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THE GEOMETRY OF SCHEDULING∗
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Abstract. We consider the following general scheduling problem. The input consists of n jobs,
each with an arbitrary release time, size, and monotone function specifying the cost incurred when
the job is completed at a particular time. The objective is to find a preemptive schedule of minimum
aggregate cost. This problem formulation is general enough to include many natural scheduling
objectives, such as total weighted flow time, total weighted tardiness, and sum of flow time squared.
We give an O(log logP ) approximation for this problem, where P is the ratio of the maximum to
minimum job size. We also give an O(1) approximation in the special case of identical release times.
These results are obtained by reducing the scheduling problem to a geometric capacitated set cover
problem in two dimensions.
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1. Introduction. We consider the following general offline scheduling problem.

General scheduling problem (GSP). The input consists of a collection of n jobs,
and for each job j there is a positive integer release time rj , a positive integer size
pj and a nondecreasing cost (or weight) function wj(t) ≥ 0 specifying a nonnegative
cost for each time t > rj . (We will specify later how these weight functions are
represented.) A feasible solution is a preemptive schedule, which assigns to each job j
time slots [t, t+1] (not necessarily consecutive and satisfying t ≥ rj), during which j
is run. A job is completed once it has been run for pj units of time. If job j completes
at time t, then a cost of wj(t) is incurred for that job. The objective is to minimize
the total cost,

∑n
j=1 wj(cj), where cj is the completion time of job j.

GSP generalizes several natural scheduling problems:

Weighted flow time. If wj(t) = wj · (t − rj), where wj is some fixed weight
associated with job j, then the objective is total weighted flow time.

Flow time squared. If wj(t) = (t − rj)
2, then the objective is the sum of the

squares of flow times.

Weighted tardiness. If wj(t) = wj max(0, t− dj) for some deadline dj ≥ rj , then
the objective is total weighted tardiness.

In general, this problem formulation can model any cost objective function that
is the sum of arbitrary nondecreasing cost functions of flow times for individual jobs.
Flow time, which is the duration of time cj − rj that a job is in the system, is one
of the most natural and commonly used quality of service measures for a job in the
computer systems literature. Many commonly used and commonly studied scheduling
objectives are based on combining the flow times of the individual jobs.
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THE GEOMETRY OF SCHEDULING 1685

Despite much interest, large gaps remain in our understanding for even basic flow
time based scheduling objectives. For example, for weighted flow time, the best known
approximation ratios achievable by polynomial-time algorithms are polylogarithmic.
For weighted tardiness, and flow time squared, no nontrivial approximation ratios
were previously known to be achievable. On the other hand, for all three of these
problems, even the possibility of a polynomial-time approximation scheme (PTAS)
has not been ruled out. We discuss the related previous work further in section 1.3.

1.1. Our results. We show the following results.

Theorem 1.1. There is a randomized polynomial-time O(log logP ) approxima-
tion algorithm for GSP, where P is the ratio of the maximum to minimum job size.

Theorem 1.2. In the special case when all the jobs have identical release times,
there is a deterministic polynomial-time 16-approximation algorithm for GSP.

Representation of the weight functions. Our algorithms only require that there
is an efficient procedure to answer the following type of queries about the weight
function: For any job j and integer q > 0, what is the earliest time when the cost of
completing j is at least q, i.e., what is the smallest t such that wj(t) ≥ q.

Clearly, any reasonable representation of the weight function that we are aware
of satisfies such a property. In fact, one can weaken this requirement even further.
For example, losing a factor 2 in the approximation ratio, we can assume that wj(t)
is always a nonnegative integer power of 2, and hence it suffices to be able to answer
these queries within an error of 2 − ε. We also allow wj(t) to take the value +∞,
which can model a hard deadline for j. Assuming such queries are allowed, the running
time of our algorithm is polynomial in n and logW . Here W is the maximum value
(excluding the value +∞) attained by any weight function.

1.2. Techniques. The key idea behind these results is to view the scheduling
problem geometrically and cast it as a capacitated geometric set cover problem. We
then use algorithmic techniques developed for geometric set cover problems and for
capacitated covering problems. In particular, we show that GSP can be reduced (with
only a loss of factor 4 in the approximation ratio) to a problem we call R2C, defined
below. (Here R stands for rectangle, 2 for two dimensions, and C for capacitated.)
We then prove Theorem 1.3 that there is a loglog factor approximation for R2C.

Definition of the R2C problem. The input contains a collection P of points in
two-dimensional space, where each point p ∈ P is specified by its coordinates (xp, yp)
and has an associated positive integer demand dp. Furthermore, the input contains
a collection R of axis-parallel rectangles, each of them abutting the y-axis, i.e., each
rectangle r ∈ R has the form (0, xr)× (y1r , y

2
r). In addition, each rectangle r ∈ R has

an associated positive integer capacity cr and positive integer weight wr . The goal
is to find a minimum weight subset of rectangles, such that for each point p ∈ P ,
the total capacity of rectangles covering p is at least dp. Foreshadowing slightly, the
rectangle capacities in R2C will correspond to job sizes in our reduction; thus we also
use P to denote the maximum ratio of rectangle capacities. The following is an exact
integer programming formulation of the problem:

min
∑

wrxr(1.1)

s.t.
∑

r∈R:p∈r

crxr ≥ dp ∀p ∈ P ,

xr ∈ {0, 1} ∀r ∈ R.
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1686 NIKHIL BANSAL AND KIRK PRUHS

Theorem 1.3. There is a polynomial-time O(log logP ) approximation algorithm
for R2C, where P is the ratio of the maximum to minimum rectangle capacity.

