival or completion,

(3.2) nt
a + P (st

a) +
d

dt
Φ(t) ≤ 3(nt

o + P (st
o))

The rest of this proof considers any such time t and
proves Equation 3.2. We omit t from the superscript
and the parameter for convenience. First observe that
if na = 0, then n(q) = 0 for all q, and d

dt
Φ = 0. Thus

equation 3.2 trivially holds. Henceforth, we assume
na ≥ 1.

Let qa be the remaining size of the job with the
shortest remaining size in A (qa exists as na ≥ 1). Note
that A is processing a job of size qa. Define qo similarly
for OPT (qo = 0 if no = 0). Consider an infinitesimal
interval of time [t, t + dt]. The processing of A causes
na(q) to decrease by 1 for q ∈ [qa − sadt, qa]. Similarly,
the processing of OPT causes no(q) to decrease by 1 for
q ∈ [qo − sodt, qo]. Denote the change in Φ during this
time interval as dΦ. We consider three cases depending
on whether no > na, no < na, or no = na.

Case no > na: We show that dΦ ≤ 0, as follows. At
time t, no(q) is greater than na(q) for q in [qo−sodt, qo].
Thus, at time t + dt, no(q) is still at least na(q) for q in
[qo − sodt, qo]. It means that n(q) remains zero in this
interval and Φ is not increased due to the processing of
OPT. The processing of A only decreases Φ or leaves Φ
unchanged. Hence, dΦ ≤ 0. Thus implies that d

dt
Φ ≤ 0

and na + P (sa) + d
dt

Φ ≤ na + na + 1 ≤ 3no, so (3.2)
holds.

Case no < na: We show that either dΦ ≤ 3∆(na −
no)(−sa + so)dt or dΦ ≤ 3∆(na − no + 1)(−sa + so)dt,
as follows. Consider 3 subcases depending on whether
qa is smaller than, equal to, or bigger than qo.

1. Assume qa < qo. As na(q) decreases by 1 for q in
[qa − sadt, qa], by the definition of Φ, the change in
Φ due to A is 3(f(na(qa)−no(qa)−1)−f(na(qa)−
no(qa)))sadt = −3∆(na(qa) − no(qa))sadt. Since

697 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



qa < qo, we have no(qa) = no(qo) = no. So the
change in Φ due to A is −3∆(na − no)sadt.

As no(q) decreases by 1 for q in [qo − sodt, qo], by
the definition of Φ, the change in Φ due to OPT
is at most 3(f(na(qo) − no(qo) + 1) − f(na(qo) −
no(qo)))sodt = 3∆(na(qo) − no(qo) + 1)sodt. Since
qa < qo, we have na(qo) ≤ na(qa) − 1. Thus,
na(qo) − no(qo) + 1 ≤ na(qa) − no(qo). As ∆(i) ≤
∆(j) for i ≤ j, the change in Φ due to OPT is at
most 3∆(na(qa) − no(qo))sodt = 3∆(na − no)sodt.
Adding up the change in Φ due to A and OPT, we
obtain that dΦ ≤ 3∆(na − no)(−sa + so)dt.

2. Assume qa = qo. If sa ≥ so, n(q) = na(q) − no(q)
decreases by 1 for q in [qa − sadt, qa − sodt]. Hence,
the change in Φ is 3(f(na(qa) − no(qa) − 1) −
f(na(qa)−no(qa)))(sa−so)dt = 3∆(na−no)(−sa+
so)dt. Else if sa < so, n(q) = na(q)−no(q) increases
by 1 for q in [qa − sodt, qa − sadt]. Hence, the
change in Φ is 3(f(na(qa)−no(qa)+1)−f(na(qa)−
no(qa)))(so − sa)dt = 3∆(na −n0 +1)(−sa + so)dt.

