
An Almost-Linear Algorithm for Two-Processor Scheduling

HAROLD N. G A B O W

Umverstty of Colorado at Boulder, Boulder, Colorado

Abstract. A well-known problem m scheduling theory is to execute n umt-lengthjobs subject to precedence
constraints on two processors m mmunum fimsh time Previous algorithms begin by finding the transmve
closure of the precedence dag and so use time O(mm(en, n261)). An O(e + ha(n)) algorithm is presented
which Is based on the idea of a "highest-level-first" (HLF) schedule Such a schedule always executes
nodes on the longest paths of the precedence dag An HLF schedule is guaranteed to be optimum and can
be constructed efficiently

Categories and Subject Descriptors: D.4 1 [Operating Systems] Process Management--Scheduhng; F 2.2
[Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and Problems--computauons
on dzscrete structures, sequencing and scheduhng, G 2 2 [Discrete Mathematics] Graph Theory--graph
algortthms

General Terms. Algorithms, Theory

Addmonal Key Words and Phrases Precedence constraints, cnUcal path scheduling, highest-level-first
scheduling, directed acychc graphs

1. Introduction

A classic p r o b l e m in schedul ing theory is to f ind a m i n i m u m makespan , n o n p r e e m p -
tive schedule for a col lect ion o f un i t - l eng th j o b s subject to p recedence const ra ints
[3]. In o ther words, we are given n j o b s to be executed on m processors. Each j o b
requires exact ly one unit o f execut ion t ime a n d can run on any processor. A d i rec ted
acycl ic g raph (dag) specifies the precedence constraints : an edge f rom x to y means
j o b x mus t be comple t ed before j o b y begins. A schedule wi th the smal les t overa l l
f inish t ime is sought. (In a more succinct nota t ion, this p rob l e m is P/prec,
p: = l/Cmax [101.)

W h e n the n u m b e r o f processors m is a rb i t ra ry , this p rob l e m is N P - c o m p l e t e
[19]. F o r any f ixed m >_ 3, the complex i ty is open [9]. Here we s tudy the t rac tab le
case m = 2.

F o r two processors a n u m b e r o f eff icient a lgor i thms have been gwen. A c o m m o n
aspect o f these a lgor i thms is that they requi re the dag to be t rans i t ive ly closed (or, in
one case, t rans i t ive ly reduced) . Otherwise the dag must be pu t in to t rans i t ive ly closed
fo rm (or t rans i t ive ly r educed form). The best k n o w n a lgor i thms for this use t ime
O(min(en, n 2 61)), where e is the n u m b e r o f edges o f the dag. (The t ransi t ive c losure

can be c o m p u t e d in t ime O(en) by n depth- f i r s t searches. Al te rna t ive ly , it can be
reduced to ma t r ix mul t ip l i ca t ion [2], which is O(n 2 61) [16]. The t ransi t ive reduct ion

This research was supported in part by the NaUonal Science Foundation under Grant MCS 78-18909
Author's address. Department of Computer Science, Umverslty of Colorado, Boulder, CO 80309
Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the pubhcatlon
and Its date appear, and noUce is gwen that copying is by permission of the Assocmtlon for Computing
Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or specific permission
© 1982 ACM 0004-5411/82/0700-0766 $00.75

Journal of the Assocmtzon for Computing Machinery, VoI 29, No 3, July 1982, pp 766-780

Almost-Linear Algorithm for Two-Processor Scheduling 767

requires basically the same time [1].) As we see below, this first step of putting the
dag into a specialized form dominates the run time.

The two-processor algorithm of Fujii et al. [5] is based on matching techniques.
Excluding transitive closure time, it requires the time to find a maximum matching,
which in this case is O(n 25) [12, 15]. Coffman and Graham [4] give another algorithm
based on a lexicographic numbering scheme. It works on a transitively dosed or
transitively reduced dag. Sethi [17] shows that the lexicographic numbering can be
done in time O(e + ha(n)).' Garey and Johnson [8] give a third algorithm, which
allows individual job deadlines in addition to precedence constraints. It can be used
to solve our problem. The algorithm uses time O(n 2) to compute "modified dead-
lines." It works on a transitively closed dag.

Time bounds for these algorithms often assume that the transitive closure of the
dag (or transitive reduction) is given. In practice this is unlikely. On general dags the
transitive closure step dominates, and the algorithms use time O(min(en, n26~))
(O(n 2 61) for [5]).

We present an algorithm that does not use the transitive closure and runs in
time O(e + na(n)) on an arbitrary dag. It is based on the idea of a "highest-level-
first" (HLF) schedule. Such a schedule always executes nodes on the longest paths
of the dag. An HLF schedule is guaranteed to be optimum and can be constructed
efficiently.

Section 2 gives a precise definition of an HLF schedule. Section 3 gives the
algorithm and its analysis. Section 4 briefly discusses applications of the algorithm to
other scheduling problems.

2. H L F Schedules

This section gives some basic terminology and introduces the notion of HLF
schedules.

A scheduling problem is defined by a dag (directed acyclic graph). The number of
nodes and edges are denoted by n and e, respectively. If there is an edge from node
x to node y, then x is an immediate predecessor o f y and we write x ~ y; if there is a
directed path (of zero or more edges) from x to y, then x is apredecessor of y, y is a
successor of x, and we write x .,~ y. A dag can be partitioned into levels i, L >_ i >_ 1:
level i consists of all nodes x that start paths with i nodes but not paths with i + 1
nodes; we write level(x) = i. L denotes the highest level of the dag. Figure la gives an
example dag.

A (two-processor) schedule is an assignment of the nodes of the dag to time units,
1, 2 o~, so that each node is assigned to exactly one time unit, at most two nodes
are assigned to the same time unit, and x --~ y implies that x is assigned to a lower
time unit than y. The schedule executes (or schedules) node x during time unit i if x
is assigned to i. ~0 is thefinish rime or makespan of the schedule. An optimum schedule
minimizes o~. Such a schedule has the fewest possible number of idle time units, that
is, time units assigned only one node. Figure l b gives a schedule as a Gantt chart
(the ith column shows the nodes executed in time unit/).

