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Abstract. A well-known problem m scheduling theory is to execute n umt-lengthjobs subject to precedence 
constraints on two processors m mmunum fimsh time Previous algorithms begin by finding the transmve 
closure of the precedence dag and so use time O(mm(en, n261)). An O(e + ha(n)) algorithm is presented 
which Is based on the idea of a "highest-level-first" (HLF) schedule Such a schedule always executes 
nodes on the longest paths of the precedence dag An HLF schedule is guaranteed to be optimum and can 
be constructed efficiently 
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1. Introduction 

A classic p r o b l e m  in schedul ing  theory  is to f ind a m i n i m u m  makespan ,  n o n p r e e m p -  
tive schedule  for a col lect ion o f  un i t - l eng th  j o b s  subject  to p recedence  const ra ints  
[3]. In  o ther  words,  we are given n j o b s  to be executed  on m processors.  Each  j o b  
requires  exact ly  one unit  o f  execut ion  t ime a n d  can  run on any  processor.  A d i rec ted  
acycl ic  g raph  (dag) specifies the precedence  constraints :  an  edge f rom x to y means  
j o b  x mus t  be comple t ed  before  j o b  y begins.  A schedule  wi th  the smal les t  overa l l  
f inish t ime is sought.  ( In  a more  succinct  nota t ion,  this p rob l e m is P/prec, 
p: = l/Cmax [101.) 

W h e n  the n u m b e r  o f  processors  m is a rb i t ra ry ,  this p rob l e m is N P - c o m p l e t e  
[19]. F o r  any  f ixed m >_ 3, the  complex i ty  is open  [9]. Here  we s tudy  the t rac tab le  
case m = 2. 

F o r  two processors  a n u m b e r  o f  eff icient  a lgor i thms have  been  gwen.  A c o m m o n  
aspect  o f  these a lgor i thms  is that  they  requi re  the  dag  to be t rans i t ive ly  closed (or, in 
one  case, t rans i t ive ly  reduced) .  Otherwise  the dag  must  be pu t  in to  t rans i t ive ly  closed 
fo rm (or t rans i t ive ly  r educed  form).  The  best  k n o w n  a lgor i thms  for this use t ime 
O(min(en,  n 2 61)), where  e is the n u m b e r  o f  edges o f  the dag.  (The  t ransi t ive c losure  

can  be c o m p u t e d  in t ime O(en) by n depth- f i r s t  searches.  Al te rna t ive ly ,  it can be 
reduced  to ma t r ix  mul t ip l i ca t ion  [2], which  is O(n 2 61) [16]. The  t ransi t ive reduct ion  
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requires basically the same time [1].) As we see below, this first step of  putting the 
dag into a specialized form dominates the run time. 

The two-processor algorithm of  Fujii et al. [5] is based on matching techniques. 
Excluding transitive closure time, it requires the time to find a maximum matching, 
which in this case is O(n 25) [12, 15]. Coffman and Graham [4] give another algorithm 
based on a lexicographic numbering scheme. It works on a transitively dosed or 
transitively reduced dag. Sethi [17] shows that the lexicographic numbering can be 
done in time O(e + ha(n)).' Garey and Johnson [8] give a third algorithm, which 
allows individual job deadlines in addition to precedence constraints. It can be used 
to solve our problem. The algorithm uses time O(n 2) to compute "modified dead- 
lines." It works on a transitively closed dag. 

Time bounds for these algorithms often assume that the transitive closure of  the 
dag (or transitive reduction) is given. In practice this is unlikely. On general dags the 
transitive closure step dominates, and the algorithms use time O(min(en, n26~)) 
(O(n 2 61) for [5]). 

We present an algorithm that does not use the transitive closure and runs in 
time O(e + na(n)) on an arbitrary dag. It is based on the idea of a "highest-level- 
first" (HLF) schedule. Such a schedule always executes nodes on the longest paths 
of  the dag. An HLF schedule is guaranteed to be optimum and can be constructed 
efficiently. 

Section 2 gives a precise definition of an HLF schedule. Section 3 gives the 
algorithm and its analysis. Section 4 briefly discusses applications of the algorithm to 
other scheduling problems. 

2. H L F  Schedules 

This section gives some basic terminology and introduces the notion of  HLF 
schedules. 

A scheduling problem is defined by a dag (directed acyclic graph). The number of 
nodes and edges are denoted by n and e, respectively. If  there is an edge from node 
x to node y, then x is an immediate predecessor o f y  and we write x ~ y; if there is a 
directed path (of zero or more edges) from x to y, then x is apredecessor of  y, y is a 
successor of  x, and we write x .,~ y. A dag can be partitioned into levels i, L >_ i >_ 1: 
level i consists of all nodes x that start paths with i nodes but not paths with i + 1 
nodes; we write level(x) = i. L denotes the highest level of  the dag. Figure la gives an 
example dag. 

A (two-processor) schedule is an assignment of the nodes of  the dag to time units, 
1, 2 . . . . .  o~, so that each node is assigned to exactly one time unit, at most two nodes 
are assigned to the same time unit, and x --~ y implies that x is assigned to a lower 
time unit than y. The schedule executes (or schedules) node x during time unit i if x 
is assigned to i. ~0 is thefinish rime or makespan of  the schedule. An optimum schedule 
minimizes o~. Such a schedule has the fewest possible number of  idle time units, that 
is, time units assigned only one node. Figure l b gives a schedule as a Gantt  chart 
(the ith column shows the nodes executed in time unit/).  