3. Assume qa > qo. As na(q) decreases by 1 for q
in [qa − sadt, qa], the change in Φ due to A is
3(f(na(qa)−no(qa)−1)−f(na(qa)−no(qa)))sadt =
−3∆(na(qa) − no(qa))sadt. Since qa > qo, we have
no(qa) ≤ no(qo) − 1. Thus, na(qa) − no(qa) ≥
na(qa) − no(qo) + 1. As −∆(i) ≤ −∆(j) for i ≥ j,
The change in Φ due to A is at most −3∆(na(qa)−
no(qo) + 1)sadt = −3∆(na − no + 1)sadt.

On the other hand, no(q) decreases by 1 for q in
[qo − sodt, qo], so the change in Φ due to OPT
is at most 3(f(na(qo) − no(qo) + 1) − f(na(qo) −
no(qo)))sodt = 3∆(na(qo) − no(qo) + 1)sodt. Since
qa > qo, na(qo) = na(qa) = na, and the change in
Φ due to OPT is at most 3∆(na − no + 1)sodt.

Summing the change in Φ due to A and OPT,
dΦ ≤ 3∆(na − no + 1)(−sa + so)dt.

Combining the above 3 subcases, it implies that if
no < na, then either

d

dt
Φ ≤ 3∆(na − n0)(−sa + so) or

d

dt
Φ ≤ 3∆(na − n0 + 1)(−sa + so).

Note that ∆(na − no)(−sa + so) = P ′(P−1(na −
no))(−sa + so). Setting i = na − no in Lemma 3.1,
we have that

P ′(P−1(na − no))(−sa + so)

≤ (−sa + P−1(na − no))P
′(P−1(na − no)) +

+P (so) − na + no

≤ P (so) − na + no,

where the last inequality follows from sa = P−1(na +
1) ≥ P−1(na−no). Similarly, ∆(na−no+1)(−sa+so) =
P ′(P−1(na−no +1))(−sa +so). Setting i = na−no +1
in Lemma 3.1, we have that

P ′(P−1(na − no + 1))(−sa + so)

≤ (−sa + P−1(na − no + 1))P ′(P−1(na − no + 1))

+P (so) − na + no − 1

≤ P (so) − na + no,

where the last inequality follows from sa = P−1(na +
1) ≥ P−1(na−no+1)). Thus, d

dt
Φ ≤ 3P (so)−3na+3no

in both cases. It follows that

na + P (sa) +
d

dt
Φ

≤ na + na + 1 + 3P (so) − 3na + 3no

≤ 3(P (so) + no).

So Equation 3.2 is true if no < na.

Case no = na: We show that dΦ ≤ 0 or dΦ ≤
3∆(na − no + 1)(−sa + so)dt, as follows. Again, we
consider 3 subcases depending whether qa < qo, qa = qo,
or qa > qo.

1. Assume qa < qo. Then n(q) remains zero for
q ∈ [qa − sadt, qa] and q ∈ [qo − sodt, qo]. Thus,
n(q) is not changed for any q and d

dt
Φ = 0.

2. Assume qa = qo. If sa ≥ so, n(q) remains
zero for q ∈ [qa − sadt, qa] (which also contains
[qo − sodt, qo]). Thus, n(q) is unchanged for any
q and d

dt
Φ = 0

Else if sa < so, n(q) increases by 1 for q ∈ [qa −
sodt, qa − sadt]. The change in Φ is 3(f(na(qa) −
no(qo) + 1) − f(na(qa) − no(qo)))(−sa + so)dt =
3∆(na − no + 1)(−sa + so)dt

3. If qa > qo, it is identical to subcase 3 of the case
no < na, so dΦ ≤ 3∆(na − no + 1)(−sa + so)dt.

It implies that d
dt

Φ ≤ 0 or d
dt

Φ ≤ 3∆(na − no +
1)(−sa + so)dt. Similar argument as before shows that
Equation 3.2 is true if no = na.

This completes the analysis when P satisfies the
special conditions that we imposed at the start of this
section.

