
Algorithmica (2011) 59: 569–582
DOI 10.1007/s00453-009-9321-4

Competitive Algorithms for Due Date Scheduling

Nikhil Bansal · Ho-Leung Chan · Kirk Pruhs

Received: 23 May 2008 / Accepted: 30 April 2009 / Published online: 9 May 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider several online scheduling problems that arise when customers
request make-to-order products from a company. At the time of the order, the com-
pany must quote a due date to the customer. To satisfy the customer, the company
must produce the good by the due date. The company must have an online algorithm
with two components: The first component sets the due dates, and the second com-
ponent schedules the resulting jobs with the goal of meeting the due dates.

The most basic quality of service measure for a job is the quoted lead time, which
is the difference between the due date and the release time. We first consider the
basic problem of minimizing the average quoted lead time. We show that there is a
(1 + ε)-speed O(

log k
ε

)-competitive algorithm for this problem (here k is the ratio of
the maximum work of a job to the minimum work of a job), and that this algorithm
is essentially optimally competitive. This result extends to the case that each job has
a weight and the objective is weighted quoted lead time.

We then introduce the following general setting: there is a non-increasing profit
function pi(t) associated with each job Ji . If the customer for job Ji is quoted a due
date of di , then the profit obtained from completing this job by its due date is pi(di).
We consider the objective of maximizing profits. We show that if the company must

The research of K. Pruhs was supported in part by NSF grants CNS-0325353, CCF-0448196,
CCF-0514058 and IIS-0534531.

N. Bansal
IBM T.J. Watson Research, P.O. Box 218, Yorktown Heights, NY, USA
e-mail: nikhil@us.ibm.com

H.-L. Chan
Max-Planck-Institut für Informatik, Saarbrücken, Germany
e-mail: hlchan@mpi-inf.mpg.de

K. Pruhs (�)
Computer Science Department, University of Pittsburgh, Pittsburgh, PA, USA
e-mail: kirk@cs.pitt.edu

mailto:nikhil@us.ibm.com
mailto:hlchan@mpi-inf.mpg.de
mailto:kirk@cs.pitt.edu

570 Algorithmica (2011) 59: 569–582

finish each job by its due date, then there is no O(1)-speed poly-log-competitive algo-
rithm. However, if the company can miss the due date of a job, at the cost of forgoing
the profits from that job, then we show that there is a (1 + ε)-speed O(1 + 1/ε)-
competitive algorithm, and that this algorithm is essentially optimally competitive.

Keywords Online algorithms · Scheduling · Competitive analysis · Due dates ·
Supply chain

“As a strategic weapon, time is the equivalent of money, productivity, quality, even innovation.”
George Stalk, Boston Consulting Group

1 Introduction

We consider several online scheduling problems that arise when customers request
make-to-order products from a time-based competitive company. As an example,
consider the Atlas Door company, whose product was industrial doors that come
in an wide variety of widths, heights, and materials. Traditional companies manufac-
tured doors in batches, and stored the resulting doors in large warehouses. Atlas built
just-in-time flexible factories, investing extra money to buy tooling to reduce change-
over times. Traditionally when customers order a door from the manufacturer, the
customers usually had to wait a week for a response as to when their order could be
filled. (This wait would be even longer if the door was not in stock or scheduled for
production.) Atlas invested in an efficient front-end that automated the order entry,
pricing and scheduling process. Atlas could price and schedule almost all of its orders
immediately. Atlas was able to charge a premium for rush orders since Atlas knew
these orders could not be met by its competitors. As a result, in ten short years At-
las went from start-up company to supplying 80% of the distributors in the US [10].
Similar success stories for other time-based competitors, such National Bicycle and
Lutron electronics, can be found in [3].

In this paper, we formulate some basic online due-date scheduling problems. All
of the problems that we consider share the following basic framework. Jobs arrive to
the system online over time. Job Ji arrives at its release time ri . Job Ji has a work
requirement wi , which is the time it would take to complete the job on a unit speed
machine. At the time ri , the system must quote a due date di for job Ji to the cus-
tomer submitting the job. We assume that the scheduler may preempt jobs (and later
restart them from the point of preemption). It is easy to see that preemption is neces-
sary to avoid worst case scenarios where many short jobs arrive just after a long job
has been started. In our due-date setting, an online algorithm has to have two compo-
nents: a component that sets the due date, and a component that schedules the jobs.
Intuitively, setting the due dates presents a dilemma to the online algorithm. Earlier
due dates, if not missed, will make the customer happier, and presumably increase
profit for the company. On the other hand, setting due dates to be too early restricts
the scheduler from setting earlier due dates on later arriving jobs. The main goal of
this paper is to gain some understanding about when and how an online algorithm
can reasonably cope with this dilemma.