We define HLF schedules in two steps. First, a level schedule "executes levels" in 
the order L, L - 1, . . . ,  1 (recall that L is the highest level). More precisely, suppose 
levels L . . . . .  i + 1 have already been executed, and level i contains u unexecuted 
nodes. Then level i is executed in the next [u/2] time units, as follows. The first 
[u/2J units each execute two nodes of  i. If  u is even, this completes the execution of  
level i. Otherwise, u is odd, and the [u/2]nd umt executes the last node x of i and 

' a(n) ts an inverse of Ackermann's funcuon and is very slow-growing [18] 
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FIG 1 (a) Example dag (b) Schedule 

possibly (but not necessarily) a node y of  a lower level. This completes the execution 
of  level i. Figure lb shows a level schedule. 

It is convement  to introduce some auxiliary terms for level schedules. I f  for a level 
i the above quantity u is odd, then i is a l-level. In this case (x, y), the ordered pair 
formed from the two nodes executed m the last time unit for i, is a jump. (Note that 
level(x) = i and level(y) < i.) We say the jump goes from x to y. (Alternatively, the 
j ump  goes from level(x) to level(y), or level(x)jumps y.) Note that since there can be 
jumps to level i, the number  u can be less than the number  of  nodes originally on 
level i. 

In case i is a l-level and the node y does not exist (i.e., the [u/2]nd time unit 
executes only a node x on level t), then y is taken to be a dummy node 0. So (x, 0) 
is the j ump  from i. Node 0 is on a fictitious level 0. As such, it is below all other 
nodes. By convention a level schedule can make an arbitrary number  of  jumps to 
node 0. 

An opt imum schedule that is level always exists. This is a consequence of  the fact 
that the C o f f m a n - G r a h a m  algorithm produces such a schedule [4]. Alternatively, 
one can prove this directly by transforming an arbitrary opt imum schedule to be 
level. For example, suppose in some opt imum schedule, for t = 1, 2, x, is scheduled 
with y~, where x~ is a node on the highest level L but y~ is not. Then xl and x2 can be 
scheduled together, yl and y2, and other nodes, can each be scheduled with a successor 
of  x~ or xz. The basic principle is that if level(x) > level(y) andx  -~ y, then x has a 
successor z on level(y), z # y; z and y can be scheduled together. Proceeding this 
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way, we get an optimum schedule that begins by executing xl and x~. Repeating this 
transformation gives an optimum, level schedule. Details of  this proof are in [6]. 

Loosely speaking, we wish to define an HLF schedule as a level schedule that 
always jumps to the highest level possible. This seems like a desirable characteristic, 
since it is consistent with the critical path heuristic, that is, always execute nodes on 
the longest path of the dag. This heuristic guarantees an optimum schedule when 
there are m processors and the dag is a tree [11]. 

To give a rigorous definition of  HLF, first consider an arbitrary level schedule. Let 
the l-levels bef~ > f2  > . - .  >fk ,  and let levelf~ jump to level t~ (recall that t, = 0 if 
no real node is jumped fromfi). The jump sequence of the schedule is the ordered k- 
tuple (tl, t2 . . . . .  tk). The jump sequence for Figure 1 is (6, 3, 3, 2, 1). Note that the 
levels f ,  can be deduced from the jump sequence and the dag (a l eve l f i s  a l-level if 
the number of  nodes on f ,  minus the number of occurrences of  f i n  the jump sequence, 
is odd.) Note also that the jump sequence determines ¢0. (The number of  O's in the 
jump sequence is the number of  idle time units.) 

Jump sequences are compared using lexicographic order. Thus (t~, . . . ,  tk) > 
(sl . . . .  , st) if for some j, 1 _< j _< min(k, r), t, = s~ for 1 _< i < j and tj > sj. (Note that 
lexicographic order allows the possibility that (t~ . . . . .  tk) > (Sl . . . .  , Sr) if  t, = S, for 
1 _< i --< r and k > r. However, this cannot occur with jump sequences: if t~ = s, for 
1 _< i _< r, then k = r and (tl . . . . .  tk) = ( S 1  . . . . .  Sr).) 

Now define a highest-level-first (HLF)  schedule as a level schedule whose jump 
sequence is as large as possible. Such a schedule always jumps to the highest level 
possible; when there is a choice of  nodes to jump on that level, it jumps the node that 
allows subsequent jumps to be highest. Figure 1 shows an HLF schedule. 

Any HLF schedule is optimum. This is proved in Section 3 in the analysis of  the 
algorithm. However, to motivate the algorithm, we indicate here why HLF schedules 
are optimum. 

First, this fact can be proved directly by transforming an arbitrary optimum level 
schedule to be HLF. This elaborates on the transformation, mentioned above, of  an 
optimum schedule to a level schedule. Details are in [6]. 

Second, we can make a simple plausibility argument. Suppose f is a l-level that 
can conceivably jump nodes yl . . . . .  yk. Then each y, can be jumped from any l-level 
g, f__ g > level(y,). I f f j umps  the highest y,, tt preserves the greatest number of  other 
nodes yj for lower l-levels g. For example, suppose f can jump yl and yz, where 
level(y1) > level(yz). Jumping y~ from f allows a level g, g > level(y2), to jump 
y2. On the other hand, jumping y2 f romfdes t roys  this option. Since a l-level g with 
level(y0 > g cannot jump y~, this choice may lead to a suboptimum schedule. Figure 
1 illustrates this: Level 7 can jump nodes 15 and 10. Jumping node 10, which is not 
the highest, forces levels 6 and 5 to have idle jumps, giving a suboptimum schedule. 

This reasoning also shows that when there is a choice of nodes to jump on the 
highest level, the choice should be made so subsequent jumps can be highest. In 
other words, the schedule should be HLF. 

Before moving on to the algorithm, note that our remarks on level and HLF 
schedules apply only to two-processor scheduling. For three or more processors there 
are dags that admit no optimum, level schedule. Consequently, it is not clear how the 
notion of  an HLF schedule can be generalized. We return to this issue in Section 4. 