We define HLF schedules in two steps. First, a level schedule "executes levels" in
the order L, L - 1, . . . , 1 (recall that L is the highest level). More precisely, suppose
levels L i + 1 have already been executed, and level i contains u unexecuted
nodes. Then level i is executed in the next [u/2] time units, as follows. The first
[u/2J units each execute two nodes of i. If u is even, this completes the execution of
level i. Otherwise, u is odd, and the [u/2]nd umt executes the last node x of i and

' a(n) ts an inverse of Ackermann's funcuon and is very slow-growing [18]

768 HAROLD N. GABOW

(a~ 16

5•
7

I 15
6

5 J

?

~lk9 I 0

\ I'
2 3

(b)
16 14 12 11 8 6 4 2

15 13 10 9 7 5 3 1

FIG 1 (a) Example dag (b) Schedule

possibly (but not necessarily) a node y of a lower level. This completes the execution
of level i. Figure lb shows a level schedule.

It is convement to introduce some auxiliary terms for level schedules. I f for a level
i the above quantity u is odd, then i is a l-level. In this case (x, y), the ordered pair
formed from the two nodes executed m the last time unit for i, is a jump. (Note that
level(x) = i and level(y) < i.) We say the jump goes from x to y. (Alternatively, the
j ump goes from level(x) to level(y), or level(x)jumps y.) Note that since there can be
jumps to level i, the number u can be less than the number of nodes originally on
level i.

In case i is a l-level and the node y does not exist (i.e., the [u/2]nd time unit
executes only a node x on level t), then y is taken to be a dummy node 0. So (x, 0)
is the j ump from i. Node 0 is on a fictitious level 0. As such, it is below all other
nodes. By convention a level schedule can make an arbitrary number of jumps to
node 0.

An opt imum schedule that is level always exists. This is a consequence of the fact
that the C o f f m a n - G r a h a m algorithm produces such a schedule [4]. Alternatively,
one can prove this directly by transforming an arbitrary opt imum schedule to be
level. For example, suppose in some opt imum schedule, for t = 1, 2, x, is scheduled
with y~, where x~ is a node on the highest level L but y~ is not. Then xl and x2 can be
scheduled together, yl and y2, and other nodes, can each be scheduled with a successor
of x~ or xz. The basic principle is that if level(x) > level(y) andx -~ y, then x has a
successor z on level(y), z # y; z and y can be scheduled together. Proceeding this

Almost-Linear A Igorithm for Two-Processor Scheduling 769

way, we get an optimum schedule that begins by executing xl and x~. Repeating this
transformation gives an optimum, level schedule. Details of this proof are in [6].

Loosely speaking, we wish to define an HLF schedule as a level schedule that
always jumps to the highest level possible. This seems like a desirable characteristic,
since it is consistent with the critical path heuristic, that is, always execute nodes on
the longest path of the dag. This heuristic guarantees an optimum schedule when
there are m processors and the dag is a tree [11].

To give a rigorous definition of HLF, first consider an arbitrary level schedule. Let
the l-levels bef~ > f2 > . - . >fk , and let levelf~ jump to level t~ (recall that t, = 0 if
no real node is jumped fromfi). The jump sequence of the schedule is the ordered k-
tuple (tl, t2 tk). The jump sequence for Figure 1 is (6, 3, 3, 2, 1). Note that the
levels f , can be deduced from the jump sequence and the dag (a l eve l f i s a l-level if
the number of nodes on f , minus the number of occurrences of f i n the jump sequence,
is odd.) Note also that the jump sequence determines ¢0. (The number of O's in the
jump sequence is the number of idle time units.)

Jump sequences are compared using lexicographic order. Thus (t~, . . . , tk) >
(sl , st) if for some j, 1 _< j _< min(k, r), t, = s~ for 1 _< i < j and tj > sj. (Note that
lexicographic order allows the possibility that (t~ tk) > (Sl , Sr) if t, = S, for
1 _< i --< r and k > r. However, this cannot occur with jump sequences: if t~ = s, for
1 _< i _< r, then k = r and (tl tk) = (S 1 Sr).)

Now define a highest-level-first (HLF) schedule as a level schedule whose jump
sequence is as large as possible. Such a schedule always jumps to the highest level
possible; when there is a choice of nodes to jump on that level, it jumps the node that
allows subsequent jumps to be highest. Figure 1 shows an HLF schedule.

Any HLF schedule is optimum. This is proved in Section 3 in the analysis of the
algorithm. However, to motivate the algorithm, we indicate here why HLF schedules
are optimum.

First, this fact can be proved directly by transforming an arbitrary optimum level
schedule to be HLF. This elaborates on the transformation, mentioned above, of an
optimum schedule to a level schedule. Details are in [6].

Second, we can make a simple plausibility argument. Suppose f is a l-level that
can conceivably jump nodes yl yk. Then each y, can be jumped from any l-level
g, f__ g > level(y,). I f f j umps the highest y,, tt preserves the greatest number of other
nodes yj for lower l-levels g. For example, suppose f can jump yl and yz, where
level(y1) > level(yz). Jumping y~ from f allows a level g, g > level(y2), to jump
y2. On the other hand, jumping y2 f romfdes t roys this option. Since a l-level g with
level(y0 > g cannot jump y~, this choice may lead to a suboptimum schedule. Figure
1 illustrates this: Level 7 can jump nodes 15 and 10. Jumping node 10, which is not
the highest, forces levels 6 and 5 to have idle jumps, giving a suboptimum schedule.

This reasoning also shows that when there is a choice of nodes to jump on the
highest level, the choice should be made so subsequent jumps can be highest. In
other words, the schedule should be HLF.

Before moving on to the algorithm, note that our remarks on level and HLF
schedules apply only to two-processor scheduling. For three or more processors there
are dags that admit no optimum, level schedule. Consequently, it is not clear how the
notion of an HLF schedule can be generalized. We return to this issue in Section 4.

3. The Algoruhm

This section presents an algorithm that finds an optimum, HLF schedule in time
O(e + na(n)).