Algorithmica (2011) 59: 569–582 571

We use traditional worst-case competitive analysis, and more generally con-
sider the resource augmentation setting. Recall that an online scheduling algorithm
A is s-speed c-competitive for an objective function f if for all input instances
f (As(I)) ≤ c · f (OPT1(I)), where As(I) is the output of algorithm A with an s

speed processor on input I , and OPT1(I) is the optimal unit speed schedule for in-
put I [4]. Instances that generally arise in practice for many scheduling problems
have the following threshold property: The performance of the system, with an opti-
mal scheduling algorithm, is reasonable when the load is bounded away from some
threshold, but degrades precipitously as the load exceeds the threshold. Intuitively,
a (1 + ε)-speed c-competitive algorithm should perform reasonably well on such
common instances since it would then have essentially the same threshold as the op-
timal algorithm. For more information on resource augmentation and its motivation,
see the surveys [8, 9].

Quoted Lead Time The standard quality of service measure for a job Ji is the quoted
lead time (QLT), which is defined to be di − ri [5, 6]. Probably the most natural re-
lated objective is to minimize the average, or equivalently total, quoted lead times of
the jobs under the constraint that all jobs must be finished by their due date. That is,
the objective is

∑
(di − ri). It is instructive to consider the case that the online sched-

uler can delay the setting of due dates. In particular, consider the most extreme case
where the online scheduler can set the due date to be the completion time of a job. The
quoted lead time problem then becomes the standard flow time problem, for which
the online Shortest Remaining Processing Time algorithm is optimal. Similarly, the
weighted quoted lead time problem becomes the classic problem of minimizing the
weighted flow time. For our problem, the requirement that the due dates be set im-
mediately makes the resulting online problems only more difficult, since the offline
scheduler can still set the due date equal to the completion time of a job. In particu-
lar, it turns out that even in the unweighted case, any (1-speed) algorithm is at least
�(

√
k) competitive where k is the ratio of the maximum to minimum job size.

We thus consider the problem in the resource augmentation setting. Our first main
result is a (1 + ε)-speed O(

log k
ε

)-competitive algorithm, which we call BIT, for the
quoted lead time problem. More generally, this result extends to the weighted case
where each job has a weight and the objective is weighted quoted lead time. The pa-
rameter k is the ratio of the maximum density of any job to the minimum density of
any job, where the density of a job is its weight divided by its size. The BIT algo-
rithm is a composition of three well known scheduling algorithms: Highest Density
First (or equivalently Shortest Job First in the unweighted setting), Round Robin,
and First-Come-First-Served. We also show that this guarantee is essentially the best
possible for any algorithm. In particular, we show that for any c > 1, any c-speed
algorithm must be at least �(logk/c) competitive. This lower bound holds even in
the unweighted case.

Arbitrary Profit Functions Minimizing total quoted lead times is a reasonable ob-
jective function if a company wishes to promise generally fast response to a collection
of essentially equivalent customers/jobs. But in some situations, say if the company
charges a premium for rush orders, the company may explicitly know how much

572 Algorithmica (2011) 59: 569–582

profit it can obtain from a particular due date. For example, companies such as At-
las Door charge additional shipping and handling for rush orders. In these cases, this
known profit should be incorporated into the objective function. We introduce the
following general setting: there is a non-increasing profit function pi(t) associated
with each job Ji . If the customer for job Ji is quoted a due date of di , then the profit
obtained from completing this job by its due date is pi(di). We consider the objective
of maximizing profits, that is the objective is

∑
pi(di). Note that the online sched-

uler in this problem has the power to reject jobs since setting the due date to +∞ is
essentially equivalent to rejecting the job.

Consider the following dilemma for the online scheduler: after scheduling a low-
value long job, several emergency jobs arrive that will yield high profit if early due
dates are set. However, setting early due dates for these emergency jobs would make
it infeasible to finish both the emergency jobs and the low-value job by their due
dates. The company would like to be able to drop the low-value job to make greater
profit from the emergency jobs. We get two different models depending on whether
this dropping is allowed. In the reliable model, the scheduler must complete every job
by its due date. In this model, the company could not get profit from these emergency
jobs in our example instance. In the unreliable model, the company merely does not
earn any profit from those jobs that it does not complete by their due dates. Many
companies offer no recourse to a customer that is not provided a service by/at the
time promised other than that they are not charged. If you have had a flight canceled
by Ryan Air, or a package not delivered in time by Federal Express, you probably
have had first hand experience with this.

Our results on profit maximization are given in Sect. 3. We show that in the reli-
able model there is no O(1)-speed poly-log-competitive algorithm. In the unreliable
model, we show that there is a (1 + ε)-speed O(1)-competitive algorithm, and we
show that this algorithm is essentially optimally competitive. These results match
the intuition that the ability to break promises is crucial to a company that wants to
maximize profit. Once again it is instructive to consider relaxing the problem so that
the online algorithm can delay the setting of the due dates until the completion time
of job. In this relaxation, there is no difference between the reliable and unreliable
models. A special case of this relaxed problem that has previously been studied in
the literature is if the profit functions are constant until some time/deadline, and then
zero thereafter. In this case, the goal becomes to maximize the profit of jobs that
are completed by their deadlines. For this case, it is known that resource augmenta-
tion is necessary [1] and the best result that is achievable is O(1 + ε)-speed O(1)-
competitiveness [4]. Thus O(1 + ε)-speed O(1)-competitiveness is the best possible
result that we could have hoped for in our due date profit maximization problem.
So for profit maximization, the introduction of due dates makes the resulting online
problem significantly harder only in the reliable case.