3.1 Removing the special conditions on P Con-
sider an arbitrary power function P in the general
model. We explain how to modify P so that it meets the
special conditions without significantly raising the com-
petitive ratio. If P is not increasing, one can make P
undefined on those speeds where there is a greater speed

698 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



that consumes less power. Similarly, we can make P
convex by eliminating any points in a subinterval (a, b)
of speeds where the line segment between (a, P (a)) and
(b, P (b)) lies below the curve P . We now argue that
the online algorithm A with the new power function
can simulate running a speed s ∈ (a, b) in the old power
function. Algorithm A can simulate any speed s ∈ (a, b)
by alternately running at speeds a and b. Specifically,
assume s = pa + (1 − p)b for some 0 < p < 1, we
can run at speed a for a p fraction of the time and
run at speed b for a (1 − p) fraction of the time. It
gives an effective speed of s and the energy usage is
pP (a)+(1−p)P (b). If the slowest speed s0 on which P is
defined is not 0, then can shift P (s) down by redefining
P as P (s) = P (s) − P (s0), and P (s) = 0 for s ∈ [0, s0].
Then it is easy to see that if A is c-competitive with
respect to this new P then A is also be c-competitive
with respect to the original P . If P is defined at a and
b but not at any point in the interval (a, b), then in-
terpolate P linearly between a and b. Once again the
online algorithm can simulate running a speed s ∈ (a, b)
in the new power function by alternately running at
speeds a and b. P stays convex by the convexity of the
original P . One can find a power function between P
and P +max{ǫ, ǫP} that is defined on the same domain
of speeds, is continuous, differentiable, strictly increas-
ing, and strictly convex. The competitive ratio of A
for the old power function will be within ǫ of the com-
petitive ratio of A for the new power function. If P is
bounded, where T is the maximum speed, then the nat-
ural interpretation of the algorithm is to run at speed
min(P−1(na + 1), T ). We can follow the line of reason-
ing from [11]. We first note that at all times it must
be the case that na + 1 − no ≤ P (T ). Then the anal-
ysis essentially then goes through as in the unbounded
case. In particular, in the case that no < na, we arrive
at the same inequality of dΦ

dt
≤ 3(−sa + P−1(na − no +

1))P ′(P−1(na−no+1))−na+no−1. If sa = P−1(na+1),
then we have that sa ≥ P−1(na−no +1) as before. Else
if sa = T , we still have that sa ≥ P−1(na − no + 1).

4 Fractional Weighted Flow Plus Energy

Our goal in this section is to prove Theorem 1.2, that
in the general model, HDF plus the natural speed
scaling algorithm is (2+ǫ)-competitive for the objective
of fractional weighted flow plus energy. We start
by showing, using an amortized local competitiveness
argument, that this algorithm is 2-competitive if P also
satisfies the special conditions from the last section.

Definition of Online Algorithm A: The algorithm
always runs the job of highest density. The density of
a job is its weight divided by its work. The speed st

a at

time t is
st

a = P−1(wt
a)

where wt
a is the total fractional weight of all unfinished

jobs for A at time t.

Definition of the potential function Γ. Let OPT be
the offline adversary that minimizes fractional weighted
flow plus energy. At any time t, let wt

o be the total
fractional weight of all unfinished jobs in OPT. For a
job j, its inverse density is defined to be the ratio of
its original size divided by its original weight. At any
time t, let wt

a(m) denote the total fractional weight of
all unfinished jobs with inverse density at least m in A
at time t. Define wt

o(m) similarly for that of OPT. Let
wt(m) = max{0, wt

a(m) − wt
o(m)}. We define

Γ(t) = 2

∫ ∞

0

h(wt(m))dm

where h is the function such that for any real w ≥ 0,

d

dw
h(w) = P ′(P−1(w))

Since both P ′(x) and P−1 are increasing, P ′(P−1(w)))
is an increasing of function in w. Furthermore, h(w)
can be written as h(w) =

∫ w

0
P ′(P−1(y))dy.

We now start the amortized local competitiveness
analysis. For the boundary condition, we observe
that before any job is released and after all jobs are
completed, wt(m) = 0 for all m, so Γ = 0. For the
general condition, when a job is released, wt(m) is
unchanged for all m, so Γ is unchanged. When a job
is processed by A or OPT, the fractional weight of the
job decreases continuously to zero, so Γ is continuous
and does not decrease due to the completion of a job.
It remains to show that at any time t during a time
interval without job arrival or completion,