To prove Theorem 1.3, we combine recent results on weighted geometric cover
problems where the sets have low union complexity, together with approaches for
handling capacitated covering problems. Specifically, we crucially use the fact that
the rectangles in the R2C problem touch the y-axis, and hence the union complexity
of the boundary of any k rectangles (i.e., the number of vertices and edges on the
boundary of the union) is O(k).

This low union complexity is very useful. If all the capacities and demands in the
R2C instance are 1, i.e., if we consider the standard (uncapacitated) set cover version
of R2C, then an O(1) approximation follows from the result of Chan et al. [14], which
is a refinement of the breakthrough result of Varadarajan [29] on weighted geometric
set cover problems with low union complexity. Thus the reason we lose O(log logP )
the factor in Theorem 1.3 is actually due to the arbitrary capacities and demands
in R2C.

To handle arbitrary capacities and demands we use a framework formalized by
Chakrabarty, Grant, and Konemann [13] based on knapsack cover (KC) inequalities
[12]. Specifically, [13] shows that for any capacitated covering problem, it suffices
to design good linear programming (LP) based approximation algorithms for two
types of uncapacitated problems derived from the original capacitated problem. In
particular, an α upper bound on the integrality gap for the so-called priority cover
version of the original problem and a β upper bound on the integrality gap for the
multicover version together imply a O(α+β) integrality gap for the original problem.
In the multicover version of R2C each point p has an arbitrary integer demand dp
specifying the number of distinct rectangles that must cover it. In the priority cover
version of R2C each rectangle and each point has a priority, and each point has to be
covered by at least one rectangle of higher priority than itself. Being uncapacitated,
these priority and multicover problems are often easier to deal with.

We show that the priority version of R2C can be viewed as another geometric (un-
capacitated) set cover problem, with the property that the complexity of the union
of any k sets is O(k logP ). Since we need this bound on the union complexity of
the priority cover problem, we will reprove the results of Chakrabarty, Grant, and
Konemann [13] and not use them as a black-box. By the result of Chan et al. [14],
the O(k logP ) union complexity implies an LP based α = O(log logP ) approxima-
tion for the priority version of R2C. An O(1) approximation for the multicover ver-
sion of R2C follows from the result of Bansal and Pruhs [6], which is an extension
of the result of Chan et al. [14] for weighted geometric set cover to the multicover
setting.

We note that our solution of the R2C problem (and hence the GSP problem) is
completely based on LP rounding. Thus one contribution of this work is to provide
the first strong LP formulation for flow time related problems. Prior to this work, all
known LP formulations for, say, weighted flow time had integrality gaps polynomially
large in n. This LP is somewhat obscured as we present our results using geometric
terminology. However, we will give an explicit description of this scheduling LP in
section 4.

Identical release times. When all jobs have identical release times, the R2C in-
stance that arises from our reduction from the GSP has a much simpler form. All the
points to be covered lie on a line, and the rectangles are one-dimensional intervals.
This is called the generalized caching problem in the literature, and a polynomial-time

D
ow

nl
oa

de
d 

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE GEOMETRY OF SCHEDULING 1687

4-approximation algorithm is known [7]. Together with our reduction from GSP to
R2C, which incurs another factor 4 loss, this implies Theorem 1.2.

Cheung and Shmoys [19] proposed a primal dual algorithm for GSP with identical
release times. Mestre and Verschae [26] reformulated this algorithm as a local ratio
algorithm and showed that it yielded a 4-approximation. Finally, Höhn, Mestre, and
Wiese [21] gave an e+ ε approximation with quasi-polynomial running time.

Organization. The paper is organized as follows. In section 2 we give the reduction
from GSP to R2C. We also consider here the case of identical release times. In
section 3 we give the strengthened LP formulation of R2C based on KC inequalities
and for completeness show how rounding this LP solution reduces to rounding the
priority cover and multicover version of the problem. In section 3.1 we describe the
approximation algorithm for the priority cover version of R2C. In section 3.2 we
describe the approximation algorithm for the multicover versions of R2C. Finally, in
section 4, we describe the underlying LP for the scheduling problem explicitly and
make some final remarks.

1.3. Related results.

Scheduling. There has been extensive work on various completion time and flow
time related objectives, in both the offline and online settings, and we refer the reader
to [28] for a relatively recent survey. We discuss here some work on special cases of
GSP. The most well-studied of these cases is perhaps the weighted flow time. The
best known polynomial-time algorithms have an approximation ratio of O(log2 P )
[17], O(logW ), and O(log nP ) [2]. A quasi-PTAS with running time nOε(logP logW )

is also known [16]. In the special case when the weights are the reciprocal of job
sizes, the objective is known as average stretch or slow-down, and a PTAS [9, 16]
is known.

For weighted tardiness, an (n − 1) approximation algorithm is known for identi-
cal release times [18], but nothing seems to be known for arbitrary release dates. A
PTAS is possible with the additional restriction that there are only a constant num-
ber of deadlines [22] or if jobs have unit size [23]. For total flow time squared, no
approximation guarantees are known, unless one uses resource augmentation [5].