3. The Algoruhm 

This section presents an algorithm that finds an optimum, HLF schedule in time 
O(e + na(n)). 
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We begin with some informal reasoning. The difficulty in constructing an HLF 
schedule arises when there is a choice of nodes to jump. For instance, in Figure 1, 
level 4 can jump a number of nodes on level 3: nodes 6, 7, 9, and 10. In general 
terms, suppose that the highest level to which some l-level f can jump is t. If  a 
number of  nodes on t can be jumped, which one should be chosen? The HLF 
definition implies that the choice should be made to allow subsequent jumps to be 
highest. So consider a subsequent jump, from a l-level g, g < f .  We first claim that, 
surprisingly, the choice of node f o r f h a s  no affect on the jump from g if g > t. 

To see this, suppose that level f can jump any of the nodes yl . . . . .  yk on level t; 
further, choosing yl makes some level s the highest level to which g can jump. 
If  s > t, it is clear that g can jump to s when any arbitrary y, is chosen. If  s = t, 
choosing y, instead of yl makes yl available, and again g can jump to s. Finally, 
suppose s < t. g cannot jump to any level above s, so g cannot jump to t. This implies 
that node y, must have been jumped from a level above g, for 1 _< i _< k. Clearly the 
levels above g will jump all nodes y,, regardless of the choice yl forf .  So in all cases 
the choice of node to jump f o r f h a s  no effect on g, for g > t. 

Thus the highest level affected by f ' s  jump to t is t itself. The HLF definition 
implies t ha t f shou ld  jump a node on t that allows t's jump to be as high as possible. 

To understand what this means, observe that the nodes on t (or on any level) are 
of two types: those that must be jumped, called "nonfree," and those that need not 
be jumped, called "free." In Figure 1, node 10 is nonfree; node 9 is free, since level 
4 can jump node 6 (or 7) instead of  9. (A rigorous definition of"f ree"  is given below.) 

The jump from level t can conceivably be made from any free node of t. So to 
ensure that the jump from t is as high as possible, there zs a simple choice rule: level 
f s h o u l d  not jump the free node on t that is in the highest jump from t. For example, 
in Figure 1, for f =  4, t = 3, node 6 should not be jumped: it can jump to (node 5 of) 
level 2, while the other free nodes of level 3 cannot jump to level 2. (Recall that node 
10 is nonfree.) This single rule guarantees an HLF schedule! 

Now we can describe a two-pass procedure that finds an HLF schedule. Pass I 
computes the jump from each l-level f ,  f o r f  = L, . . . ,  1: It finds the highest level t to 
which f can jump. If  level t has several nodes that can be jumped, it guesses one 
arbitrarily. The guesses may be incorrect (i.e., they may violate the above choice 
rule.) However, they allow Pass I to keep track of the nonfree and free nodes. Pass 
I always finds the best jump from a free node x of f .  Pass II alters the schedule so 
that free nodes x that were incorrectly jumped do not get jumped. 

This approach has a (very slight) drawback in terms of efficiency. The diffi- 
culty is in finding the highest level t to jump to. t changes arbitrarily with suc- 
cessive l-levels. The priority queues of [20] can be used to find t. This gives an 
O(e + n log log n) algorithm. This algorithm finds use in some related problems [7]. 

For greater efficiency the computation can be restructured. Pass I computes the 
jumps to level t, for t = L . . . . .  1: For each node y on level t, it finds the highest 
l - level f that  has not been assigned a jump but can jump to y. It guesses that f jumps 
toy.  As above, Pass I keeps track of  the nonfree and free nodes and always computes 
jumps from free nodes. Pass II fixes bad guesses. 

This second approach has the advantage of a simpler "highest level" computation. 
The first approach computes the highest level t to jump to; a given t may be highest 
at various, arbitrary times. The second approach computes the highest l-level f to 
jump from; a g ivenf i s  highest only once. (After its jump has been found, l eve l f i s  
no longer a candidate.) This allows the use of set merging techniques, giving an 
O(e + na(n)) algorithm. 
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It remains to give some details about how Pass I computes free nodes and how 
Pass II fixes bad guesses. In Pass I, consider a level t. Let the l-levels that jump to t 
befi  >f2  > " . .  >f~. Choose r maximum, 0 __ r _< k, so that the set of  nodes on level 
t that are jumped fromfi ,  . . .  ,f~ cannot change (i.e., although it may be possible to 
vary the node jumped from a particular f ,  i _< r, the levels fl ,  . . . ,  f r  must jump a 
fixed set of r nodes on level t.) If  r < k, then it is not hard to see that there is a choice 
of node to jump for each fi, i > r. More precisely, the nodes on t jumped from 
f~+~ . . . .  ,fk are chosen from a set of more than k - r nodes; furthermore, any node in 
that set need not be jumped. Thus the nodes jumped fromf~ . . . . .  f~ are the nonfree 
nodes of level t, and the remaining nodes are free. 

Pass I computes the nonfree nodes by finding the levels f i  . . . . .  f~. Note that the 
jumps that Pass I guesses for these levels do not change in Pass II. Pass I guesses the 
jumps for levelsfr+~ . . . . .  fk in a way that makes it particularly easy for Pass II to f ~  
bad guesses: it chooses a node z on level t that can be jumped fromfr+l and guesses 
jumps so z is not jumped. (This can be done by the definition off~.) Note that any 
level f ,  r < i _ k, can jump z. Now suppose it turns out that Pass I makes a bad 
guess. In other words, the best jump from t is (x, y), and Pass I guesses that some 
level f ,  r < i __ k, jumps node x. Pass II fixes this by rerouting the jump f r o m f  so it 
goes to z instead of to x. 