770 H A R O L D N. G A B O W

We begin with some informal reasoning. The difficulty in constructing an HLF
schedule arises when there is a choice of nodes to jump. For instance, in Figure 1,
level 4 can jump a number of nodes on level 3: nodes 6, 7, 9, and 10. In general
terms, suppose that the highest level to which some l-level f can jump is t. If a
number of nodes on t can be jumped, which one should be chosen? The HLF
definition implies that the choice should be made to allow subsequent jumps to be
highest. So consider a subsequent jump, from a l-level g, g < f . We first claim that,
surprisingly, the choice of node f o r f h a s no affect on the jump from g if g > t.

To see this, suppose that level f can jump any of the nodes yl yk on level t;
further, choosing yl makes some level s the highest level to which g can jump.
If s > t, it is clear that g can jump to s when any arbitrary y, is chosen. If s = t,
choosing y, instead of yl makes yl available, and again g can jump to s. Finally,
suppose s < t. g cannot jump to any level above s, so g cannot jump to t. This implies
that node y, must have been jumped from a level above g, for 1 _< i _< k. Clearly the
levels above g will jump all nodes y,, regardless of the choice yl forf . So in all cases
the choice of node to jump f o r f h a s no effect on g, for g > t.

Thus the highest level affected by f ' s jump to t is t itself. The HLF definition
implies t ha t f shou ld jump a node on t that allows t's jump to be as high as possible.

To understand what this means, observe that the nodes on t (or on any level) are
of two types: those that must be jumped, called "nonfree," and those that need not
be jumped, called "free." In Figure 1, node 10 is nonfree; node 9 is free, since level
4 can jump node 6 (or 7) instead of 9. (A rigorous definition of"f ree" is given below.)

The jump from level t can conceivably be made from any free node of t. So to
ensure that the jump from t is as high as possible, there zs a simple choice rule: level
f s h o u l d not jump the free node on t that is in the highest jump from t. For example,
in Figure 1, for f = 4, t = 3, node 6 should not be jumped: it can jump to (node 5 of)
level 2, while the other free nodes of level 3 cannot jump to level 2. (Recall that node
10 is nonfree.) This single rule guarantees an HLF schedule!

Now we can describe a two-pass procedure that finds an HLF schedule. Pass I
computes the jump from each l-level f , f o r f = L, . . . , 1: It finds the highest level t to
which f can jump. If level t has several nodes that can be jumped, it guesses one
arbitrarily. The guesses may be incorrect (i.e., they may violate the above choice
rule.) However, they allow Pass I to keep track of the nonfree and free nodes. Pass
I always finds the best jump from a free node x of f . Pass II alters the schedule so
that free nodes x that were incorrectly jumped do not get jumped.

This approach has a (very slight) drawback in terms of efficiency. The diffi-
culty is in finding the highest level t to jump to. t changes arbitrarily with suc-
cessive l-levels. The priority queues of [20] can be used to find t. This gives an
O(e + n log log n) algorithm. This algorithm finds use in some related problems [7].

For greater efficiency the computation can be restructured. Pass I computes the
jumps to level t, for t = L 1: For each node y on level t, it finds the highest
l - level f that has not been assigned a jump but can jump to y. It guesses that f jumps
toy. As above, Pass I keeps track of the nonfree and free nodes and always computes
jumps from free nodes. Pass II fixes bad guesses.

This second approach has the advantage of a simpler "highest level" computation.
The first approach computes the highest level t to jump to; a given t may be highest
at various, arbitrary times. The second approach computes the highest l-level f to
jump from; a g ivenf i s highest only once. (After its jump has been found, l eve l f i s
no longer a candidate.) This allows the use of set merging techniques, giving an
O(e + na(n)) algorithm.

Almost-Linear Algorithm for Two-Processor Scheduling 771

It remains to give some details about how Pass I computes free nodes and how
Pass II fixes bad guesses. In Pass I, consider a level t. Let the l-levels that jump to t
befi >f2 > " . . >f~. Choose r maximum, 0 __ r _< k, so that the set of nodes on level
t that are jumped fromfi , . . . ,f~ cannot change (i.e., although it may be possible to
vary the node jumped from a particular f , i _< r, the levels fl , . . . , f r must jump a
fixed set of r nodes on level t.) If r < k, then it is not hard to see that there is a choice
of node to jump for each fi, i > r. More precisely, the nodes on t jumped from
f~+~ ,fk are chosen from a set of more than k - r nodes; furthermore, any node in
that set need not be jumped. Thus the nodes jumped fromf~ f~ are the nonfree
nodes of level t, and the remaining nodes are free.

Pass I computes the nonfree nodes by finding the levels f i f~. Note that the
jumps that Pass I guesses for these levels do not change in Pass II. Pass I guesses the
jumps for levelsfr+~ fk in a way that makes it particularly easy for Pass II to f ~
bad guesses: it chooses a node z on level t that can be jumped fromfr+l and guesses
jumps so z is not jumped. (This can be done by the definition off~.) Note that any
level f , r < i _ k, can jump z. Now suppose it turns out that Pass I makes a bad
guess. In other words, the best jump from t is (x, y), and Pass I guesses that some
level f , r < i __ k, jumps node x. Pass II fixes this by rerouting the jump f r o m f so it
goes to z instead of to x.

Node z is called a "substitute node." For each level, Pass I computes the free and
nonfree nodes and a substitute node. Pass II fixes the bad guesses of Pass I by
changing jumps to go to substitute nodes. These changes may in turn cause further
substitutions in Pass II.

Now we give a detailed description of the algorithm, beginning with the data
structures. The schedule is specified in arrays FROM and TO. For L > f >_ 1,
(FROM(f) , TO(f)) is the jump from leve l f (So F R O M (f) and TO(f) are nodes,
with level (FROM(f)) =f, level (TO(f)) < f) There are two special cases: if TO(f)
= - l , f i s not a l-level, and there is no jump from)q, if TO(f) = 0, node F R O M (f)
is scheduled with an idle processor. Clearly these arrays give enough information to
deduce the entire schedule (in linear time), if desired.