Geometric set cover. The goal in geometric set cover problems is to improve the
general O(log n) approximation bound for set cover by using the geometric structure.
Until recently most of the research on geometric set cover problems focused only on
the unweighted case. A key idea is the connection between set covers and ε-nets [10],
where an ε-net is a subcollection of sets that covers all the points that are contained in
at least an ε fraction of the input sets. For typical geometric problems, the existence
of ε-nets of size at most (1/ε)g(1/ε) implies an O(g(OPT ))-approximate solution
for unweighted set cover [10]. Thus, proving better bounds on sizes of ε-nets (an
active research of research is discrete geometry) directly gives improved guarantees
for unweighted set cover. In another direction, Clarkson and Varadarajan [20] related
the guarantee for unweighted set cover to the union complexity of sets. In particular,
if the sets have union complexity O(kh(k)), which roughly means that the number of
points on the boundary of the union of any collection of k sets is O(kh(k)), then there
is an O(h(n)) approximation [20].1 This was subsequently improved to O(log(h(n))
[29] and in certain cases extended to the unweighted multicover case [15].

However, none of these earlier results applies to the weighted case. The problem
is that these algorithms are nonuniform in that they sample some sets with much

1The notion of union complexity used by [20] was slightly different from the one mentioned here.
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1688 NIKHIL BANSAL AND KIRK PRUHS

higher probability than that specified by the LP relaxation. In a breakthrough result,
Varadarajan [30] designed a new quasi-uniform sampling technique that samples each
set with probability approximately proportional to specified by the LP relaxation.
[30], then used this quasi-uniform sampling technique to obtain a 2O(log∗ n) log(h(n))
approximation for weighted geometric set cover problems with union complexity
O(kh(k)). He also gave an improved O(log h(n)) approximation when h(n) grows
(possibly quite mildly) with n. Chan et al. [14] refined this algorithm to obtain
an O(log h(n)) approximation (for all ranges of h(n)) and also extended the result
to a more general setting where union complexity is replaced by shallow cell com-
plexity. This result was extended further by Bansal and Pruhs [6] to the multicover
setting.

KC inequalities. KC inequalities were developed by Carr et al. [12] for the KC
problem. In this problem, we are given a knapsack with capacity B and items with
capacities ci and weight wi. The goal is to find the minimum weight collection of
items that covers the knapsack (i.e., with total capacity at least B). Perhaps surpris-
ingly, the standard LP relaxation for this problem turns out to be arbitrarily bad.
Carr et al. [12] strengthened the standard LP for the KC problem by adding expo-
nentially inequalities and showed that it has an integrality gap of 2. Moreover, this
LP can be solved almost exactly in time polynomial in n and 1/ε to give an inte-
grality gap of 1 + ε. They also give an explicit polynomial size LP with integrality
gap 2 + ε. These inequalities have been very useful for various capacitated covering
problems [1, 11, 24, 3, 13]. Recently, Chakrabarty, Grant, and Konemann [13] gave
an elegant framework for using these inequalities, which allows one to solve capaci-
tated covering problems in a black-box manner without even knowing what the KC
inequalities are.

2. The reduction from GSP to R2C. Our goal in this section is to show the
following result.

Theorem 2.1. A polynomial-time α-approximation algorithm for R2C implies a
polynomial-time 4α approximation algorithm for GSP.

We now give the reduction from GSP to R2C. Before giving the formal speci-
fication of the reduction, we give the background motivation. The first idea is the
following. As the contribution of a job to the objective only depends on its comple-
tion time, instead of specifying a complete schedule, we might as well just specify a
deadline cj for each job j by which it must be completed. We call an assignment of
deadlines feasible if there is a schedule in which all deadlines are met. Recall that if
an assignment of deadlines is feasible, then scheduling the jobs in the earliest deadline
first (EDF) order actually gives a valid schedule. In Lemma 2.3 we give a duality-
based characterization for feasibility and then explain how to interpret the condition
geometrically.

We need to momentarily digress to discuss our conventions when discussing time.
An interval I = [t1, t2] consists of time slots [t1, t1 + 1], . . . , [t2 − 1, t2] and has length
|I| = t2 − t1. When we refer to time t, we mean the beginning of slot [t, t + 1].
Specifically, a job j is completed by time t if it is completed in slot [t− 1, t] or earlier,
and if a job arrives at time t, then it arrives at beginning of [t, t + 1] and can be
executed during the slot [t, t+ 1].

Definition 2.2. For an interval I = [t1, t2], let X(I) := {j : rj ∈ I} denote
the set of jobs that arrive during I, i.e., rj ∈ {t1, . . . , t2}. We define ξ(I), the excess
of I, as max(p(X(I)) − |I|, 0), where p(X(I)) :=

∑
j∈X(I) pj is the total size of jobs

in X(I).
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Lemma 2.3. An assignment of deadlines cj to jobs is feasible if and only if for
every interval I = [t1, t2], the jobs in X(I) that are assigned a deadline after I have
a total size of at least ξ(I). That is,

∑
j∈X(I):c(j)>t2

pj ≥ ξ(I) ∀I = [t1, t2].

Proof. Consider any interval I = [t1, t2]. As at most |I| = t2 − t1 amount of work
can be done on jobs in X(I) during the interval I, the jobs in X(I) that finish during
I can have a total size of at most |I|. Thus, the jobs in X(I) that finish after I must
have a total size of at least max(p(X(I))− |I|, 0) = ξ(I).

For the converse, we show that if the assignment of deadlines is infeasible, then
an inequality is violated for some interval I. Consider an infeasible assignment of
deadlines and let cj be the earliest deadline missed when jobs are executed in the
EDF order. Let [t0 − 1, t0] be the latest time slot before cj when EDF was either
idle or was working on some job with deadline strictly greater than cj . Consider the
interval I = [t0, cj ]. By definition of t0, EDF always works on jobs with deadline ≤ cj
during I. Moreover, all these jobs arrive during I (as there are no such jobs available
at t0 − 1) and hence in lie X(I). As EDF is always working on these jobs during I
and still misses the deadline at cj , it must be that p(X(I)) > |I|.