Node z is called a "substitute node." For each level, Pass I computes the free and 
nonfree nodes and a substitute node. Pass II fixes the bad guesses of Pass I by 
changing jumps to go to substitute nodes. These changes may in turn cause further 
substitutions in Pass II. 

Now we give a detailed description of the algorithm, beginning with the data 
structures. The schedule is specified in arrays FROM and TO. For L > f >_ 1, 
(FROM(f) ,  TO(f))  is the jump from leve l f  (So F R O M ( f )  and TO(f )  are nodes, 
with level (FROM(f))  =f, level (TO(f))  < f )  There are two special cases: if TO(f )  
= - l , f i s  not a l-level, and there is no jump from)q, if TO(f )  = 0, node F R O M ( f )  
is scheduled with an idle processor. Clearly these arrays give enough information to 
deduce the entire schedule (in linear time), if desired. 

The FROM and TO arrays can be used to store both the jumps that Pass I guesses 
and the final jumps that Pass II computes. In an actual implementation this should 
be done. However, in the proof of correctness it is desirable to distinguish between 
guesses and final values. For this reason an array T is used to hold guessed TO- 
values. Pass I guesses the to nodes of jumps and stores them in T. Pass II copies T to 
TO, and then modifies TO to the final jumps. 

Pass I partitions the levels of the dag into sets, as follows. A levelf is  called "open" 
if its jump has not been found. More precisely, when level t is being processed, level 

f i s  open if f _  t or if f >  t and the jumps t o f m a k e  it a l-level but T(f)  = 0 (Pass I 
initializes T-values to 0). Each open level fhas  a set of levels, 

LSET(f)  = (g[ L - g _ > f a n d f i s  the highest open level with g _ f ) .  

LSETs are manipulated by the operations FIND(g) (which returns the open l eve l f  
with g ~ LSET(f) )  and UNION(f ,  g) (which does a destructive merge of LSET(f )  
into LSET(g)) [2]. 

In processing level t, Pass I finds when each nodey  on level t is ready to be jumped; 
that is, it computes 

R(y) = the highest open level that can jump toy. 
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It also finds which nodes may be jumped from a given open level f ;  that is, it 
computes the list 

RLIST(f )  = {y]y is on level t and R(y) = f ) .  

(These interpretations for R and RLIST are valid immediately before line 6 of  the 
algorithm.) 

Pass I computes the substitute node on level t, SUB(t). SUB(t) is not jumped in 
Pass I but is ready as early as possible (i.e., R(SUB(t)) is as large as possible). Any 
level f _  < R(SUB(t)) can jump SUB(t) instead of T(f). So Pass II can use SUB(t) to 
ensure that FROM(t)  is not jumped, thus fixing bad guesses. This motivates the 
following definition. 

Definition 1. A node y on level t is free i f y  = T(f)  implies that f_< R(SUB(t)), 
that is, either y is not jumped in Pass I, or y is jumped from R(SUB(t)) or below. 

This definition is consistent with the earlier intuitive description of "free." 
Note the special case in which SUB(t) = 0. Since the algorithm sets R(0) = 0, the 

only free nodes on such a level t are those that are not jumped. Also note that, at 
least intuitively, any level has free nodes, because not every node of a level can be 
jumped• 

The algorithm works as follows. Pass I processes levels t in decreasing order, t = 
L . . . . .  1. For each t, R and RLIST values are computed (lines 2-5). Then RLISTS 
are used to guess jumps, that is, T-values (lines 6-9). The node with highest R-value 
that need not be jumped does not get jumped; instead it is made SUB(t) (line 10). 
The method for finding SUB(t) rehes on merging RLISTs so nodes with higher R- 
values are at the end (hue 9). 

Pass II processes levels f in increasing order, f = 1 . . . . .  L. For each f ,  a correct 
node F R O M ( f )  is found. If  F R O M ( f )  happens to be jumped by Pass I, the jump is 
switched to go to SUB(f)  instead of FROM(f) .  

Now we give the algorithm in pseudo-ALGOL. 

procedure H, comment  this  p rocedure  f inds the j u m p s  of  an  H L F  schedule  for a g iven  dag, 

begin 
Imttahzatton: 

0. p a r t m o n  the nodes  of  the dag  into levels  L, , l,  set SUB( t )  = 0, T(t) = 0, LSET( t )  = {t}, 
R L I S T ( t )  = O, for L _> t >_ l;  set LSET(0)  = {0}, R(0) = 0, 

Pass I: 
1 for t ~ L to 1 by - 1 do begin 
2 for each  node  y on level  t do begin 
3 r <-- m m { L  + 1 , / l a n  i m m e d i a t e  predecessor  x o f y  is "executed  at  l e v e l / , "  that  is, x = 

T(I) or x is on level  l and  is not  a T-value},  

4 if r <_ L, T(r) = 0, and some free node  on  level  r does not  immed ia t e ly  precede y 
comment the test for "free"  is m D e f i n m o n  1, 

then  R( y) ..-- r 
else  R(y)  <--- F I N D ( r  - 1), 

5 add  y to RLIST(R(y ) ) ,  
end, 

6 while R L I S T ( f )  # ~ for some f >  t do begin 
7 remove  the first node  y f rom R L I S T ( f ) ,  T ( f )  ~-y ,  
8 g ~ F I N D ( f -  1), U N I O N ( f ,  g), 
9 add  R L I S T ( f )  to the end of  RLIST(g ) ,  comment now R L I S T ( f )  = O, 

end, 
I0 z <-- the las t  node  of  RLIST( t ) ,  R L I S T ( t  ) <-- 0 ,  

if R(z) > t then  SUB( t )  <-- z, 

I 1 if  level  t is no t  a l - leve l  (1 e ,  the n u m b e r  of  nodes  tha t  are  not  T-values  is even)  then  begin 
T(t) ~ - 1 ,  U N I O N ( t ,  t - 1) end, 

end Pass 1, 
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Pass II 
let TO(g)  = T(g) for 1 ~ g _< L comment TO and T can be the same array, 