The FROM and TO arrays can be used to store both the jumps that Pass I guesses
and the final jumps that Pass II computes. In an actual implementation this should
be done. However, in the proof of correctness it is desirable to distinguish between
guesses and final values. For this reason an array T is used to hold guessed TO-
values. Pass I guesses the to nodes of jumps and stores them in T. Pass II copies T to
TO, and then modifies TO to the final jumps.

Pass I partitions the levels of the dag into sets, as follows. A levelf is called "open"
if its jump has not been found. More precisely, when level t is being processed, level

f i s open if f _ t or if f > t and the jumps t o f m a k e it a l-level but T(f) = 0 (Pass I
initializes T-values to 0). Each open level fhas a set of levels,

LSET(f) = (g[L - g _ > f a n d f i s the highest open level with g _ f) .

LSETs are manipulated by the operations FIND(g) (which returns the open l eve l f
with g ~ LSET(f)) and UNION(f , g) (which does a destructive merge of LSET(f)
into LSET(g)) [2].

In processing level t, Pass I finds when each nodey on level t is ready to be jumped;
that is, it computes

R(y) = the highest open level that can jump toy.

772 H A R O L D N. G A B O W

It also finds which nodes may be jumped from a given open level f ; that is, it
computes the list

RLIST(f) = {y]y is on level t and R(y) = f) .

(These interpretations for R and RLIST are valid immediately before line 6 of the
algorithm.)

Pass I computes the substitute node on level t, SUB(t). SUB(t) is not jumped in
Pass I but is ready as early as possible (i.e., R(SUB(t)) is as large as possible). Any
level f _ < R(SUB(t)) can jump SUB(t) instead of T(f). So Pass II can use SUB(t) to
ensure that FROM(t) is not jumped, thus fixing bad guesses. This motivates the
following definition.

Definition 1. A node y on level t is free i f y = T(f) implies that f_< R(SUB(t)),
that is, either y is not jumped in Pass I, or y is jumped from R(SUB(t)) or below.

This definition is consistent with the earlier intuitive description of "free."
Note the special case in which SUB(t) = 0. Since the algorithm sets R(0) = 0, the

only free nodes on such a level t are those that are not jumped. Also note that, at
least intuitively, any level has free nodes, because not every node of a level can be
jumped•

The algorithm works as follows. Pass I processes levels t in decreasing order, t =
L 1. For each t, R and RLIST values are computed (lines 2-5). Then RLISTS
are used to guess jumps, that is, T-values (lines 6-9). The node with highest R-value
that need not be jumped does not get jumped; instead it is made SUB(t) (line 10).
The method for finding SUB(t) rehes on merging RLISTs so nodes with higher R-
values are at the end (hue 9).

Pass II processes levels f in increasing order, f = 1 L. For each f , a correct
node F R O M (f) is found. If F R O M (f) happens to be jumped by Pass I, the jump is
switched to go to SUB(f) instead of FROM(f) .

Now we give the algorithm in pseudo-ALGOL.

procedure H, comment this p rocedure f inds the j u m p s of an H L F schedule for a g iven dag,

begin
Imttahzatton:

0. p a r t m o n the nodes of the dag into levels L, , l, set SUB(t) = 0, T(t) = 0, LSET(t) = {t},
R L I S T (t) = O, for L _> t >_ l; set LSET(0) = {0}, R(0) = 0,

Pass I:
1 for t ~ L to 1 by - 1 do begin
2 for each node y on level t do begin
3 r <-- m m { L + 1 , / l a n i m m e d i a t e predecessor x o f y is "executed at l e v e l / , " that is, x =

T(I) or x is on level l and is not a T-value},

4 if r <_ L, T(r) = 0, and some free node on level r does not immed ia t e ly precede y
comment the test for "free" is m D e f i n m o n 1,

then R(y) ..-- r
else R(y) <--- F I N D (r - 1),

5 add y to RLIST(R(y)) ,
end,

6 while R L I S T (f) # ~ for some f > t do begin
7 remove the first node y f rom R L I S T (f) , T (f) ~-y ,
8 g ~ F I N D (f - 1), U N I O N (f , g),
9 add R L I S T (f) to the end of RLIST(g) , comment now R L I S T (f) = O,

end,
I0 z <-- the las t node of RLIST(t) , R L I S T (t) <-- 0 ,

if R(z) > t then SUB(t) <-- z,

I 1 if level t is no t a l - leve l (1 e , the n u m b e r of nodes tha t are not T-values is even) then begin
T(t) ~ - 1 , U N I O N (t , t - 1) end,

end Pass 1,

Almost-Linear Algorithm for Two-Processor Scheduhng

(a)
y 16 (15) 14 13 12 11 (10) 9* 8 7

R(y) 7 7 6 6 5 4 5 4 3 4

6 (5) 4 (3)

4 3 2 2

773

2 l

1 l

(b)

f 7 6 5 4 3 2 1

T(f) 15 - 1 10 6 5 3 - 1

7 6

16 - -

15 - 1

FIG. 2.

f

F R O M (f)

T O (f)

5 4 3 2 1

12 11 6 4 - -

10 9 5 3 - 1

(a) Pass-I values, () = nonfree, * = SUB (b) Pass-II values.

Pass II
let TO(g) = T(g) for 1 ~ g _< L comment TO and T can be the same array,

12 for f * - - 1 to L do begin
13. if T O (f) _> 0 then begin
14 let F R O M (f) be a free node on l e v e l f that does not immediately precede T O (f) tf

T O (f) > 0,
15. if F R O M (f) = TO(g) for some g then TO(g) *-- SUB(f) ,

end end end H

Figure 2 gives the values calculated by the algorithm for Figure 1. In Figure 2a,
substitute nodes have asterisks, that is, y* means y = SUB(level(y)), and nonfree
nodes are parenthesized, (y). The jumps of Figure 2b correspond to the schedule of
Figure I.