(4.3) wt
a + P (st

a) +
d

dt
Γ(t) ≤ 2(wt

o + P (st
o))

The rest of this proof considers any such time t and
proves Equation 4.3. We omit t from the superscript
and the parameter for convenience. Then,

d

dt
Γ = 2

∫ ∞

0

d

dt
h(w(m))dm

= 2

∫ ∞

0

d

d(w(m))
h(w(m))(

d

dt
w(m))dm

= 2

∫ ∞

0

P ′(P−1(w(m))(
d

dt
w(m))dm,

where the second equality follows from chain rule.
Let ma and mo denote the minimum inverse density

of an unfinished job in A and OPT, respectively. (Let

699 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



ma (resp., mo) be ∞ if A (resp., OPT) has no unfinished
job.) Note that 1/ma and 1/mo are the density of the
highest density job in A and OPT, respectively. Since
A is running HDF at speed sa, wa(m) is decreasing
at the rate of (sa/ma) for all m ∈ [0,ma] and wa(m)
remains unchanged for m > ma. Similarly, wo(m) is
decreasing at the rate of (so/mo) for m ∈ [0,mo] and
remains unchanged for m > mo. We consider three
cases depending on wo > wa, wo < wa or wo = wa.

Case wo > wa: We show that d
dt

Γ ≤ 0 in this
case. Note that for any m ∈ [0,mo], wo(m) =
wo > wa ≥ wa(m). Thus, for any m ∈ [0,mo],
w(m) = max{0, wa(m) − wo(m)} remains zero and
does not change. It means that d

dt
w(m) = 0 for

m ≤ mo. For any m > mo, wo(m) remains unchanged,
so d

dt
w(m) ≤ 0 for m > mo. Therefore, d

dt
Γ =

2
∫ ∞
0

P ′(P−1(w(m))( d
dt

w(m))dm ≤ 0. We have wa +

P (sa) + d
dt

Γ ≤ 2wa < 2(wo + P (so)), so Equation 4.3 is
true.

Case wo < wa: The decrease in wa(m) causes a de-
crease in Γ and the decrease in wo(m) causes an in-
crease in Γ. We analyze these two effects separately and
bound them appropriately. For any m ∈ [0,ma], wa(m)
is decreasing at a rate of (sa/ma), which causes Γ to
decrease at the rate of 2

∫ ma

0
P ′(P−1(w(m)))(− sa

ma

)dm.
For m ∈ [0,ma], w(m) = wa(m)−wo(m) ≥ wa −wo, so
P ′(P−1(w(m))) ≥ P ′(P−1(wa − wo)). Thus,

2

∫ ma

0

P ′(P−1(w(m)))(−
sa

ma

)dm

≤ 2

∫ ma

0

P ′(P−1(wa − wo)))(−
sa

ma

)dm

= −2P ′(P−1(wa − wo)))sa

For m ∈ [0,mo], wo(m) is decreasing at a rate of
(so/mo), which causes Γ to increase at a rate at
most 2

∫ mo

0
P ′(P−1(w(m)))( so

mo

)dm. For m ∈ [0,mo],
w(m) = max{0, wa(m) − wo(m)} ≤ wa − wo, so
P ′(P−1(w(m))) ≤ P ′(P−1(wa − wo)). Thus,

2

∫ mo

0

P ′(P−1(w(m)))(
so

mo

)dm

≤ 2

∫ mo

0

P ′(P−1(wa − wo)))(
so

mo

)dm

= 2P ′(P−1(wa − wo)))so

Summing the above two terms, we have d
dt

Γ ≤
2P ′(P−1(wa − wo)(−sa + so). By Lemma 3.1, it is
at most 2(−sa + P−1(wa − wo))P

′(P−1(wa − wo)) +
2(P (so)− (wa −wo)). Since sa = P−1(wa) ≥ P−1(wa −
wo),

d
dt

Γ ≤ 2(P (so)−wa + wo). We have wa + P (sa) +
d
dt

Γ ≤ 2wa +2(P (so)−wa +wo) ≤ 2(P (so)+wo), hence
proving Equation 4.3.