Geometric view of Lemma 2.3. Let us associate a point pI = (t1, t2) in two-
dimensional space with each time interval I = [t1, t2]. We will view pI as a witness
that enforces that jobs in X(I) finishing after I have total size at least p(X(I))− |I|.
So, we associate a demand d(pI) of ξ(I) with I. Next, for each job j and each possible
completion time cj for it, we associate a rectangle Rj(cj) = [0, rj ] × [rj , cj − 1]. We
assign Rj(cj) a cost of wj(cj) and capacity of pj .

We illustrate this view in Figure 1. On the left is an interval I = (s, t). The
job j arrives in I, i.e., rj ∈ I, and is assigned completion time cj outside interval
I. On the right is the point (s, t) corresponding to the interval I and the rectangle
Rj = [0, rj ] × [rj , cj − 1] corresponding to job j and completion time cj . Lemma 2.4
notes that (s, t) must be contained in Rj .

Lemma 2.4. The point pI lies in the rectangle Rj(cj) if any only if the job j lies
in X(I) and the completion time cj lies outside (after) I. Moreover, if pI ∈ Rj(cj),
then Rj(cj) contributes exactly pj toward satisfying the demand of pI.

Proof. If a point (s, t) lies in the rectangle Rj(cj) = [0, rj ]× [rj , cj−1], this means
that s ∈ [0, rj ] and t ∈ [rj , cj − 1]. This is equivalent to the conditions rj ∈ [s, t] and

Fig. 1. The figure on the left shows an interval I = (s, t). The job j arrives in I, i.e., rj ∈ I,
and is assigned completion time cj outside interval I. The figure on the right shows the point (s, t)
corresponding to the interval I and the rectangle Rj = [0, rj ]× [rj, cj −1] corresponding to job j and
completion time cj. Note that (s, t) is contained in Rj.
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1690 NIKHIL BANSAL AND KIRK PRUHS

cj > t, which is precisely the condition that j ∈ X(I), where I = [s, t] and has
deadline cj after t.

By Lemmas 2.4 and 2.3, GSP can equivalently be stated as follows: Find the
minimum cost collection of rectangles satisfying the following two conditions:

Uniqueness: For each job j, exactly one rectangle of the form Rj(cj) (for some
cj) is chosen.
Covering: For each interval I, the demand dp(I) = ξ(I) of the corresponding
point pI is satisfied.
Note that in the formulation above, the uniqueness condition is critical; otherwise

one may cheat by picking multiple rectangles belonging to the same job (as the demand
of a point might be covered by two or more rectangles of the same job, in which case
the connection to the scheduling problem breaks down). To get to the R2C problem,
we now show how to remove this uniqueness condition.

To get around this problem, we use another trick (shown in Figure 2). By losing
a factor of 2 in the approximation ratio, for each job j it suffices to consider only
those times cj when the cost wj(cj) first reaches an integer power of 2. Call these
times c0j , c

1
j , . . .. Now the crucial observation is that Rj(c

′) ⊂ Rj(c) for c′ < c. So,

for each possible completion time cij , we define a new modified rectangle R′
j(i) as

R′
j(i) = Rj(c

i
j)\Rj(c

i−1
j ) and give it weight w(Rj(c)) and capacity pj . Now the

resulting rectangles R′
j(i) are disjoint, and yet any original rectangle Rj(c

i
j) can be

expressed as Rj(c
i
j) = ∪i′≤iR

′
j(i

′). As the costs of R′
j(i) are geometrically increasing,

the cost of ∪i′≤iR
′
j(i

′) is at most twice that of Rj(c
i
j). As they are disjoint, using

these modified rectangles R′
j instead of Rj will allow us to remove the uniqueness

condition completely.
We now define the reduction formally.
Definition of the reduction from GSP to R2C. From an arbitrary instance J of

GSP, we create an instance J ′ of R2C. Consider J and some job j. For each integer
k ≥ 0, let Ikj denote the interval of times (possibly empty) such that wj(t) ∈ [2k, 2k+1).

Note that for any fixed j, the intervals Ikj are disjoint and partition the interval [rj ,∞).
Moreover, the number of intervals for any job is O(logW ).

At the loss of factor at most 2 in the objective, we can assume that the deadline
cj for job j is at the right end point of some interval Ikj . Let T denote the set of end

Fig. 2. The figure on the left shows the various rectangles Rj(i) corresponding to the single
job j. Note that their y-spans are overlapping. On the right are the modified rectangles R′

j(i) with
nonoverlapping y-spans.
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points of intervals Ikj for all jobs j and indices k. For each job j in J and k ≥ 0,

create a rectangle Rk
j = [0, rj ]× Ikj in J ′ with capacity pj and weight 2k+1. Note that

the rectangles R0
j , R

1
j , . . . corresponding to a job j are pairwise disjoint. Note also

that for simplicity, we have changed our notation for rectangles from the motivational
discussion above.

For each time interval I = [t1, t2], where t1, t2 ∈ T , create a point pI in J ′ with
demand dp = ξ(I).

We now discuss briefly the complexity of the reduction. Let m denote the num-
ber of points in the R2C instance. Clearly, m = O((n + |T |)2), as the only rele-
vant times one needs to consider while defining the points and rectangles are the
release times of jobs and times in T . As there are O(logW ) intervals for each job j,
|T | = O(n logW ). We now show in Lemmas 2.5 and 2.6 that this reduction is approx-
imation preserving (within constant factors). These lemmas then immediately imply
Theorem 2.1.

Lemma 2.5. If there is a feasible solution S to a GSP instance J with objective
value v, then there is a feasible solution S′ to the corresponding R2C instance J ′ with
objective value at most 4v.