Now we prove that the algorithm is correct. Let the H schedule be the one
computed by the algorithm, that is, the level schedule with jumps (FROM(f) ,
TO(f)) , L _> f_> I. The proof is orgamzed as follows. Lemmas 1-4 give the basic
properties of Pass I. Lemma 5 shows how Pass II modifies jumps to get the H
schedule. Corollaries 1-4 give properties of the H schedule that are analogous to
Lemmas 1-4. These properties include the facts that H is a valid schedule (Corollary
3) and H has an HLF-like property (Corollary 4). The latter is used to prove that H
is optimum (Lemmas 6-8). (Note that Lemma l0 actually shows that H is an HLF
schedule.)

The proof assumes in its organization that the algorithm runs to the end of Pass II.
Inspection reveals two places where the algorithm could conceivably halt prema-
turely: in line 10, node z might not exist if RLIST(t) is empty; in line 14, a node
F R O M (f) with the desired properties might not exist. We assume at the outset of
the proof that in both cases if a node does not exist, the algorithm skips to the next
line and continues execution. We will see that actually the nodes always exist:
Corollary 2 shows that F R O M (f) exists, and a remark following Corollary 3 shows
that z exists.

The proof treats 0 as a dummy node on a fictitious level 0. Thus a level l with
TO(l) = 0 jumps to node 0. Similarly an assertion like "level(TO(l)) > f " means
TO(l) is a real node, above l eve l f

To start, note that the LSETs are maintained (by lines 0, 8, and I l) in accordance
with their definition above.

774 HAROLD N. GABOW

The first property of Pass I says that if a level f jumps a free node of a level t, then
no subsequent j ump from above t goes below t.

LEMMA 1. Let f be a l-level where T (f) is free; let I be a 1-level where f >_ l >
levei(T(f)). Then level(T(l)) >_ level(T(f)); i f equality holds, then node T(l) is free.

PROOF. In Pass I, let y be a node that is in RLIST(t) in line 10. It is easy to see
that after the loop of lines 6-9, no level I with R(y) >_ l > t is open.

Now consider Pass I when t -- level(T(f)) . The hypotheses of the lemma imply
that R(SUB(t)) - > f - > l > t. So the above remark shows that l is not open after t is
processed. This means that level(T(/)) ~ level(T(f)) , as desired. Further, if equality
holds, then T(l) is a node on level t, and R(SUB(t)) _> l shows that T(l) is free. []

The next l emma will be used to show that F R O M nodes exist.

LEMMA 2. Let y be a node with R(y) >_ f for some l-level f . Then f contains a
free node x, x --~ y.

PROOV. Let r be the value computed in line 3 for y. So r >_ R(y) >_ f . I f r = f ,
then R(y) = r, and the Lemma holds by line 4. Otherwise r > f . Since f is a l-level,
it contains a node x that is not a T-value. x is clearly free; x--~, y, since r > f i []

The next l emma will be used to show that H respects precedence. It says that Pass
I executes any immediate predecessor of a node y at level R(y) or earlier.

LEMMA 3. I f X ~ y, then either level(x) >_ R(y) or x = T (f) for some level
f > R(y).

PROOF. Line 3 sets r so that any immediate predecessor x o f y is executed at level
r or earlier, that is, level(x) _ r or x -- T (f) for some f _ r. Further, r >_ R(y). So the
l emma holds unless f = r = R(y) and x = T(r). But this cannot be, since line 4 shows
that r -- R(y) implies that T(r) is not a predecessor o fy . []

The next l emma essentially shows the H L F property for Pass I. To motivate its
statement, let l be a l-level, and let z -- T(l). The H L F property implies that any
node y above level(z) cannot be jumped from l. Thus if level(y) > level(z) and y is
scheduled after l, then all free nodes of I precede y. This is Lemma 4(a). Lemma 4(b)
shows the related fact, that all nonfree nodes must indeed be jumped, or, equivalently,
that a free node cannot be substituted for a nonfree node.

LEMMA 4. Let l be a 1-level. Let y be a node executed after l by Pass I, that is,
l > level(y) andy ~ T (f) f o r any f >_ I. Let z = T(I), and suppose that either

(a) level(y) > level(z), or
(b) level(y) -- level(z) and y is free but z is not.

Then all free nodes of l precede y.

PROOF. First note that without loss of generality, y has no predecessors executed
after 1. For let x be such a predecessor. It is easy to see that x satisfies the hypotheses
of the lemma (in particular, alternative (a)), and the conclusion for x gives the
conclusion for y.

So all predecessors o f y are executed before or at level l. This implies line 3 for y
sets r >_ l. Now it suffices to show that 1 > R(y). For alternatives (a) and (b) both
imply that level l is open when R(y) is computed. To get l > R(y), line 4 must set
R(y) = F I N D (r - 1). Thus l > F I N D (r - 1), whence r = l. And since the else branch
of line 4 is taken (and T(r) = T(/) = 0), all free nodes on level l precede y. This is the
lemma's conclusion.

Almost-Linear Algorithm for Two-Processor Scheduling 775

We show l > R(y) by contradiction. Recall that y ~ T(f) for f _ L So lines 5-9
with R(y) >_ I show that I is assigned a jump. Thus level(y) = level(z) and alternative
(b) holds. I f y is free, then R(SUB(0) >- R(y), by lines 5-10. Thus R(SUB(t)) >_/,
whence z is free. But this contradicts (b). []

Now we examine how Pass II computes TO-values.

LEMMA 5. For any l-level g, TO(g) is either T(g) or SUB(level(T(g))). In the
latter case, T(g) is free. In both cases, R(TO(g)) >_ g.

PROOF. At the start of Pass II any value TO(g) is T(g). Line 15 may change
TO(g) from T(g) to SUB(f) , where f = level(T(g)). This is done only if T(g) is free
(by line 14). Further, TO(g) is not changed again, since the new value is still on
level (T(g)).

It remains only to show that R(TO(g)) _> g. Lines 5-9 show that R(T(g)) >- g. And
if T(g) is free, Defmition 1 shows that R(SUB(level(T(g))) >_ g. []

COROLLARY 1. For any 1-level g, level(T(g)) = level(TO(g)). T(g) is free iff
TO(g) is free. I f T(g) is nonfree, T(g) = TO(g).