Related Previous Work Within the world of supply chain management there is an
extensive literature on due date scheduling problems. Surveys of due date scheduling
problems, with hundreds of references, can be found [5] and [6]. As always with
scheduling problems, there is a vast number of reasonable formulations that have
been studied. The majority of the literature uses experimentation as the method of

Algorithmica (2011) 59: 569–582 573

algorithm evaluation. There is also a fair amount of literature that uses queuing-theory
analysis to evaluate online algorithms.

There is to our knowledge only one previous paper, namely [7], in the literature
on online due-date scheduling problems that uses worst-case analysis. In this special
case, all jobs have the same work, say w. If the due date of a job is set to be as early as
feasible, namely at ri + w, then the profit obtained from this job is a fixed constant �.
For every unit of time that the due date is delayed, one unit of profit is lost. It is easy
to see that the online algorithm, that accepts a job if it can gain positive profit, has
a competitive ratio of �(�). This algorithm may accept many jobs with low profit,
and thus not be able to reap profit from later arriving jobs. Reference [7] shows that
the reliable online algorithm that rejects jobs on which it won’t earn at least 61.8%
of the maximum profit �, is 1.618-competitive. Note that this result relies heavily on
both the fact that the profit function has a very special structure, and on the fact that
all jobs are identical except release times. The paper [7] considers other special cases
and variations, for example, if there are two different kinds of jobs instead of one and
if quotations can be delayed.

2 Minimizing Weighted Quoted Lead Time

This section considers the problem of minimizing weighted quoted lead time. Recall
that each job Ji has release time ri , amount of work wi and weight ci . An online
algorithm needs to set a due date di when Ji is released and the quoted lead time
(or simply lead time) of Ji is �i = (di − ri). The online algorithm must complete
each Ji by its deadline di and objective is to minimize

∑
ci�i , i.e., the total weighted

lead time. We define the density of a job Ji to be ci/wi . Let k be the ratio of the
maximum to minimum density of the jobs. We give a simple algorithm BIT that is
(1 + ε)-speed O((log k)/ε)-competitive and we show that BIT already achieves a
nearly optimal competitive ratio.

2.1 The Algorithm BIT and Its Analysis

Let us first give some motivation for BIT. For any job sequence I , let L be the min-
imum possible total weighted lead time and let F be the minimum possible total
weighted flow time. We note that L = F , because the total weighted lead time is at
least the total weighted flow time and they can be equal when the due date of each
job is set to its completion time.

Consider the algorithm Highest Density First (HDF) that at any time works on
the highest density job. It is known that HDF is a good strategy for the objective of
weighted flow time.

Lemma 1 [2] For any ε > 0, HDF is (1 + ε
2)-speed (1 + 2

ε
)-competitive for minimiz-

ing weighted flow time.

Suppose, BIT runs a copy of HDF; furthermore, whenever a job Ji is released,
the due date di is set to at most α times the completion time of Ji in HDF, assuming

574 Algorithmica (2011) 59: 569–582

that no more jobs will be released. If it turned out that all jobs were completed by
their deadlines, it would imply that BIT is α(1 + 2

ε
)-competitive for total weighted

lead time. Of course, the problem is that HDF may not complete Ji by di since many
higher density jobs might arrive during [ri , di]. Interestingly, it turns out that by giv-
ing BIT slightly extra speed, and by choosing α large enough, we can guarantee that
each job will be completed by its due date. We define BIT formally as follows.

We may assume without loss of generality that the minimum density of a job
is 1. Increasing the weight of jobs by a factor of at most 2, we assume that all
jobs have densities 2j for j = 1,2, . . . , log k. BIT divides the jobs into classes
C1,C2, . . . ,Clog k where all jobs in Cj have density 2j . BIT operates as follows.

Setting Due Dates When a job Ji of class Cj is released at time ri , let w(Cj) be
the amount of remaining work for jobs in class Cj at time ri immediately before the

release of Ji . BIT sets the due date di to ri + (w(Cj) + wi) · 2 log k
ε

. Note that if no
more jobs are released, a processor of speed ε

2 log k
can complete Ji and all the jobs in

Cj by di .

Processing Jobs BIT divides its processing power into two parts by time-sharing.
Thus, we may assume that BIT is using a processor P1 of speed (1 + ε

2) and also
another processor P2 of speed ε

2 .

• P1 runs HDF, i.e., P1 always processes the class with the highest density. With this
class, it works on the job with the earliest release time.

• P2 is evenly time-shared among all the logk classes. For each class Cj , it processes
the job in Cj with the earliest release time using speed ε

2 log k
.

Observation 1 BIT completes each job Ji by its due date di .

Proof Suppose Ji belongs to Cj . Since jobs in Cj are dedicated a processor of speed
ε

2 log k
and we run the jobs within a class in the order of their arrival times, the job Ji

will be completed by di irrespective of the jobs that arrive after ri . �

We are now ready to bound the lead time �i of each job Ji in BIT. For any s ≥ 1,
Let HDF(s) denote a stand-alone copy of HDF using a s-speed processor. Let fi be
the flow time of a job Ji in the schedule of HDF(1 + ε

2).