12 for f * - -  1 to L do begin 
13. if T O ( f )  _> 0 then begin 
14 let F R O M ( f )  be a free node on l e v e l f  that does not immediately precede T O ( f )  tf 

T O ( f )  > 0, 
15. if F R O M ( f )  = TO(g)  for some g then TO(g)  *-- SUB(f ) ,  

end end end H 

Figure 2 gives the values calculated by the algorithm for Figure 1. In Figure 2a, 
substitute nodes have asterisks, that is, y* means y = SUB(level(y)), and nonfree 
nodes are parenthesized, (y).  The jumps of Figure 2b correspond to the schedule of 
Figure I. 

Now we prove that the algorithm is correct. Let the H schedule be the one 
computed by the algorithm, that is, the level schedule with jumps (FROM(f) ,  
TO(f)) ,  L _> f_> I. The proof is orgamzed as follows. Lemmas 1-4 give the basic 
properties of Pass I. Lemma 5 shows how Pass II modifies jumps to get the H 
schedule. Corollaries 1-4 give properties of the H schedule that are analogous to 
Lemmas 1-4. These properties include the facts that H is a valid schedule (Corollary 
3) and H has an HLF-like property (Corollary 4). The latter is used to prove that H 
is optimum (Lemmas 6-8). (Note that Lemma l0 actually shows that H is an HLF 
schedule.) 

The proof assumes in its organization that the algorithm runs to the end of Pass II. 
Inspection reveals two places where the algorithm could conceivably halt prema- 
turely: in line 10, node z might not exist if RLIST(t) is empty; in line 14, a node 
F R O M ( f )  with the desired properties might not exist. We assume at the outset of 
the proof that in both cases if a node does not exist, the algorithm skips to the next 
line and continues execution. We will see that actually the nodes always exist: 
Corollary 2 shows that F R O M ( f )  exists, and a remark following Corollary 3 shows 
that z exists. 

The proof treats 0 as a dummy node on a fictitious level 0. Thus a level l with 
TO(l) = 0 jumps to node 0. Similarly an assertion like "level(TO(l)) > f "  means 
TO(l) is a real node, above l eve l f  

To start, note that the LSETs are maintained (by lines 0, 8, and I l) in accordance 
with their definition above. 
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The first property of  Pass I says that if  a level f jumps  a free node of  a level t, then 
no subsequent j ump  from above t goes below t. 

LEMMA 1. Let f be a l-level where T ( f )  is free; let I be a 1-level where f >_ l > 
levei(T(f)). Then level(T(l)) >_ level(T(f)); i f  equality holds, then node T(l) is free. 

PROOF. In Pass I, let y be a node that is in RLIST(t)  in line 10. It  is easy to see 
that after the loop of  lines 6-9, no level I with R(y)  >_ l > t is open. 

Now consider Pass I when t -- level(T(f)) .  The hypotheses of  the lemma imply 
that R(SUB(t)) - > f - >  l > t. So the above remark shows that l is not open after t is 
processed. This means that level(T(/)) ~ level(T(f)) ,  as desired. Further, if  equality 
holds, then T(l) is a node on level t, and R(SUB(t)) _> l shows that T(l) is free. []  

The next l emma will be used to show that F R O M  nodes exist. 

LEMMA 2. Let y be a node with R(y )  >_ f for  some l-level f . Then f contains a 
free node x, x --~ y. 

PROOV. Let r be the value computed in line 3 for y. So r >_ R(y)  >_ f .  I f  r = f ,  
then R(y)  = r, and the Lemma  holds by line 4. Otherwise r > f .  Since f is a l-level, 
it contains a node x that is not a T-value. x is clearly free; x--~, y, since r > f i  []  

The next l emma will be used to show that H respects precedence. It says that Pass 
I executes any immediate predecessor of  a node y at level R(y)  or earlier. 

LEMMA 3. I f  X ~ y, then either level(x) >_ R(y)  or x = T ( f )  for  some level 
f > R(y).  

PROOF. Line 3 sets r so that any immediate predecessor x o f y  is executed at level 
r or earlier, that is, level(x) _ r or x -- T ( f )  for some f _ r. Further, r >_ R(y).  So the 
l emma holds unless f = r = R(y)  and x = T(r). But this cannot be, since line 4 shows 
that r -- R(y)  implies that T(r) is not a predecessor o fy .  [] 

The next l emma essentially shows the H L F  property for Pass I. To motivate its 
statement, let l be a l-level, and let z -- T(l). The H L F  property implies that any 
node y above level(z) cannot be jumped  from l. Thus if level(y) > level(z) and y is 
scheduled after l, then all free nodes of  I precede y. This is Lemma  4(a). Lemma 4(b) 
shows the related fact, that all nonfree nodes must indeed be jumped,  or, equivalently, 
that a free node cannot be substituted for a nonfree node. 

LEMMA 4. Let l be a 1-level. Let y be a node executed after l by Pass I, that is, 
l > level(y) andy  ~ T ( f ) f o r  any f >_ I. Let z = T(I), and suppose that either 

(a) level(y) > level(z), or 
(b) level(y) -- level(z) and y is free but z is not. 

Then all free nodes of  l precede y. 

PROOF. First note that without loss of  generality, y has no predecessors executed 
after 1. For  let x be such a predecessor. It is easy to see that x satisfies the hypotheses 
of  the lemma (in particular, alternative (a)), and the conclusion for x gives the 
conclusion for y. 