Proof. Consider solution S, and for each j, let k(j) be the index of the interval

I
k(j)
j during which j completes, so the cost incurred by j in S is at least 2k(j). Consider

the solution S′ obtained by choosing for each job j, the rectangles R0
j , . . . , R

k(j)
j .

Clearly, the cost contribution of j is
∑k(j)

i=0 2i+1 ≤ 4 · 2k(j) and hence at most four
times that in S.

It remains to show that S′ is feasible, i.e., for every point pI ∈ S′, the total
capacity of rectangles covering pI is at least d(pI) = p(X(I))−|I|. Suppose p = (t1, t2)
corresponds to the time interval I = [t1, t2]. As S is a feasible schedule, by Lemma 2.3,
the total size of jobs in X(I) that finish after I is at least p(X(I))− |I|. By Lemma

2.4, for each job in X(I) that finishes after I, there is some rectangle in R0
j , . . . , R

k(j)
j

that contributes pj toward satisfying the demand of pI . Thus the demand of every
point pI is satisfied.

Lemma 2.6. If there is a feasible solution S′ to the R2C instance J ′ with value
v, then there there is a feasible solution S to GSP instance J with value at most v.

Proof. Note that for each job j, at least one rectangle Ri
j must be picked in S′.

This is because if we consider the point pI corresponding to the interval I = [rj , rj ],
it has demand equal to p(I) − |I| = p(X(rj)) − 0 = p(X(rj)), the total size of jobs
arriving on rj . Since it can only be covered by jobs j in X(rj), and for any such job
at most one rectangle Ri

j can contribute pj toward the demand of pI , we can conclude
that one rectangle from each job in X(rj) must be used.

We construct the solution S as follows. For each job j, let h(j) denote the largest

index rectangle R
h(j)
j that is chosen in S′. Set the deadline cj for j as the right end

point of I
h(j)
j . The cost of j in the schedule S is at most 2h(j) and hence at most the

cost of the rectangle Rj
h(j) in J ′.

The schedule is feasible for the following reason. If point p = pI is covered by
some rectangle Ri

j corresponding to job j, then by Lemma 2.4, j ∈ X(I) and the
deadline cj for j is after I. As the demand d(pI) of each point pI is satisfied in S′,
the total size of jobs in X(I) that are assigned deadline after I is at least d(pI) and
hence by Lemma 2.3 the schedule is feasible.
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2.1. Identical release times. In this subsection, we prove Theorem 1.2, that
there is a deterministic polynomial-time 16-approximation algorithm for GSP in the
special case of identical release times, that is, rj = 0 for all j. Here, the reduction
becomes much simpler. In particular, for each rectangle Rk

j , the first dimension
[0, rj ] becomes irrelevant and we obtain the following problem. For each job j and

k ≥ 0, there is an interval Cj
k corresponding to completion times with cost in the

range [2k, 2k+1). This interval has capacity pj and weight 2k. All relevant points pI
corresponds to intervals of the form [0, t] for t ∈ T and have demand D − t, where
D is the total size of all the jobs. For each such interval I = [0, t) (instead of a two-
dimensional representation), we introduce a point pI = t with demand dI = D − t.
The goal is to find a minimum weight subcollection of intervals Cj

k that covers the
demand.

This problem is a special case of the previously studied generalized caching prob-
lem, defined as follows. The input consists of arbitrary demands dt at various time
steps t = 1, . . . , n. In addition there is a collection of time intervals I, where each
interval I ∈ I has weight wI , size cI , and span [sI , tI ] with sI , tI ∈ {1, . . . , n}. The
goal is to find a minimum weight subset of intervals that covers the demand. That is,
find the minimum weight subset of intervals S ⊆ I such that

∑
I∈S:t∈[sI ,tI ]

cI ≥ dt ∀t ∈ {1, . . . , n}.

A deterministic polynomial-time 4-approximation algorithm, based on the local
ratio technique, for generalized caching is given by Bar-Noy et al. [7]. This algorithm
can equivalently be viewed as a primal dual algorithm applied to a linear program with
KC inequalities [8]. Combining this result with Theorem 2.1 implies a polynomial-
time 16-approximation algorithm for GSP in the case of identical release times.

3. Solving the R2C problem. In this section we focus on solving the R2C
problem. We consider the natural LP formulation for R2C strengthened by KC in-
equalities and then show how to round it suitably. Using standard techniques, we
show that the problem of rounding this LP reduces to finding a good rounding for
two types of uncapacitated covering instances: a so-called priority cover instance, and
several multicover instances. While we could directly use the framework of [13] here,
we prefer to describe the reduction explicitly both for completeness and also since
we will crucially need the fact that there are only O(logP ) distinct priorities in the
priority cover version, which is only implicit in [13]. Then in subsection 3.1, we give
a rounding algorithm that produces a cover of the resulting priority cover instance
with cost O(log logP ) times the LP cost, and in subsection 3.2 we give an algorithm
that produces a cover of the resulting multicover instances with cost O(1) times the
LP cost. An O(log logP ) approximation for R2C is then obtained by picking a rect-
angle r in the final solution if it is included in the covers produced in any of the
subinstances.

LP forumulation. Consider the natural LP relaxation of the integer program for
R2C given in line (1.1), obtained by relaxing xr ∈ {0, 1} to xr ∈ [0, 1]. This LP has an
arbitrarily large integrality gap, even when P consists of just a single point. (Observe
that the R2C problem on a single point instance is precisely the KC problem [12].)
Thus, we strengthen this LP by adding KC inequalities introduced in [12]. This gives
the following linear program:
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min
∑
r∈R

wrxr

s.t.
∑

r∈R\S:p∈r

min {cr,max(0, dp − c(S))} xr ≥ dp − c(S) ∀p ∈ P , S ⊆ R,

xr ∈ [0, 1] ∀r ∈ R.