Lemma 2 For any job Ji , �i ≤ 2 log k
ε

· (1 + ε
2) · fi .

Proof Let Ji be a job of class Cj and let wh(Cj) be the amount of unfinished work
under HDF(1 + ε

2) for jobs in class Cj at time ri . Since BIT is also running a copy
of HDF(1 + ε

2), it must be that w(Cj), the unfinished work for class Cj jobs under
BIT is at most wh(Cj). Hence fi is at least (wh(Cj) + wi)/(1 + ε

2). Therefore,

�i = (w(Cj) + wi) · 2 logk

ε
≤ (wh(Cj) + wi) · 2 logk

ε
≤ 2 logk

ε
·
(

1 + ε

2

)

· fi. �

Algorithmica (2011) 59: 569–582 575

Theorem 3 For any ε > 0, BIT is (1 + ε)-speed 4 log k
ε

(1 + ε
2)(1 + 2

ε
)-competitive.

The competitive ratio can improved to 16 log k
ε

for ε ≥ 2.

Proof Let Opt be the adversary that minimizes the total weighted lead time for the
modified job sequence. Then,

∑
ci�i ≤ 2 logk

ε

(

1 + ε

2

)∑
cifi (by Lemma 2)

≤ 2 logk

ε

(

1 + ε

2

)(

1 + 2

ε

)

× total weighted flow time of Opt (by Lemma 1)

= 2 logk

ε

(

1 + ε

2

)(

1 + 2

ε

)

× total weighted lead time of Opt.

Since the weights of the jobs are increased by BIT by at most a factor of two to ensure
that job densities are powers of two, the total weighted lead time of Opt is at most
two times that of the optimal one for the original job sequence. This completes the
first part of the proof.

For ε ≥ 2, we note that HDF(1 + ε
2) is 4

1+ε/2 -competitive on weighted flow time

(because HDF(1 + ε
2) has weighted flow time at most 2

1+ε/2 times that of HDF(2),
and HDF(2) is 2-competitive on weighted flow time). As above, we obtain that for
ε ≥ 2, the total weighted lead time of BIT is at most 2 log k

ε
(1 + ε

2)(4
1+ε/2) = 8 log k

ε
times that of Opt. Since the weights increased at most by a factor of two to ensure
that job densities are powers of 2, the result follows. �

2.2 Lower Bounds

We show that BIT already achieves a nearly optimal competitive ratio and also a
lower bound when no speed-up is given.

Theorem 4 Let c > 1 be any integer. Any deterministic c-speed algorithm is
�(

log k
c

)-competitive. This holds even for unweighted instances.

Proof Consider any c-speed algorithm A. Let x ≥ 2 be any integer. We will release
a sequence of at most (c logx + 1) batches of jobs. All jobs have weight 1. Batch
Bi has 2i−1 jobs and each job has size 1/2i−1. First, batch B1 is released at time 0.
For i = 2, . . . , c logx + 1, if at least half of the jobs in Bi−1 have due date at most
logx

2 , then batch Bi is released immediately at time 0; otherwise, the job sequence

terminates. Note that if batch Bc logx+1 is released, there must be at least c logx
2 units

of work with due date at most logx
2 . A has a c-speed processor and needs to meet the

due date of the jobs, so A needs to set the due date of all jobs in batch Bc logx+1 to be

greater than logx
2 .

Let Br be the last batch of jobs released. Note that A sets the due date of at least
2r−1

2 jobs to be at least logx
2 . The total weighted lead time of A is �(2r−1 logx).

576 Algorithmica (2011) 59: 569–582

The adversary can schedule the jobs in reverse order of arrival, giving an objective
of at most

∑r
i=1 2i−1(r + 1 − i) = O(2r−1). Thus, A is �(logx)-competitive. Note

that the densities of the jobs range from 1 to 2r−1 ≤ 2c logx . The theorem follows as
k ≤ 2c logx and logx ≥ log k

c
. �

Theorem 5 Any deterministic algorithm using a unit-speed processor is �(
√

k)-
competitive. This holds even for unweighted instances.

Proof Consider any algorithm A. We release a big job J0 at time 0 with c0 = 1 and
w0 = k. If the due date set by A is at least k

√
k, then A is already �(

√
k)-competitive.