Now we can show that the H schedule is well defined, that is, the FROM and TO
arrays specify the jumps of a level schedule. This means first that the FROM nodes,
calculated in line 14, actually exist. Second, no FROM node is itself jumped.

COROLLARY 2. For any 1-level f , node FROM(f) exists and is not jumped (i.e.,
FROM(f) ~ TO(g)for any g).

PROOF. When lines 13-15 are executed for level f , T O (f) has its final value. By
Lemma 5, R(TO(f)) _ f . So in line 14 node F R O M (f) exists, by Lemma 2. Line 15
ensures that F R O M (f) is not jumped. []

The next result shows that the H schedule is a valid schedule, that is, it respects the
precedence constraints.

COROLLARY 3. I f x "--> y, then the H schedule executes node x before node y.

PROOF. Since H is a level schedule, the conclusion is obvious i f y is not jumped.
So suppose y = T O (f) for some l-level f .

Lemma 5 shows that R(y) >_ f . So from Lemma 3, either level(x) _ f or x -- T(g)
for some level g > f .

First suppose that level(x) >__ f . Then x is executed beforey, unless x = FROM(f) .
But the latter is impossible by line 14.

So suppose that level (x) < f and x = T(g) for g > f . It suffices to show that
x = TO(g), since level g jumps before f . To do this, assume the contrary. Thus
T(g) # TO(g). So T(g) is free (Corollary 1). Now Lemma l applied to g shows
level(T(f)) _> level (T(g)). In other words, level(y) _> level(x). But this contradicts
x---~y. []

Corollary 3 shows that H is a valid level schedule. One consequence of this fact is
that in line 10, node z always exists, that is, RLIST(t) is not empty. For if RLIST(0
is empty, all nodes of t are jumped in Pass I. This implies that all nodes of t are
jumped in the H schedule. But this is impossible, since in a level schedule, any level
t has a node that is not jumped. (The last node above t to be executed precedes a
node on t that is not jumped.)

Finally we show a version of the HLF property for H. This version, analogous to
Lemma 4, is not the HLF property itself. Rather it is tailored to prove that the H

776

FIG 3 Schedule with blocks

HAROLD N. GABOW

16 14 12 11 8 6 4 2

15 13 10 9 7 5 3 1

schedule is optimum. We return to this point below in Lemma 10, which shows that
this version actually implies the HLF property.

COROLLARY 4. Let l be a l-level. Let y be a node executed after level I in the H
schedule. Let z = TO(l) be the node jumped by l, where either

(a) level(y) > level(z), or
(b) level(y) = level(z) and y is free but z is not.

Then all free nodes o f l precede y.

PROOF. It suffices to show that the hypotheses of Lemma 4 hold for y, since
Lemma 4 has the desired conclusion.

We first show that y is executed after l by Pass I. Since this holds for the H
schedule, l > level(y) and y ~ TO(f) for f _> I. So it suffices to show y ~ T (f)
for any f _ L Suppose on the contrary that y = T(f) . This means Pass II changes
TO(f) . So y is free. Lemma l (and Corollary l) show that level(z) >_ level(y). So
alternative (b) holds. Now Lemma 1 (and Corollary 1) show that z is free. But this
contradicts (b).

It remains to show that alternatives (a) or (b) of Lemma 4 hold. Each is implied by
its counterpart in Corollary 4, by Corollary 1. []

The next two lemmas show that the H schedule has the same structure that
guarantees optimality as the Coffman-Graham algorithm [4]: The H schedule
partitions into "blocks." Any schedule executes blocks in the same order as H.
Further, H is optimum on individual blocks. This implies that H is optimum.

The blocks Xt are defined by boundary levels It:

Definition 2. The levels It, 1 _< i _< B + 1, are defined as follows: l~ = 1. For
i > !, It is the lowest l-level such that It > lt-i and either

(a) It jumps below l~-l, that is, level(TO(l,)) < / t - l , or
(b) It jumps to a nonfree node on It-i, that is, level(TO(/z)) = lt-~ and

R(SUB(lt_I)) < It.

Let In be the last value defined using the above criteria, and set IB+a = L + 1.
For 1 <_ i <_ B, block Xt consists of all nodes scheduled after level l,+l, up to and

including It, except for the node jumped from l,. Equivalently, X, = {xll,+l > level(x)
_> l, and x is not jumped from lt+~ or above}.

Note that any level I with an idle jump (TO(I) = 0) is a boundary level lt. (This
follows from the convention that 0 is a dummy node on level 0.) Also, any node is in
exactly one block, except for a node jumped from a boundary level (which is in no
block). Figure 3 shows the blocks for the schedule of Figure 1. The nodes of each
block are enclosed in heavy lines.

The next two lemmas show that any schedule processes blocks in order.

LEMMA 6. For a block Xt, 1 < i <_ B, any node x ~ X, on level l, precedes all nodes
of X,-1, that is, x -~ Xt-1.

A lmost-Linear A lgorithmfor Two-Processor Scheduling 777

PROOf. First note that for any block X,, 1 _< i _< B, any node x ~ X, on level I, is
free. For suppose on the contrary that x is nonfree. So x ts jumped from some l-level
1. Since x is on level l,, Defimtion 2 implies that I _ l,+a. But then x ~ X, a
contradiction.

To show the lemma, take any x ~ X, on level 1, and any y E X,-a. x is free by the
above remark; similarly, i f y is on I,-a, it too is free. This shows that the hypotheses
of Corollary 4 are satisfied for level l, and node y. Thus x - ~ y. []

LEMMA 7. For a block X,, 1 < i <_ B, X, --% X,-1.

PROOF. Consider any node x E X,. By Lemma 6 it suffices to show that x has a
successor z on level l, with z E X~.

By Definition 2, level(x) __. l,. Clearly we can assume that level(x) > l,. So x has a
successor z on level 1,. z must be executed after x, whence after level l,+1. So z ~ X,,
as desired. []

Now we prove that H has minimum length.

LEMMA 8. The H schedule is optimum.