Here c(S) denotes the total capacity of rectangles in S. The constraints are valid for
the following reason: For any p, and for any subset of rectangles S, even if all the
rectangles in S are chosen, at least a demand of dp − c(S) must be covered by the
remaining rectangles. Moreover, truncating the capacity of a rectangle from cr to
dp − c(S) (in the constraint for point p) does not affect the feasibility of an integral
solution. Even though there are exponentially many constraints per point, for any
ε > 0 [12] give an efficient combinatorial algorithm to find a (1 + ε)-approximate
solution. We note that the (1+ ε) factor loss is only in the cost, and in particular, all
the constraints are satisfied exactly.

Residual solution. Let x be some (1 + ε)-approximate feasible solution to the LP
above, and let OPT denote the objective value. We simplify x as follows. Let β be
a small constant, and β = 1/12 suffices. Let S denote the set of rectangles for which
xr ≥ β. We pick all the rectangles in S, i.e., set xr = 1. Clearly, this cost of this set
is at most 1/β times the LP solution.

For each point p, let Sp = S ∩ {r : r ∈ R, p ∈ r} denote the set of rectangles in
S that contain p. Let us consider the residual instance with rectangles restricted to
R\S and the demand of point p is dp − c(Sp). If dp − c(Sp) ≤ 0, then p is already
covered by S and we discard it. Since the solution x satisfies all the KC inequalities
and hence in particular for Sp, we have that∑

r∈R\Sp:p∈r

min {cr, dp − c(Sp)} xr ≥ dp − c(Sp) ∀p.

Henceforth, we will only use the fact that x satisfies these inequalities for the particular
sets Sp.

Scale the solution x restricted to R\S by 1/β times. Call this solution x′. Note
that since xr ≤ β, it still holds that x′

r ∈ [0, 1]. Clearly, x′ satisfies
∑

r∈R\Sp:p∈r

min{cr, dp − c(Sp)}x′
r ≥ dp − c(Sp)

β
∀p.

Let us define a new demand d′p for p as dp − c(Sp) rounded up to the nearest integer
power of 2. Similarly, define a new capacity c′r of each rectangle r to be cr rounded
down to the nearest integer power of 2. The solution x′ still satisfies

(3.1)
∑

r∈R\Sp:p∈r

min{c′r, d′p}x′
r ≥

d′p
4β

= 3d′p ∀p.

Decomposition into heavy and light points. We call r a class i rectangle if c′r =
2ic′min. Similarly, we call p a class i point if d′p = 2ic′min. (We remark that points
could have negative class indices.) Note that the number of classes for rectangles is
at most O(logP ). We call a point p heavy if it is covered by rectangles with class at
least as high as that of p in the LP solution. That is,∑

r∈R′:c′r≥d′
p

min(c′r, d
′
p)x

′
r ≥ d′p,
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1694 NIKHIL BANSAL AND KIRK PRUHS

or equivalently if

(3.2)
∑

r∈R′:c′r≥d′
p

x′
r ≥ 1.

Otherwise we say that a point is light. By (3.1), we have that a light point satisfies

(3.3)
∑

r∈R′:c′r<d′
p

c′rx
′
r ≥

(
1

4β
− 1

)
d′p = 2d′p.

We make the trivial note (for later use) that a point p with d′p ≤ c′min is always heavy.

3.1. Covering heavy points. Covering the heavy points by larger class rectan-
gles reduces to the following problem that we call R3U. Here R stands for rectangle,
3 for three dimensions, and U for uncapacitated.

Definition of problem R3U. The input consists of a collection P consisting of
points p = (px, py, pz) in three-dimensional space and a collection of cuboids of the
form r = [0, xr] × [y1r , y

2
r ] × [0, zr] and weight wr. Note that these cuboids touch the

x − y plane and the y − z plane. The goal is to find a minimum weight collection of
cuboids that cover all points in P .

Note that there are no demands and capacities in R3U.
Lemma 3.1. The problem of covering heavy points with rectangles of higher class

is a special case of R3U.
Proof. The reduction takes as input the instance I ′ for heavy points and the LP

solution x′ and creates an instance A of R3U. For each heavy point p = (x, y) ∈ I ′

with demand d′p, there is a point (x, y, d′p) in A. For each rectangle r = [0, x]× [y1, y2]
in I ′ with capacity c′r, we define a cuboid Cr = [0, x]× [y1, y2]× [0, c′r] of weight wr.
Clearly, a point p in A can be covered by a cuboid Cr if and only if the corresponding
point p in I ′ is covered by the corresponding rectangle r and the class of r is not
smaller than that of p.

As the LP solution x′ satisfies inequality (3.2) for heavy points, it gives a feasible
LP solution to the R3U instance A. We also note that the cuboids in A have at
most O(logP ) different heights, corresponding to the O(logP ) distinct possible values
for c′r.

Definition 3.2 (union complexity). Given a collection X of n geometric objects,
the union complexity of X is number of edges in the arrangement of the boundary of
X. For three-dimensional objects, this is the total number of vertices, edges, and faces
on the boundary of X.

We would like to bound the union complexity of cuboids in A. We begin with
bounding the union complexity of the two-dimensional rectangles in R2C.

Lemma 3.3. For any collection of k rectangles of the type [0, r]× [s, t], the union
complexity is O(k).