Otherwise, for i = 1,2, . . . , k
√

k, a small job Ji is released with ri = i − 1, ci = 1
and wi = 1. Since A needs to process J0 before k

√
k, A must set the due dates of at

least k small jobs to be greater than k
√

k, and thus for these jobs
∑

ci(di − ri) ≥ k2

2 .
On the other hand, the adversary can set the due date of J0 to be k

√
k +k, and the due

date of each small job Ji to be i. It gives a value of k
√

k + k
√

k + k for the objective
function. Thus, A is �(

√
k)-competitive. �

3 Profit Maximization

We assume in this section that each job Ji has an associated non-increasing profit
function pi(t) specifying the profit obtained if the due date is set to time t , and our
objective is the total profit obtained from the jobs finished by their due date. Our main
result, which we give in Sect. 3.1, is a (1 + 2δ)-speed (6 + 12

δ
+ 8

δ2)-competitive al-
gorithm in the unreliable model where the scheduler is not obligated to finish all jobs
by their due date. As mentioned earlier, resource augmentation is necessary to obtain
reasonable bounds as this problem is as at least as hard as maximizing the profit of
jobs completed by their deadlines [1]. In Sect. 3.2 we also show that every deter-
ministic c-speed algorithm is at least (1 + 1

c·2c)-competitive, even when the job size
and profit are bounded. In Sect. 3.3, we consider the reliable version of the problem
where all jobs must be completed by their due date. We show that every deterministic
c-speed algorithm is �(k1/c)-competitive.

3.1 The Algorithm for the Unreliable Model

This section describes our algorithm INT and shows that it is (1 + 2δ)-speed (6 +
12
δ

+ 8
δ2)-competitive in the unreliable model, for any δ > 0. INT maintains a pool P

of jobs and only processes jobs in P . Whenever a job Ji is released, INT assigns a
due date di to Ji (using the procedure below), and Ji is put into P if pi(di) > 0. A job
Ji remains in P until it is completed or becomes non-viable (i.e., the remaining work
is more than (1 + 2δ) times the duration between the current time and its due date).
Note that once the due date of Ji is fixed, we can unambiguously define pi = pi(di)

as the profit and ui = pi/wi as the density of Ji .
Intuitively, INT runs the highest density job available. And intuitively INT sets

the due date to be the earliest time t so that if no more jobs arrive, and always the
highest density job is run, then even a slightly slower processor could finish the job

Algorithmica (2011) 59: 569–582 577

by t . Unfortunately, it requires some complications to make the idea precise and to
get the technical details to work out.

Let c > 1 + 1
δ

be a constant (that we set later to 1 + 2
δ
). Throughout, we assume

that INT runs at speed 1 + 2δ and the optimum offline algorithm runs at speed 1. We
now formally specify how the due dates are set, and which job is executed at each
time t .

Setting Due Dates INT maintains an invariant that each job admitted in P is asso-
ciated with a collection of time intervals I (Ji) = {[t1, t ′1], [t2, t ′2], . . . , [th, t ′h]}, where
ri ≤ t1 < t ′1 < t2 < · · · < th < t ′h = di . This collection I (Ji) is specified (and fixed) as
soon as Ji is released. The total length of the intervals in I (Ji) is 1+δ

1+2δ
wi . Roughly

speaking, Ji is expected to be run during I (Ji). Note that the total length is (1 + δ)

times more than the time required to run Ji .
When a new job Ji is released at ri , INT tests whether a time t ′ > ri is a good

choice for due date as follows: Assuming t ′ is the due date, then the profit of Ji

is pi(t
′) and density ui = pi(t

′)/wi . Let X(
ui

c
) be the set of jobs in P with den-

sity at least ui

c
. Consider the time interval [ri , t ′] and the associated intervals of jobs

in X(
ui

c
). Let A = {[a1, a

′
1], [a2, a

′
2], . . . , [ah, a

′
h]} be the maximal subintervals of

[ri , t ′] that do not overlap with the associated intervals of any job in X(
ui

c
). We say

that t ′ is a feasible due date if the total length of intervals in A is at least 1+δ
1+2δ

wi .
Note that a feasible due date always exists by choosing t ′ large enough. INT sets the
due date of Ji to be the earliest time t ′ such that t ′ is a feasible due date. If pi(t

′) > 0,
then Ji is put into P and I (Ji) is set to the corresponding A. We wish to point that a
job could have arbitrarily many associated intervals.1

Executing Jobs At any time t , let S be the set of jobs Ji in P that are allowed to
run at t (i.e. all Ji such that I (Ji) contains some interval [tj , t ′j] and t ∈ [tj , t ′j]). INT
processes the job in S with highest density.

We first state two observations about INT before presenting the analysis.

Observation 2 At any time t , let J1 and J2 be two jobs in P such that some intervals
of I (J1) and I (J2) are overlapping. Then, either u1 > c · u2 or u2 > c · u1.

Proof Follows directly from the procedure for defining I (J1) and I (J2). �

Consider the overall execution of INT in hindsight for the sequence of jobs. For
any time t , let S be the set of jobs Ji ever put into P such that I (Ji) contained some
interval [tj , t ′j] and t ∈ [tj , t ′j]. The density of t is defined as the density of the highest
density job in S.

1As an example, consider a sequence of n unit-size job, each with density 1.1 or 0.9, released alternatively
at time 0. The associated intervals of jobs with density 1.1 are [2i,2i + 1], while that for jobs with density
0.9 are [2i + 1,2i + 2], for i = 0,1, Assume then a job Ji of size n/2 and density ui = c is released.
INT will set the associated intervals of Ji as A = {[2i + 1,2i + 2] for i = 0,1, . . . }.