So all predecessors o f y  are executed before or at level l. This implies line 3 for y 
sets r >_ l. Now it suffices to show that 1 > R(y).  For  alternatives (a) and (b) both 
imply that level l is open when R(y)  is computed. To get l > R(y),  line 4 must set 
R(y)  = F I N D ( r  - 1). Thus l > F I N D ( r  - 1), whence r = l. And since the else branch 
of  line 4 is taken (and T(r) = T(/) = 0), all free nodes on level l precede y. This is the 
lemma's  conclusion. 
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We show l > R(y) by contradiction. Recall that y ~ T( f )  for f _ L So lines 5-9 
with R(y) >_ I show that I is assigned a jump. Thus level(y) = level(z) and alternative 
(b) holds. I f y  is free, then R(SUB(0) >- R(y), by lines 5-10. Thus R(SUB(t)) >_/, 
whence z is free. But this contradicts (b). [] 

Now we examine how Pass II computes TO-values. 

LEMMA 5. For any l-level g, TO(g) is either T(g) or SUB(level(T(g))). In the 
latter case, T(g) is free. In both cases, R(TO(g)) >_ g. 

PROOF. At the start of Pass II any value TO(g) is T(g). Line 15 may change 
TO(g) from T(g) to SUB(f) ,  where f = level(T(g)). This is done only if  T(g) is free 
(by line 14). Further, TO(g) is not changed again, since the new value is still on 
level (T(g)). 

It remains only to show that R(TO(g)) _> g. Lines 5-9 show that R(T(g)) >- g. And 
if T(g) is free, Defmition 1 shows that R(SUB(level(T(g))) >_ g. [] 

COROLLARY 1. For any 1-level g, level(T(g)) = level(TO(g)). T(g) is free iff 
TO(g) is free. I f  T(g) is nonfree, T(g) = TO(g). 

Now we can show that the H schedule is well defined, that is, the FROM and TO 
arrays specify the jumps of a level schedule. This means first that the FROM nodes, 
calculated in line 14, actually exist. Second, no FROM node is itself jumped. 

COROLLARY 2. For any 1-level f ,  node FROM(f)  exists and is not jumped (i.e., 
FROM(f)  ~ TO(g)for any g). 

PROOF. When lines 13-15 are executed for level f ,  T O ( f )  has its final value. By 
Lemma 5, R(TO(f))  _ f .  So in line 14 node F R O M ( f )  exists, by Lemma 2. Line 15 
ensures that F R O M ( f )  is not jumped. [] 

The next result shows that the H schedule is a valid schedule, that is, it respects the 
precedence constraints. 

COROLLARY 3. I f  x "--> y, then the H schedule executes node x before node y. 

PROOF. Since H is a level schedule, the conclusion is obvious i f y  is not jumped. 
So suppose y = T O ( f )  for some l-level f .  

Lemma 5 shows that R(y) >_ f .  So from Lemma 3, either level(x) _ f or x -- T(g) 
for some level g > f .  

First suppose that level(x) >__ f .  Then x is executed beforey, unless x = FROM(f ) .  
But the latter is impossible by line 14. 

So suppose that level (x) < f and x = T(g) for g > f .  It suffices to show that 
x = TO(g), since level g jumps before f .  To do this, assume the contrary. Thus 
T(g) # TO(g). So T(g) is free (Corollary 1). Now Lemma l applied to g shows 
level(T(f)) _> level (T(g)). In other words, level(y) _> level(x). But this contradicts 
x---~y. [] 

Corollary 3 shows that H is a valid level schedule. One consequence of  this fact is 
that in line 10, node z always exists, that is, RLIST(t) is not empty. For if  RLIST(0 
is empty, all nodes of t are jumped in Pass I. This implies that all nodes of  t are 
jumped in the H schedule. But this is impossible, since in a level schedule, any level 
t has a node that is not jumped. (The last node above t to be executed precedes a 
node on t that is not jumped.) 

Finally we show a version of the HLF property for H. This version, analogous to 
Lemma 4, is not the HLF property itself. Rather it is tailored to prove that the H 
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schedule is optimum. We return to this point below in Lemma 10, which shows that 
this version actually implies the HLF property. 

COROLLARY 4. Let l be a l-level. Let y be a node executed after level I in the H 
schedule. Let z = TO(l) be the node jumped by l, where either 

(a) level(y) > level(z), or 
(b) level(y) = level(z) and y is free but z is not. 

Then all free nodes o f  l precede y. 

PROOF. It suffices to show that the hypotheses of Lemma 4 hold for y, since 
Lemma 4 has the desired conclusion. 

We first show that y is executed after l by Pass I. Since this holds for the H 
schedule, l > level(y) and y ~ TO( f )  for f _> I. So it suffices to show y ~ T ( f )  
for any f _ L Suppose on the contrary that y = T( f ) .  This means Pass II changes 
TO(f ) .  So y is free. Lemma l (and Corollary l) show that level(z) >_ level(y). So 
alternative (b) holds. Now Lemma 1 (and Corollary 1) show that z is free. But this 
contradicts (b). 

It remains to show that alternatives (a) or (b) of Lemma 4 hold. Each is implied by 
its counterpart in Corollary 4, by Corollary 1. [] 

The next two lemmas show that the H schedule has the same structure that 
guarantees optimality as the Coffman-Graham algorithm [4]: The H schedule 
partitions into "blocks." Any schedule executes blocks in the same order as H. 
Further, H is optimum on individual blocks. This implies that H is optimum. 

