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ONLINE SCHEDULING WITH GENERAL COST FUNCTIONS∗
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Abstract. We consider a general online scheduling problem where the goal is to minimize∑
j wjg(Fj), where wj is the weight/importance of job Jj , Fj is the flow time of the job in the

schedule, and g is an arbitrary nondecreasing cost function. Numerous natural scheduling objectives
are special cases of this general framework. We show that the scheduling algorithm Highest Density
First (HDF ) is (2+ ε)-speed O(1)-competitive for all cost functions g simultaneously. We give lower
bounds that show that the HDF algorithm and this analysis are essentially optimal. Finally, we
show that scalable algorithms are achievable in some special cases.
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1. Introduction. In online scheduling problems a collection of jobs J1, . . . , Jn
arrive over time to be scheduled by one or more servers. Job Jj arrives at a nonnegative
real release time rj and has a positive real size/work pj. A client submitting a
job would like the job completed as quickly as possible. In other words, the client
desires the sever to minimize the flow time of the job. The flow time Fj of job Jj
is defined as Cj − rj , where Cj is the time when the job Jj completes. When there
are multiple unsatisfied jobs, the server is required to make a scheduling decision of
which job or jobs to prioritize. The order in which the jobs are completed depends on
a global scheduling objective. For example, a global objective could be to minimize
the total flow time of all the jobs. A scheduler for this objective optimizes the average
performance. Another possible objective is to minimize the total squared flow time,
i.e.,

∑
j(Fj)

2. This objective naturally balances average performance and fairness.
The scheduling literature has primarily focused on designing and analyzing algorithms
separately for each objective.

In this paper, we study a framework for online single machine scheduling problems
that generalizes many natural scheduling objectives. For our problem, we allow each
job to have a positive real weight/importance wj . For a job Jj with flow time Fj ,
a cost of wjg(Fj) is incurred for the job. The only restriction on the cost function
g : R≥0 → R≥0 is that it be nondecreasing, so that it is never cheaper to finish a job
later. The cost of a schedule is

∑
j wjg(Fj). We assume that preemption is allowed

without any penalty. This framework generalizes many scheduling problems that have
been studied in the scheduling literature such as the objectives mentioned above and
the following:
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ONLINE SCHEDULING WITH GENERAL COST FUNCTIONS 127

• Weighted flow time: When g(x) = x, the objective becomes the total weighted
flow time [6]. The total stretch is a special case of the total weighted flow
time where wj = 1/pj [7].

• Weighted flow time squared: If g(x) = x2, then the scheduling objective is
the sum of the weighted squares of the flows of the jobs [3].

• Weighted tardiness with equal spans: Assume that there is a deadline dj for
each job Jj that is equal to the release time of j plus a fixed span d. If
g(t) = 0 for t not greater than the deadline dj , and g(t) = wj(t − dj) for t
greater than the deadline rj + d, then the objective is weighted tardiness.

• Weighted exponential flow: If g(x) = ax for some real value a > 1, then the
scheduling objective is the sum of the exponentials of the flow, which has
been suggested as an appropriate objective for scheduling problems related
to air traffic control and to quality control in assembly lines [4, 5].

For the latter two objectives, no nontrivial results were previously known in the
online setting. Note that our general problem formulation encompasses settings where
the penalty for delay may be discontinuous, as is the penalty for late filing of taxes
or late payment of parking fines. To the best of our knowledge, minimizing a discon-
tinuous cost function has not been been previously studied in nonstochastic online
scheduling.

Most commonly one seeks online algorithms that guarantee that the degradation
in the scheduling objective relative to some benchmark is modest/minimal/bounded.
The most natural benchmark is the optimal offline schedule. If every online algorithm
performs poorly compared to the optimal solution, as is commonly the case, the most
commonly used alternate benchmark is the optimal schedule on a slower processor [15].
The algorithm A is said to be s-speed c-competitive if A with an s-speed processor is
guaranteed to produce a schedule with an objective value at most c times the optimal
objective value obtainable on a unit-speed processor. The informal notion of an online
scheduling algorithm A being “reasonable” is then generally formalized as A having
constant competitiveness for some small constant speed augmentation s. Intuitively,
an s-speed O(1)-competitive algorithm should be able to handle a load of 1

s of the
server capacity [16]. Usually the ultimate goal is to find a scalable algorithm, one
where the speed augmentation required to achieve O(1)-competitiveness is arbitrarily
close to one. Our main result, given in section 2, is the following:

• The scheduling algorithm Highest Density First (HDF) is (2+ ε)-speed O(1)-
competitive for all cost functions g.