Proof. Each rectangle of the form [0, r] × [s, t] has a side touching the y-axis.
Let us consider the union of an arbitrary subcollection of k such rectangles. The
boundary of the union has horizontal faces and vertices. If two faces overlap each
other, we break ties in some consistent way. Now the horizontal faces of any rectangle
can contribute at most two faces to the boundary. In particular, if we consider some
rectangle R = [0, r] × [s, t] and its bottom face (i.e., the segment joining (0, s) to
(r, s)), then only a subsegment joining (r′, s) to (r, s) can appear in the union for
some r′ < r.
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To bound the number of vertical faces on the boundary of the union, imagine
looking at these vertical faces from x = ∞. For any two rectangles a and b, we note
that the pattern abab or baba cannot appear. Thus the vertical faces form a Davenport–
Schinzel sequence of order 2, which has size at most 2k − 1 (see, for example, [25,
chapter 7]).

The total faces is at most O(k) and as the number of vertices is O(1) times the
number of faces, the result follows.

Lemma 3.4. The union complexity of any k cuboids in R is O(k logP ).

Proof. This directly follows from Lemma 3.3 and noting that the number of
distinct heights is O(logP ). In particular, since the heights are powers of 2, consider
the slice of the cuboids between z = 2i and z = 2i+1. This slice corresponds to a
union of rectangles of the form [0, r] × [s, t]. As there are O(logP ) slides, the result
follows.

We now use the following result of [6], which is an extension of the results of [29]
and [14].

Theorem 3.5 (see [6]). Let I be an instance of an (uncapacitated) geometric
set multicover problem on n points, such that the union complexity of every k sets is
at most kh(k) for all k. Then there is a polynomial-time O(log h(n)) approximation
for the problem, and moreover this approximation guarantee holds with respect to the
optimum value of the standard LP relaxation for the problem.

As x′ is a feasible fractional solution to A, and h(k) = O(logP ) for A by Lemma
3.4, applying Theorem 3.5 allows us to conclude in Lemma 3.6 that we can obtain an
O(log logP ) approximation for heavy points.

Lemma 3.6. The algorithm finds a cover for heavy points of value at most
O(log logP ) times the cost of x′ and hence at most O(log logP ) times the cost of
the optimum R2C solution.

3.2. Covering light points. We relate the problem of covering light points to
the following R2M problem. Here R stands for rectangle, 2 for two dimensions, and
M for multicover.

Definition of the R2M problem. The input consists of a collection P of two-
dimensional points of the form p = (xp, yp), each with an integer demand dp, and a
collection of axis-parallel rectangles r of the form [0, xr]× [y1r , y

2
r ], with cost wr. The

goal is to find a minimum cost subset S ⊂ R of rectangles such that each point p ∈ P
is covered by at least dp rectangles in S.

Reducing covering light points to instances of R2M. The reduction takes as input
the instance I ′ for R2C, restricted to light points, and the LP solution x′ satisfying
inequality (3.3). As output, it creates logP instances of R2M, one instance B� for
each capacity class �. The reduction will ensure that an LP based α-approximation
for R2M implies a cover for light points in I ′ with cost O(α) times the cost of the LP
solution x′.

The instance B�. For each � = 0, . . . , logP , the rectangles in B� are the class �
rectangles in I ′, i.e., those with capacity exactly 2�c′min. The points in B� are all the
light points in I ′.

The cost of each rectangle in B� is the same as in I ′. The demand of a point p
in the instance B� is defined as

d�p =

⎢⎢⎢⎣ ∑
r:p∈r,r∈B�

x′
r

⎥⎥⎥⎦ ,
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that is, the (rounded down) amount of class � rectangles that cover p in the LP
solution x′. In the instance B�, the goal is to cover each point p ∈ B� by at least d�p
distinct rectangles.

Lemma 3.7. The choice of demands d�p ensures that the solution x′ restricted to

those rectangles in B� (i.e., the ones with capacity 2�c′min) is a valid solution to B�.
Proof. The amount of p covered by x′ restricted to those rectangles in B� is∑

r:p∈r,r∈B�
x(r), which is at least d�p.

The following lemmas show that a good LP based approximation for R2M can be
used separately for each instance B� to give a good solution to cover the light points.

Lemma 3.8. Suppose there is an LP based α-approximation for R2M. Let S� be
any feasible solution to B� obtained by applying the LP based algorithm to the solution
x′ restricted to rectangles B�. Consider the union S of the rectangles picked in the
solutions S� to the instances B�. Then S satisfies the demand of all the light points
in I ′, and the cost of S is at most α times the cost of x′.

Proof. As the cost of S� is at most α times the cost of x′ restricted to rectangles in
B�, the cost of S is at most α times that of x′. It remains to show that the solution S
is feasible. Consider some point p and suppose it lies in class i in I ′, i.e., its demand
d′(p) = 2ic′min. We now wish to calculate the extent to which the demand of p is
satisfied by

⋃
� S�. Intuitively, due to the rounding in the definition of d�p, we lose at

most one unit per class �, which sums up to a total loss of at most d′(p), which can
be tolerated since in the fractional solution the point p is covered 2d′(p) times. More
precisely, we have

∑
�<i

2�c′mind
�
p =

∑
�<i

2�c′min

⎢⎢⎢⎣ ∑
r:p∈r,r∈B�

x′
r

⎥⎥⎥⎦

≥
∑
�<i

2�c′min

⎛
⎝
⎛
⎝ ∑

r:p∈r,r∈B�

x′
r

⎞
⎠− 1

⎞
⎠

≥

⎛
⎝∑

�<i

∑
r:p∈r,r∈B�

x′
rc

′
r

⎞
⎠− 2ic′min

≥ 2d′(p)− d′(p) = d′(p),

where the last inequality follows from inequality (3.3) and as d′(p) = 2ic′min.
By Theorem 3.5 and Lemma 3.3, it follows that there is an LP based O(1) ap-

proximation for R2M. Then Lemma 3.9 follows immediately by the application of
Lemma 3.8.