The blocks Xt are defined by boundary levels It: 

Definition 2. The levels It, 1 _< i _< B + 1, are defined as follows: l~ = 1. For 
i > !, It is the lowest l-level such that It > lt-i and either 

(a) It jumps below l~-l, that is, level(TO(l,)) < / t - l ,  or 
(b) It jumps to a nonfree node on It-i, that is, level(TO(/z)) = lt-~ and 

R(SUB(lt_I))  < It. 

Let In be the last value defined using the above criteria, and set IB+a = L + 1. 
For 1 <_ i <_ B, block Xt consists of all nodes scheduled after level l,+l, up to and 

including It, except for the node jumped from l,. Equivalently, X, = {xll,+l > level(x) 
_> l, and x is not jumped from lt+~ or above}. 

Note that any level I with an idle jump (TO(I) = 0) is a boundary level lt. (This 
follows from the convention that 0 is a dummy node on level 0.) Also, any node is in 
exactly one block, except for a node jumped from a boundary level (which is in no 
block). Figure 3 shows the blocks for the schedule of  Figure 1. The nodes of  each 
block are enclosed in heavy lines. 

The next two lemmas show that any schedule processes blocks in order. 

LEMMA 6. For a block Xt, 1 < i <_ B, any node x ~ X, on level l, precedes all nodes 
of  X,-1, that is, x -~ Xt-1. 
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PROOf. First note that for any block X,, 1 _< i _< B, any node x ~ X, on level I, is 
free. For suppose on the contrary that x is nonfree. So x ts jumped  from some l-level 
1. Since x is on level l,, Defimtion 2 implies that I _ l,+a. But then x ~ X,  a 
contradiction. 

To show the lemma, take any x ~ X, on level 1, and any y E X,-a. x is free by the 
above remark; similarly, i f y  is on I,-a, it too is free. This shows that the hypotheses 
of Corollary 4 are satisfied for level l, and node y. Thus x - ~  y. []  

LEMMA 7. For a block X,, 1 < i <_ B, X, --% X,-1. 

PROOF. Consider any node x E X,. By Lemma 6 it suffices to show that x has a 
successor z on level l, with z E X~. 

By Definition 2, level(x) __. l,. Clearly we can assume that level(x) > l,. So x has a 
successor z on level 1,. z must be executed after x, whence after level l,+1. So z ~ X,, 
as desired. [] 

Now we prove that H has minimum length. 

LEMMA 8. The H schedule is optimum. 

PROOf. Let ,,(X,) (respectively o:*(X3) denote the number  of  time units in the H 
schedule (opt imum schedule) in which some node of  block X, is executed. First note 
that 

B B 

y~ ,o*(x,)_> ~ ,o(x,). (l) 
z = l  , = a  

This is true because in H, every time unit counted in ~o(X,), except the last, executes 
two nodes of  X,. (Note that any l-level l of  a block X,, l > l,, jumps a node of  X~.) The 
last time unit executes at least one node of  X,. (It can execute two nodes of  X, if  
i = 1.) So X, has at least 2~0(X,) - l nodes. This implies that ~0*(X,) > ~0(X,). Inequality 
(1) follows. 

Now observe that the length of the opt imum schedule is at least the left-hand side 
of (1). (Lemma 7 implies that any time unit is counted in at most one term ~0*(X,).) 
The length of  the H schedule is the right-hand side of  (1), by Definition 2. So (1) 
implies that H is optimum. [] 

We turn our attention to the efficiency of the algorithm. We will show that the set 
merging operations use time O(mx(n)), while the remainder of  the algorithm is 
O(e + n). 

First we describe some additional data structures. The dag is stored in an adjacency 
structure: each node has a list of  its immediate predecessors. Level information is 
stored in two ways. An array LEVEL gives the level of  each node, that is, node x is 
on LEVEL(x). Also, each level has a list of the nodes on that level. This data 
structure for level information is constructed in line 0 when levels are found, in O(n) 
addiuonal time. 

Another array T '  indicates when each node is jumped in Pass I. More precisely, 
for each node x, T'(x)  = l iff x = T(1); if x is not a T-value, T'(x)  = - 1 .  T'  is 
initialized to - 1 in line 0, and values are assigned to T'  when T Is assigned, in line 
7. Clearly the total time spent computing T'  is O(n). Note that T '  allows us to check 
if a given node x is free in time O(1), since x is free iff T'(x)  <_ R(SUB(LEVEL(x))).  

With these data structures it is easy to see that hnes 0-3 and 11-15 are O(e + n), 
because O(1) time is spent on each edge, node, or level. Line 0 finds the levels o f  the 
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dag by using predecessor lists in a modified topological sort [13]. Line 2 loops through 
the nodes y on level t using the list of nodes on level t. Line 3 calculates r using the 
T' and LEVEL arrays. Line 11 checks if t is a l-level using the list of  nodes on level 
t and T'. Line 14 finds node F R O M ( f )  by flagging the immediate predecessors of 
T O ( f )  that are on level f and finding a free, unflagged node on the list of  nodes on 
level f .  Finally, for line 15, note that F R O M ( f )  -- TO(g) iff F R O M ( f )  - T(g). So 
line 15 uses T' to find level g. 

Now we discuss the remaining lines, 4-10. The only nontrivial part of line 4 is the 
test that some free node on level r does not immediately precede y. To do this, the 
algorithm stores, for each level r, a count of  the free nodes on r. This count is 
computed after level r is processed (line 11); a total of O(n) time for all levels is used 
for this computation. Line 4 computes the number of free immediate predecessors of 
y on level r. This number is less than the count for r iff the test has an affirmative 
answer. So the total time spent in the test in line 4 is O(e + n). 