PROOf. Let ,,(X,) (respectively o:*(X3) denote the number of time units in the H
schedule (opt imum schedule) in which some node of block X, is executed. First note
that

B B

y~ ,o*(x,)_> ~ ,o(x,). (l)
z = l , = a

This is true because in H, every time unit counted in ~o(X,), except the last, executes
two nodes of X,. (Note that any l-level l of a block X,, l > l,, jumps a node of X~.) The
last time unit executes at least one node of X,. (It can execute two nodes of X, if
i = 1.) So X, has at least 2~0(X,) - l nodes. This implies that ~0*(X,) > ~0(X,). Inequality
(1) follows.

Now observe that the length of the opt imum schedule is at least the left-hand side
of (1). (Lemma 7 implies that any time unit is counted in at most one term ~0*(X,).)
The length of the H schedule is the right-hand side of (1), by Definition 2. So (1)
implies that H is optimum. []

We turn our attention to the efficiency of the algorithm. We will show that the set
merging operations use time O(mx(n)), while the remainder of the algorithm is
O(e + n).

First we describe some additional data structures. The dag is stored in an adjacency
structure: each node has a list of its immediate predecessors. Level information is
stored in two ways. An array LEVEL gives the level of each node, that is, node x is
on LEVEL(x). Also, each level has a list of the nodes on that level. This data
structure for level information is constructed in line 0 when levels are found, in O(n)
addiuonal time.

Another array T ' indicates when each node is jumped in Pass I. More precisely,
for each node x, T'(x) = l iff x = T(1); if x is not a T-value, T'(x) = - 1 . T' is
initialized to - 1 in line 0, and values are assigned to T' when T Is assigned, in line
7. Clearly the total time spent computing T' is O(n). Note that T ' allows us to check
if a given node x is free in time O(1), since x is free iff T'(x) <_ R(SUB(LEVEL(x))).

With these data structures it is easy to see that hnes 0-3 and 11-15 are O(e + n),
because O(1) time is spent on each edge, node, or level. Line 0 finds the levels o f the

778 HAROLD hi. GABOW

dag by using predecessor lists in a modified topological sort [13]. Line 2 loops through
the nodes y on level t using the list of nodes on level t. Line 3 calculates r using the
T' and LEVEL arrays. Line 11 checks if t is a l-level using the list of nodes on level
t and T'. Line 14 finds node F R O M (f) by flagging the immediate predecessors of
T O (f) that are on level f and finding a free, unflagged node on the list of nodes on
level f . Finally, for line 15, note that F R O M (f) -- TO(g) iff F R O M (f) - T(g). So
line 15 uses T' to find level g.

Now we discuss the remaining lines, 4-10. The only nontrivial part of line 4 is the
test that some free node on level r does not immediately precede y. To do this, the
algorithm stores, for each level r, a count of the free nodes on r. This count is
computed after level r is processed (line 11); a total of O(n) time for all levels is used
for this computation. Line 4 computes the number of free immediate predecessors of
y on level r. This number is less than the count for r iff the test has an affirmative
answer. So the total time spent in the test in line 4 is O(e + n).

For lines 5-10, the following data structure is used for RLISTs. For each level f ,
RLIST(f) is a singly linked list with pointers to the first and last elements. There is
also a linked list of levels f that have RLIST(f) nonempty. With this data structure,
each operation involving RLISTs in lines 5-10 is O(1). (This includes finding level
f i n line 6.) Further, observe that line 5 is executed once for each nodey; lines 7-9 are
executed at most once for each level f (a value T (f) is assigned only once); line 10
is executed once for each level t. So the total time in lines 5-10 is O(n).

LEMMA 9. Algorithm H uses time O(e + na(n)) and space O(e + n).

PROOF. The above discussion shows that aside from the set merging operations
UNION and FIND, the algorithm uses time O(e + n). Line 4 does at most one
FIND for each node y, and line 8 does at most one FIND for each level f . So there
are at most 2n FINDs. Lines 8 and 11 do at most one UNION for each level, so there
are at most n UNIONs. Hence the total time for set merging operations is O(na(n))
[18]. The time bound follows.

For the space bound, note that all data structures use O(1) space for each node,
edge, or level. []

We summarize Lemmas 8 and 9 in our first main result.

THEOREM 1. Algorithm H finds an optimum schedule in time O(e + na(n)) and
space O(e + n).

We conclude the analysis by showing that the HLF property guarantees optimality.
This justifies the intuitive discussion of Section 2. The main step is to prove that
algorithm H finds an HLF schedule.

LEMMA 10. The H schedule is an H L F schedule.

PROOF. Let the H schedule have jump sequence (tl tk). Let S be an arbitrary
level schedule with jump sequence (s~ s,). We wish to show that (tl t~) _.>
(Sl , s,), where >_ denotes lexicographic order. We do this by proving inductively
that for all i, 1 ~ i ~ rain(k, r),

(i) (tl , t ,) - - (s~, . . . , s ,) ;
(ii) if equality holds in (i), then in each of the first i jumps of H and S, H jumps a

free node fff S does.

Note that for any index i, if inequality holds in (i), then the induction is completed
trivially and the desired conclusion follows. On the other hand, if (i) holds with

A lmost-Lmear Algorithm for Two-Processor Scheduling 779

equality for i -- min(k, r), then it is easy to see that k = r, (tl tk) = (Sl Sr),
and again the desired conclusion follows.

So assume that (i) and (ii) hold for indices strictly less than t. We prove (i) and (ii)
for i as follows. As mentioned above, we can assume that (tl t,-1) = (81 St--l)
if i > 1. This imples that the ith l-level is the same in both schedules, call it/ . Let the
jump from l be from node x in schedule S and to node z m schedule H. (Thus z --
TO(l) and level(z) = t,.) We will show that (i) and (ii) are both consequences of
Corollary 4.

First observe two properties that hold for both S and H:

(1) All nonfree nodes of l are jumped from above l.
(2) All nonfree nodes of level(z) are jumped from above l, if z is free.

(1) is obvious for H. (2) holds for H because of Lemma 1 and Corollary 1.
Furthermore, (1) and (2) for H imply their counterparts for S, because of (ii).