Case wo = wa: For m ∈ [0,mo], wo(m) is decreas-
ing at a rate of (so/mo), which causes Γ to increase
at a rate at most 2

∫ mo

0
P ′(P−1(w(m)))( so

mo

)dm. For
m ∈ [0,mo], w(m) = max{0, wa(m) − wo(m)} ≤
wa − wo = 0, so P ′(P−1(w(m))) = P ′(P−1(0)) and
∫ mo

0
P ′(P−1(w(m)))( so

mo

)dm = P ′(P−1(0)))so. By

Lemma 3.1 with i = 0, sa = 0, we obtain that d
dt

Γ ≤

2P ′(P−1(0)))so ≤ 2P (so). We have wa +P (sa)+ d
dt

Γ ≤
2wa + 2P (so) = 2(wo + P (so)), hence proving Equa-
tion 4.3.

This completes the analysis when the special con-
ditions hold. The proof can be extended to the general
model in the same way as was done in the proof of The-
orem 1.1.

References

[1] Susanne Albers and Hiroshi Fujiwara. Energy-efficient
algorithms for flow time minimization. In Lecture
Notes in Computer Science (STACS), volume 3884,
pages 621 – 633, 2006.

[2] N. Bansal, H.L. Chan, T.W. Lam, and L.K. Lee.
Scheduling for bounded speed processors. In Interna-
tional Colloquium on Automata, Languages and Pro-
gramming, ICALP, 2008, to appear.

[3] Nikhil Bansal and Ho-Leung Chan. Weighted flow time
does not admit o(1)-competitive algorithms. submitted
to SODA 2009.

[4] Nikhil Bansal, Kirk Pruhs, and Cliff Stein. Speed scal-
ing for weighted flow time. In SODA ’07: Proceed-
ings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 805–813, 2007.

[5] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Kirk R. Pruhs. Online weighted flow
time and deadline scheduling. In Workshop on Ap-
proximation Algorithms for Combinatorial Optimiza-
tion, pages 36–47, 2001.

[6] Fred Bower, Daniel Sorin, and Landon Cox. The im-
pact of dynamically heterogeneous multicore proces-
sors on thread scheduling. Unpublished.

[7] David M. Brooks, Pradip Bose, Stanley E. Schuster,
Hans Jacobson, Prabhakar N. Kudva, Alper Buyukto-
sunoglu, John-David Wellman, Victor Zyuban, Man-
ish Gupta, and Peter W. Cook. Power-aware microar-
chitecture: Design and modeling challenges for next-
generation microprocessors. IEEE Micro, 20(6):26–44,
2000.

[8] J. Adam Butts and Gurindar S. Sohi. A static power
model for architects. In MICRO 33: Proceedings of
the 33rd annual ACM/IEEE international symposium
on Microarchitecture, pages 191–201, 2000.

[9] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre
Barroso. Power provisioning for a warehouse-sized
computer. In ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture,
pages 13–23, 2007.

700 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



[10] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequal-
ities. Cambridge University Press, 1952.

[11] T.W. Lam, L.K. Lee, Isaac To, and P. Wong. Speed
scaling functions based for flow time scheduling based
on active job count. In Proc. of European Symposium
on Algorithms, ESA, 2008, to appear.

[12] John Markoff and Steve Lohr. Intel’s huge bet turns
iffy. New York Times, September 29 2002.

[13] Ke Meng and Russ Joseph. Process variation aware
cache leakage management. In ISLPED ’06: Proceed-
ings of the 2006 international symposium on Low power
electronics and design, pages 262–267, 2006.

[14] Kirk Pruhs. Competitive online scheduling for server
systems. SIGMETRICS Performance Evaluation Re-
view, 34(4):52–58, 2007.

[15] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard
Woeginger. Getting the best response for your erg.
In Scandanavian Workshop on Algorithms and Theory,
2004.

701 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.