Lemma 3.9. The algorithm finds a cover for light points of value at most O(1)
times the cost of solution x′ and hence at most O(1) times the optimum R2C solution.

Lemmas 3.6 and 3.9 together give Theorem 1.3.

4. Concluding remarks. We showed how GSP can be viewed as a geometric
covering problem, and we used this connection to give an O(log logP ) approximation
for it and a 16-approximation for the case with identical release times. Given the lack
of any inapproximability result for GSP, it seems reasonable to conjecture that an O(1)
approximation should exist. Recently, Bansal, Krishnaswamy, and Saha [4] showed
that the geometric approach may be inherently lossy. Using the recent breakthrough
constructions of Pach and Tardos [27] on lower bounds on size of ε-nets for geometric
objects, they show that the LP relaxation for a general instance of the R3U problem
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(which is a special case of the general R2C problem, when capacities of rectangles
are well separated) has an integrality gap of Ω(log logP ). Thus for the geometric
approach to be of further use, some additional property in the reduction from GSP
to R2C must be used.

Indeed, one can bypass the geometric approach altogether and give a direct LP
relaxation for GSP based on KC inequalities. This was also our original approach to
this problem, but our rounding techniques led us to the geometric approach (which
is cleaner to present as several geometric results can be used as a black-box). The
same LP was used in the recent works on the special case of identical release dates
[19, 21, 26]. We conjecture that this LP has O(1) integrality gap even for general
release times.

Direct LP formulation of GSP. For each job j and time t we define a variable xj,t

that is intended to be 1 if the job is unfinished at time t and is 0 otherwise. Note that
one only needs to define this variable for relevant times t (i.e., release times, or when a
weight wj(t) first reaches a power of 2), but it is convenient to assume that it is defined
for each t. Furthermore we assume that wj(rj) = 0. This does not affect anything
as each job j has pj > 0 and hence is unfinished at rj . As previously, an interval
I = [s, t] consists of the time slots [s, s+1], . . . , [t− 1, t] and |I| = t− s. X(I) denotes
the set of jobs that arrive during I (i.e., rj ∈ [s, t]) and ξ(I) = max(0, p(X(I))− |I|).

min
∑
j

∑
t>rj

xj,t(wj,t − wj,t−1)

s.t. xj,t ≤ xj,t−1 ∀j, t > rj ,∑
j∈X(I)\S

min(pj , ξ(I)− p(S))xj,t ≥ ξ(I)− p(S)

∀I = [s, t], ∀S ⊂ X(I) with p(S) ≤ ξ(I),

xj,rj = 1 ∀j,
xj,t ≥ 0 ∀j, t ≥ rj .

Observe that if a job completes at time t, then in the intended solution xj,t = 0 and
xj,t′ = 1 for t′ < t, and hence the contribution to the objective is

∑
rj<t′<t(wj,t −

wj,t−1) = wj(t) − wj(rj) = wj(t). The first set of constraints says that xj,t are
monotonically nonincreasing, and the third set of constraints says that all the jobs
are unfinished when they arrive. The second set of constraints is KC inequalities
applied to the constraint that for each interval I = [s, t] the jobs that finish after t
must have a total size of at least p(X(I)).
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[10] H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension,
Discrete Comput. Geom., 14 (1995), pp. 463–479.

[11] T. Carnes and D. B. Shmoys, Primal-dual schema for capacitated covering problems, in
Proceedings of the Conference on Integer Programming and Combinatorial Optimization,
2008, pp. 288–302.

[12] R. D. Carr, L. Fleischer, V. J. Leung, and C. A. Phillips, Strengthening integrality gaps
for capacitated network design and covering problems, in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, 2000, pp. 106–115.

[13] D. Chakrabarty, E. Grant, and J. Konemann, On column restricted and priority integer
covering programs, in Proceedings of the Conference on Integer Programming and Combi-
natorial Optimization, 2010.

[14] T. M. Chan, E. Grant, J. Könemann, and M. Sharpe, Weighted capacitated, priority, and
geometric set cover via improved quasi-uniform sampling, in Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, 2012, pp. 1576–1585.

[15] C. Chekuri, K. L. Clarkson, and S. Har-Peled, On the set multicover problem in geometric
settings, ACM Trans. Algorithms, 9 (2012).

[16] C. Chekuri and S. Khanna, Approximation schemes for preemptive weighted flow time, in
Proceedings of the ACM Symposium on Theory of Computing, 2002, pp. 297–305.

[17] C. Chekuri, S. Khanna, and A. Zhu, Algorithms for minimizing weighted flow time, in
Proceedings of the ACM Symposium on Theory of Computing, 2001, pp. 84–93.

[18] T. C. E. Cheng, C. T. Ng, J. J. Yuan, and Z. H. Liu, Single machine scheduling to minimize
total weighted tardiness, European J. Oper. Res., 165 (2005), pp. 423–443.

[19] M. Cheung and D. B. Shmoys, A primal-dual approximation algorithm for min-sum single-
machine scheduling problems, in Proceedings of APPROX-RANDOM, 2011, pp. 135–146.

[20] K. L. Clarkson and K. R. Varadarajan, Improved approximation algorithms for geometric
set cover, Discrete Comput. Geom., 37 (2007), pp. 43–58.
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