578 Algorithmica (2011) 59: 569–582

Observation 3 Consider any job Ji and a time t ≥ ri + wi . Suppose INT sets the
due date of Ji to be strictly greater than t . Let ui = pi(t)/wi and let L be the amount
of time during [ri , t] such that the density is at least ui

c
. Then, L ≥ δ

1+2δ
(t − ri).

Proof If L is less than δ
1+2δ

(t − ri), then t is a feasible due date for Ji and INT would
have set the due date of Ji to be at most t , which yields a contradiction. �

We now turn our attention to analyzing this algorithm. Let C be the set of jobs
completed by INT, and R be the set of jobs that have ever been put into P . For any
set X of jobs, let ‖X‖ be the total profit of jobs in X according to the due dates set
by INT. We first lower bound the profit obtained by INT.

Lemma 6 For C and R as defined above, ‖C‖ ≥ (1 − 1
δ(c−1)

)‖R‖, or equivalently,

‖R‖ ≤ δ(c−1)
δ(c−1)−1‖C‖.

Proof We use a charging scheme to prove the lemma. For each job Ji in C, we give
pi units of credit to Ji initially. The remaining jobs in R − C are given 0 units of
credit initially. We will describe a method to transfer the credits such that at the end,
each job Ji ∈ R has credit at least (1 − 1

δ(c−1)
)pi , which completes the proof.

The method to transfer credit is as follows. At any time t , let S be the set of jobs
that have an associated interval containing t . Let Ji be the highest density job in S.
Then, for each other job Jj in S, Ji transfers credit to Jj at a rate of (1+2δ

δ
)uj .

We first show that every job Jj in R receives credit at least pj either initially
or transferred from other jobs. This clearly holds for jobs in C. For any job Jj in
R − C, as Jj could not be completed during I (Jj), it must have received credit for
at least δ

1+2δ
· wj units of time. Thus, the total credit obtained is at least (δ

1+2δ
)wj ·

(1+2δ
δ

)uj = wjuj = pj .
We now show that the credit transferred out of each job Ji is at most 1

δ(c−1)
pi .

When a job Ji is the highest density job in S, by Observation 2 the remaining jobs
in S have geometrically decreasing densities and hence their total density is at most

1
c−1ui . Therefore, the rate of credit transferring out of Ji is at most (

ui

c−1)(1+2δ
δ

).
Since Ji is the highest density job for at most wi

1+2δ
units of time, the total credit

transferred out is at most of Ji is at most (
ui

c−1)(1+2δ
δ

) · (wi

1+2δ
) = 1

δ(c−1)
pi . �

Next, we upper bound the profit obtained by the adversary. Let A be the set of
jobs completed by the adversary. For any set of jobs X, let ‖X‖∗ be the total profit
of jobs in X according to the due dates set by the adversary. We may assume that
the adversary only completes jobs with non-zero profit. Let A1 be the set of jobs
in A such that the due date set by INT is no later than that by the adversary. Let
A2 = A \ A1. Then, the total profit obtained by the adversary is ‖A‖∗ = ‖A1‖∗ +
‖A2‖∗ ≤ ‖A1‖+‖A2‖∗ ≤ ‖R‖+‖A2‖∗ . Note that ‖A1‖ ≤ ‖R‖ because each job in
A1 must lie in R since INT set a due date for it with non-zero profit. We now bound
the profit of jobs in A2.

For any u > 0, let T (u) be the total length of time that the adversary is running
jobs in A2 with density at least u (where the density is determined according to the

Algorithmica (2011) 59: 569–582 579

due dates set by the adversary). For the schedule of INT, let L(u
c
) be the total length

of time such that the density is at least u
c

. (Recall that the density of a time t is the
density of the highest density job that has an associated interval containing t .)

Lemma 7 For every u > 0, T (u) ≤ 2(1+2δ)
δ

L(u
c
).

Proof For any job Ji ∈ A2, let the span of Ji be the time interval [ri , d∗
i], where d∗

i

is the due date set by the adversary. For any u > 0, let A2(u) be the set of jobs in
A2 with density at least u. Consider the union of spans of all jobs in A2(u). It may
consist of a number of disjoint time intervals, and let � be its total length. Clearly,
T (u) ≤ �.

Let M ⊆ A2 be the minimum cardinality subset of A2 such that the union of spans
of jobs in M equals that of A2. Note that the minimality property implies no three
jobs in M have their spans overlapping at a common time. This implies that we can
further partition M into M1 and M2 such that within M1 (resp. M2), any two jobs
have disjoint spans. Now, either M1 or M2 has total span of length at least half of
that of M . Without loss of generality, suppose that it is M1. Note that each interval
in M1 corresponds to a span of some job in A2. Applying Observation 3 to each such
interval, it follows that the density of INT is at least u

c
for at least δ

1+2δ
fraction of

time during the intervals of M1. Thus, L(u
c
) ≥ δ

2(1+2δ)
· T (u), which completes the

proof. �

Let {φ1, φ2, . . . , φm} be the set of densities of jobs in A2 (determined by the adver-
sary’s due dates), where φi > φi+1 for i = 1, . . . ,m − 1. For simplicity, let φ0 = ∞
and φm+1 = 0. For i = 1, . . . ,m, let �i be the length of time that the adversary is
running jobs of density φi . Similarly, for i = 1, . . . ,m, let αi be the length of time
that INT has density in the range [φi/c,φi−1/c). Then, the following holds.