For lines 5-10, the following data structure is used for RLISTs. For each level f ,  
RLIST( f )  is a singly linked list with pointers to the first and last elements. There is 
also a linked list of levels f that have RLIST( f )  nonempty. With this data structure, 
each operation involving RLISTs in lines 5-10 is O(1). (This includes finding level 
f i n  line 6.) Further, observe that line 5 is executed once for each nodey;  lines 7-9 are 
executed at most once for each level f (a value T ( f )  is assigned only once); line 10 
is executed once for each level t. So the total time in lines 5-10 is O(n). 

LEMMA 9. Algorithm H uses time O(e + na(n)) and space O(e + n). 

PROOF. The above discussion shows that aside from the set merging operations 
UNION and FIND, the algorithm uses time O(e + n). Line 4 does at most one 
FIND for each node y, and line 8 does at most one FIND for each level f .  So there 
are at most 2n FINDs. Lines 8 and 11 do at most one UNION for each level, so there 
are at most n UNIONs. Hence the total time for set merging operations is O(na(n)) 
[18]. The time bound follows. 

For the space bound, note that all data structures use O(1) space for each node, 
edge, or level. [] 

We summarize Lemmas 8 and 9 in our first main result. 

THEOREM 1. Algorithm H finds an optimum schedule in time O(e + na(n)) and 
space O(e + n). 

We conclude the analysis by showing that the HLF property guarantees optimality. 
This justifies the intuitive discussion of Section 2. The main step is to prove that 
algorithm H finds an HLF schedule. 

LEMMA 10. The H schedule is an H L F  schedule. 

PROOF. Let the H schedule have jump sequence (tl . . . . .  tk). Let S be an arbitrary 
level schedule with jump sequence (s~ . . . . .  s,). We wish to show that (tl . . . . .  t~) _.> 
(Sl . . . .  , s,), where >_ denotes lexicographic order. We do this by proving inductively 
that for all i, 1 ~ i ~ rain(k, r), 

( i )  (tl . . . .  , t , )  - -  (s~,  . . . ,  s , ) ;  
(ii) if  equality holds in (i), then in each of  the first i jumps of  H and S, H jumps a 

free node fff S does. 

Note that for any index i, if  inequality holds in (i), then the induction is completed 
trivially and the desired conclusion follows. On the other hand, if (i) holds with 
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equality for i -- min(k, r), then it is easy to see that k = r, (tl . . . . .  tk) = (Sl . . . . .  Sr), 
and again the desired conclusion follows. 

So assume that (i) and (ii) hold for indices strictly less than t. We prove (i) and (ii) 
for i as follows. As mentioned above, we can assume that (tl . . . . .  t,-1) = (81 . . . . .  St--l) 
if  i > 1. This imples that the ith l-level is the same in both schedules, call it/ .  Let the 
jump from l be from node x in schedule S and to node z m schedule H. (Thus z -- 
TO(l) and level(z) = t,.) We will show that (i) and (ii) are both consequences of  
Corollary 4. 

First observe two properties that hold for both S and H: 

(1) All nonfree nodes of l are jumped from above l. 
(2) All nonfree nodes of level(z) are jumped from above l, if  z is free. 

(1) is obvious for H. (2) holds for H because of  Lemma 1 and Corollary 1. 
Furthermore, (1) and (2) for H imply their counterparts for S, because of  (ii). 

Next observe that node x is free. For x is not jumped in S, and so it is free by (1). 
To prove (i), we must show that in S , / j umps  to level(z) or below. Equivalently, if 

g is a level with l > g > level(z), S does not jump to g. To see this, suppose H 
executes b nodes of  g before l, and a nodes of  g after I. (Of course H does not execute 
any nodes of g at level l). S executes b nodes of  g before l, since (i) holds with 
equality. Further, i f y  is a node on level g that H executes after/ ,  then by Corollary 
4(a), x precedes y. (Recall that x is a free node of  l.) So S executes y after I. Thus 
S executes a nodes of  g after I. No nodes of  g remain for S to jump from I. This 
proves (0. 

For (ii) we must show that z is free iff S jumps a free node of  level(z). If  z is free, 
(2) implies that S can only jump a free node of level(z), as desired. 

On the other hand suppose z is nonfree. Let y be a free node of  level(z). H executes 
y after l (by Lemma 1 and Corollary 1). So x precedes y by Corollary 4(b). Thus S 
can only jump a nonfree node of  level(z), as desired. [] 

This completes the formal justification for the HLF definition: 

THEOREM 2. Any HLF  schedule is optimum. 

PROOF. Any HLF schedule has the same jump sequence as H. Thus it has the 
same length as H. So Lemma 10 imphes the Theorem. [] 

4. Conclusions 

We have shown that for two-processor systems, HLF schedules are optimum and 
can be constructed efficiently. It is natural to ask how these schedules fare on various 
extensions of  the model. 

For example, consider the case of  m > 2 processors. If  the dag is a tree, Hu's 
algorithm [11] finds an optimum schedule for arbitrary m; further, the schedule is 
HLF. Unfortunately, this is not true in general: for any m > 2 there are dags that 
admit no optimum, level schedule. In fact, there are dags where any level schedule 
is a factor 2 - 2/m greater than optimum [14]. Among level schedules, however, the 
HLF strategy is best: 2 - 2/m is an upper bound on the accuracy, and the time to 
find an HLF schedule is almost linear. 

Other extensions of  the basic model include tasks with arbitrary integer lengths, 
uniform processors (i.e., processors whose speeds differ by a constant factor), and 
scheduling with resources other than processors. In each case the results are similar: 
the HLF strategy achieves the best possible accuracy bound for a level schedule, and 
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the time is O(e + ha(n)) or O(e + n log log n). These results are presented in detail 
in [7]. These problems and others illustrate the usefulness of  the highest-level-first 
scheduling method. 
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