Next observe that node x is free. For x is not jumped in S, and so it is free by (1).
To prove (i), we must show that in S , / j umps to level(z) or below. Equivalently, if

g is a level with l > g > level(z), S does not jump to g. To see this, suppose H
executes b nodes of g before l, and a nodes of g after I. (Of course H does not execute
any nodes of g at level l). S executes b nodes of g before l, since (i) holds with
equality. Further, i f y is a node on level g that H executes after/ , then by Corollary
4(a), x precedes y. (Recall that x is a free node of l.) So S executes y after I. Thus
S executes a nodes of g after I. No nodes of g remain for S to jump from I. This
proves (0.

For (ii) we must show that z is free iff S jumps a free node of level(z). If z is free,
(2) implies that S can only jump a free node of level(z), as desired.

On the other hand suppose z is nonfree. Let y be a free node of level(z). H executes
y after l (by Lemma 1 and Corollary 1). So x precedes y by Corollary 4(b). Thus S
can only jump a nonfree node of level(z), as desired. []

This completes the formal justification for the HLF definition:

THEOREM 2. Any HLF schedule is optimum.

PROOF. Any HLF schedule has the same jump sequence as H. Thus it has the
same length as H. So Lemma 10 imphes the Theorem. []

4. Conclusions

We have shown that for two-processor systems, HLF schedules are optimum and
can be constructed efficiently. It is natural to ask how these schedules fare on various
extensions of the model.

For example, consider the case of m > 2 processors. If the dag is a tree, Hu's
algorithm [11] finds an optimum schedule for arbitrary m; further, the schedule is
HLF. Unfortunately, this is not true in general: for any m > 2 there are dags that
admit no optimum, level schedule. In fact, there are dags where any level schedule
is a factor 2 - 2/m greater than optimum [14]. Among level schedules, however, the
HLF strategy is best: 2 - 2/m is an upper bound on the accuracy, and the time to
find an HLF schedule is almost linear.

Other extensions of the basic model include tasks with arbitrary integer lengths,
uniform processors (i.e., processors whose speeds differ by a constant factor), and
scheduling with resources other than processors. In each case the results are similar:
the HLF strategy achieves the best possible accuracy bound for a level schedule, and

780 HAROLD N. GABOW

the time is O(e + ha(n)) or O(e + n log log n). These results are presented in detail
in [7]. These problems and others illustrate the usefulness of the highest-level-first
scheduling method.

ACKNOWLEDGMENTS. The author thanks the anonymous referees for helpful advice
on clarifying the presentation and Dr. Michael Garey for valuable editorial assistance.

REFERENCES

l AHO, A V, GAREY, M R, AND ULLMAN, J D The transmve reduction of a directed graph. SIAM J
Comput 1 (1972), 131-137

2 AHO, A V, HOPCROFT, J E, AND ULLMAN, J D The Deagn and Analysts of Computer Algomhms
Addison-Wesley, Reading, Mass, 1974

3 COFFMAN, E G JR, ED Computer and Job-Shop Scheduhng Theory Wiley, New York, 1976
4- COFFMAN, E G JR, AND GRAHAM, R L Optimal scheduling for two-processor systems Acta Inf 1,

3 (1972), 200-213
5 FuJII, M, KASAMI, T , AND NINOMIYA, K Optimal sequencing of two equivalent processors SIAM

J Appl Math 17, 4 (1969), 784-789 Erratum, S1AMJ Appl Math 20(1971), 141
6 GABOW, H N An almost-linear algorithm for two-processor scheduling Tech Rep CU-CS-169-80,

Dep of Computer Science, Umv of Colorado, Boulder, Colo, Jan 1980
7 GABOW, H.N Highest-level-first algorithms for approximate scheduling In preparation
8 GAREY. M R, AND JOHNSON, D S Scheduling tasks with nonuniform deadlines on two processors

J ACM 23, 3 (July 1976), 461-467
9 GAREY, M R, AND JOHNSON, D S Computers and Intractabthty A Guide to the Theory of NP-

Completeness Freeman, San Francisco, 1979
l0 GRAHAM, R L, LAWLER, E L, LENSTRA, J K , AND RINNOOY KAN, A H G Optimization and

approximation in deterministic sequencing and scheduling A survey Ann Dzscrete Math 5 (1979),
287-326

I 1. Hu, T C Parallel sequencing and assembly line problems. Oper Res 9, 6 (1961), 841-848
12 KARIV, O An O(n 25) algorithm for finding a maximum matching in a general graph Ph D

Dissertation, Welzmann Institute of Science, Rehovot, Israel, 1976
13 KNUTH, D E The Art of Computer Programming, Vol 1 Fundamental Algortthms Addison-Wesley,

Reading, Mass, 1973
14 LAM, S, AND SETHI, R Worst case analysis of two scheduling algorithms SIAM J Comput 6 (1977),

5 i 8-536
15 MICALI, S , AND VAZIRANI, V V An O (x / ~ l . lED algorithm for finding maximum matching in

general graphs Proc 21st Ann IEEE Symp on Foundations of Computer Science, Syracuse, N Y,
Oct 1980, pp 17-27

16 PAN, V Y Field extension and tnhnear aggregating, uniting and cancelling for the acceleration of
matrix multiplications Proc 20th Ann IEEE Symp on Foundations of Computer Science, San Juan,
Puerto Rico, Oct 1979, pp 28-38

17 SETm, R Scheduling graphs on two processors SIAM J. Comput 5, l (1976), 73-82
18 TARJAN, R E Efficiency of a good but not linear set union algorithm J ACM 22. 2 (Apt 1975),

215-225
19 ULLMAN, J D NP-complete scheduling problems J Comput Syst Sct i0 (1975), 384-393
20 VAN EMDE BOAS, P, KAAS, R, AND ZIJLSTRA, E Design and implementation of an efficient priority

queue Math Syst Theory 10 (1977), 99-127

RECEIVED FEBRUARY 1980, REVISED MAY 1981, ACCEPTED MAY 1981

Journal of the Assoctatton for Computing Machinery, Vol 29, No 3, July 1982