Lemma 8 Let K be a constant. If T (u) ≤ K ·L(u
c
) for every u ≥ 0, then

∑m
i=1 �iφi ≤

K · ∑m
i=1 αiφi .

Proof Rephrasing T (φi) ≤ K · L(
φi

c
) in terms of �i and αi , we obtain the following

inequalities for each i = 1, . . . ,m

�1 + · · · + �i ≤ K(α1 + · · · + αi).

Multiplying the ith inequality by (φi − φi+1) (which is strictly positive for all i) and
adding them, we obtain the desired result that

∑m
i=1 �iφi ≤ K · (∑m

i=1 αiφi). �

Lemma 9 ‖A‖∗ ≤ (1 + 2(1+δ)c
δ

)‖R‖.

Proof Recall that ‖A‖∗ = ‖A1‖∗ + ‖A2‖∗ ≤ ‖R‖ + ‖A2‖∗. By Lemmas 7 and 8,

‖A2‖∗ ≤
m∑

i=1

�iφi ≤ 2(1 + 2δ)

δ

m∑

i=1

αiφi . (1)

580 Algorithmica (2011) 59: 569–582

Let qi be the total profit for jobs whose density in INT is in the range of
[φi/c,φi−1/c). For any job Jj , as the total length of the associated intervals is
1+δ
1+2δ

wj , it follows that αi
φi

c
≤ 1+δ

1+2δ
· qi . Combining with (1), we obtain that

‖A2‖∗ ≤ 2(1 + 2δ)

δ

m∑

i=1

αiφi ≤ 2(1 + δ)c

δ

m∑

i=1

qi ≤ 2(1 + δ)c

δ
‖R‖

which implies the desired result. �

Theorem 10 For any δ > 0, the algorithm described above is (1 + 2δ)-speed, O(1)-
competitive for profit maximization in the unreliable model. In particular ‖A‖∗ ≤
(6 + 12

δ
+ 8

δ2)‖C‖.

Proof The result follows by Lemmas 6 and 9, and setting c = 1 + 2
δ

. �

3.2 Lower Bounds in the Unreliable Model

It is easily seen that resource augmentation is necessary to obtain O(1) competitive
algorithms in the unreliable model. In fact, by the results of Baruah et al. [1] it follows
that every deterministic algorithm is �(k) competitive even if all the profit functions
are of the type pi(t) = pi during [0, di] and 0 thereafter. Here k is the ratio of the
maximum to minimum job density. We now show that 1-competitiveness is not pos-
sible for any online algorithm, even when it is given faster processors and the job size
and profit are bounded.

Theorem 11 Let c ≥ 1 be any integer. Consider the profit maximization problem
in the unreliable model. Any deterministic c-speed algorithm is at least (1 + 1

c·2c)-
competitive, even when all jobs are of size 1 and the profit is either 0 or in the range
[0.5,1].

Proof For any c-speed algorithm A, we construct a sequence of at most c + 1 jobs
defined as follows. Let α = 1/2c. A job J1 is released with r1 = 0, w1 = 1, and
p1(t) = 1 for t ∈ [0,1] and p1(t) = 1 − α otherwise. For i = 2,3, . . . , c + 1, Ji is
released if A sets di−1 to be at most 1; in that case, Ji is released with ri = 0, wi = 1,
and pi(t) = 1 for t ∈ [0,1] and pi(t) = 1 − 2i−1α otherwise. Note that if Jc+1 is
released, it means that A sets di to be at most 1 for i = 1, . . . , c. If A sets dc+1 to be
at most 1, then A must miss the due date of some job; else (i.e., A sets dc+1 to be
greater than 1), then the profit for Jc+1 is 1 − 2c · α = 0.

Let Jr be the last job released. If A sets dr to be greater than 1, then the total profit
of A is at most (r − 1) + (1 − 2r−1 · α) = r − 2r−1α. The adversary can set the due
date of Jr to be 1 and set the due date of J1, . . . , Jr−1 to be greater than 1. Note that
by setting the due dates far enough, the adversary can complete each job J1, . . . , Jr .
The total profit of the adversary is

∑r−1
i=1 (1 − 2i−1α) + 1 = r − (2r−1 − 1)α. Thus,

the competitive ratio of A is at least r−2r−1α+α

r−2r−1α
≥ 1 + 1

c·2c . Else if A sets dr to be
at most 1, then r = c + 1 in this case. A using a c-speed processor cannot complete

Algorithmica (2011) 59: 569–582 581

all the c + 1 jobs, so its total profit is at most c. The adversary can set the due date
of Jc+1 to be 1 and due date of J1, . . . , Jc to be greater than 1. The total profit is∑c

i=1(1 − 2i−1α) + 1 = c + 1 − (2c − 1)α = c + α. Thus, the competitive ratio of A

is at least c+α
c

= 1 + 1
c·2c . �

3.3 The Reliable Model

We show substantially stronger lower bounds for the profit maximization problem
in the reliable model where jobs must be completed by their due dates. Let � be
the ratio of the maximum to minimum job size. Let p∗

i = pi(wi) be the maximum
possible profit achievable by a job Ji , and set u∗

i = p∗
i /wi . Let k denote the maximum

to minimum ratio of u∗
i . The following lower bound states that O(1)-competitive

algorithm is possible only when both k and � are constant.

Theorem 12 Any deterministic online algorithm is at least �(k · �)-competitive in
the reliable model of the profit maximization problem.

Proof Consider any algorithm A. A job J1 is released with r1 = 0 and w1 = 1. The
profit function p1(t) equals 1 for t ∈ [0,1], and equals 0 otherwise. A must set d1 to 1;
otherwise, the competitive ratio is unbounded. Then, J2 is released with r2 = 0 and
w1 = �. The profit function p2(t) equals k ·� for t ∈ [0,�], and equals 0 otherwise.
A must set d2 to be at least � + 1 as it needs to complete J1. Thus, A is at least
(k · �)-competitive. �

Next we show that constant competitive ratio is not possible even if we use an
arbitrarily large constant speed-up.

Theorem 13 Let c ≥ 1 be an integer. Any deterministic c-speed algorithm is
�(k1/c)-competitive in the reliable model of the profit maximization problem.

Proof For any c-speed algorithm A, we release a sequence of at most c + 1 jobs
defined as follows. Let x ≥ 2 be an integer. A job J1 is released with r1 = 0, w1 = 1,
and p1(t) = x for t ∈ [0,1] and p1(t) = 0 otherwise. For i = 2,3, . . . , c + 1, Ji is
released if A sets di−1 to be at most 1; in that case, Ji is a job with ri = 0, wi = 1,
and pi(t) = xi for t ∈ [0,1] and pi(t) = 0 otherwise. Note that if Jc+1 is released, it
means that A sets di be at most 1 for i = 1, . . . , c. To meet these due dates, A must
set dc+1 greater than 1.

Let Jr be the last job released. Note that A sets dr to be greater than 1. The total
profit of A is at most (xr−1 + xr−1 + · · · + x) ≤ xr

x−1 . The adversary can set the due
date of Jr to be 1 and obtain a profit of xr . Thus, A is at least (x − 1)-competitive.
Note that the density ratio k is at most xc , that is, x ≥ k1/c . �

4 Conclusions

As best as we can tell, this paper is the first competitive analysis of reasonably gen-
eral due date scheduling problems. For the total lead time minimization problem, we

582 Algorithmica (2011) 59: 569–582

found that the introduction of due dates made the task of the online scheduler sig-
nificantly harder. For the profit maximization problem, we found that the task of the
online scheduler became significantly more difficult in the reliable model, but not in
the unreliable model. It would be interesting to investigate other due date scheduling
problems, from say the surveys [5] and [6], using worst-case analysis to get a better
understanding of the effect of the introduction of due dates.

Acknowledgement We would like to thank Steef van de Velde for helpful discussions.

References

1. Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.: On-line scheduling in
the presence of overload. In: Symposium on Foundations of Computer Science, pp. 100–110. IEEE
Comput. Soc., Los Alamitos (1991)

2. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted flow time and
deadline scheduling. J. Discrete Algorithms 4(3), 339–352 (2006)

3. Fisher, M.: What is the right supply chain for your product. Harvard Bus. Rev. 75, 105–116 (1997)
4. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643

(2000)
5. Kaminsky, P., Hochbaum, D.: Due date quotation models and algorithms. In: Leung, J.Y.-T. (ed.)

Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Boca Raton
(2004). Chap. 20

6. Keskinocak, P., Tayur, S.: Due date management policies. In: Simchi-Levi, D., Wu, S.D., Shen, Z.-J.
(eds.) Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era, pp. 485–
554. Springer, Berlin (2004)

7. Keskinocak, P., Ravi, R., Tayur, S.: Scheduling and reliable lead-time quotation for orders with avail-
ability intervals and lead-time sensitive revenues. Manag. Sci. 47(2), 264–279 (2001)

8. Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Perform. Eval. Rev.
34(4), 52–58 (2007)

9. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Leung, J.Y.-T. (ed.) Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. CRC Press, Boca Raton (2004)

10. Stalk, G.: Time—the next source of competitive advantage. Harvard Bus. Rev. 66, 41–51 (1988)

	Competitive Algorithms for Due Date Scheduling
	Abstract
	Introduction
	Quoted Lead Time
	Arbitrary Profit Functions
	Related Previous Work

	Minimizing Weighted Quoted Lead Time
	The Algorithm BIT and Its Analysis
	Setting Due Dates
	Processing Jobs

	Lower Bounds

	Profit Maximization
	The Algorithm for the Unreliable Model
	Setting Due Dates
	Executing Jobs

	Lower Bounds in the Unreliable Model
	The Reliable Model

	Conclusions
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