The density of a job Jj is dj =
wj

pj
, the ratio of the weight of the job over the

size of the job. The algorithm HDF always processes the job of highest density. Note
that HDF is (2 + ε)-speed O(1)-competitive simultaneously for all cost functions g.
This is somewhat surprising since HDF is oblivious to the cost function g. Indeed,
this implies that HDF performs reasonably for highly disparate scheduling objectives
such as average flow time and exponential flows. In practice it is often not clear what
the scheduling objective should be; for competing objectives, tailoring an algorithm
for one can come at the cost of not optimizing the other. Our analysis shows that
no single objective needs to be chosen. As long as the objective falls into the very
general framework that we consider, HDF will optimize the objective. The main idea
of this analysis of HDF is to show that at all times, and for all ages A, there must be
Ω(1) times as many jobs of age A in the optimal (or an arbitrary) schedule as there
are in HDF’s schedule. The bulk of the proof is a constructive method to identify the
old jobs in the optimal schedule.

In section 3 we also show that it is not possible to significantly improve upon
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128 SUNGJIN IM, BENJAMIN MOSELEY, AND KIRK PRUHS

HDF, or this analysis, along several axes:
• If each job Jj has a distinct cost function gj , then there is no O(1)-speed
O(1)-competitive algorithm for the objective

∑
j gj(Fj). Thus it is necessary

that the cost functions for the jobs be uniform. Our lower bound instance is
similar to and inspired by an instance given in Theorem 6.1 of [10].

• There is no online algorithm that is (2−ε)-speed O(1)-competitive and obliv-
ious to the cost function for any fixed ε > 0. Hence HDF is essentially the
optimal oblivious algorithm.

• No scalable algorithm exists. In other words, while there may be a non-
oblivious algorithm that is O(1)-competitive with less than a factor of two in
speed augmentation, some nontrivial speed augmentation is necessary.

All of these lower bounds hold even in the case where all jobs have unit weights.
Hence, the intrinsic difficulty of the problem is unaffected by weights/priorities. All
of these lower bounds hold even for randomized algorithms. Hence, randomization
does not seem to be particularly useful to the online algorithm. In contrast, we show
that in some special cases, scalable algorithms are achievable:

• In section 4 we show that the algorithm First-In-First-Out (FIFO) is scalable
when jobs have unit sizes and weights.

• In section 5 we show that a variation of the algorithm Weighted Late Arrival
Processor Sharing (WLAPS) is scalable when the cost function g is concave,
continuous, and twice-differentiable; hence g′′(F ) ≤ 0 for all F ≥ 0. A con-
cave cost function implies that the goal is to finish as many jobs as quickly
as possible. The longer a job waits to be satisfied, the less urgent it is to
complete the job. This objective can be viewed as making a few clients really
happy rather than making all clients moderately happy. Although all of the
scheduling literature that we are aware of focuses on convex cost functions,
there are undoubtedly some applications where a concave cost function bet-
ter models the scheduler’s objectives. The algorithm WLAPS is oblivious to
the cost function g as well as nonclairvoyant. A nonclairvoyant algorithm is
oblivious to the sizes of the jobs.

1.1. Related results. The online scheduling results that are probably most
closely related to the results here are the results in [3], which considers the special
case of our problem where the cost function is polynomial. The results in [3] are similar
in spirit to the results here. They show that well-known priority scheduling algorithms
have the best possible performance. In particular, [3] showed that HDF is (1+ε)-speed
O(1/εk)-competitive, where k is the degree of the polynomial and 0 < ε < 1. [3] also
showed similar results for the scheduling algorithms Shortest Job First and Shortest
Remaining Processing Time, where jobs are of equal weight/importance. Notice that
these results depend on the degree of the polynomial. Our work shows that HDF is
O(1)-competitive independent of the rate of growth of the objective function when
given 2 + ε resource augmentation for a fixed 0 < ε < 1. [3] also showed that any
online algorithm is nΩ(1)-competitive without resource augmentation. The analyses
of HDF in [3] essentially showed that at all times, and for all ages A, there must
be Ω(1) times as many jobs of age Ω(A) in the optimal (or an arbitrary) schedule
as there are in HDF’s schedule. If the cost function g is arbitrary, such a statement
is not sufficient to establish O(1)-competitiveness. In particular, if the cost function
g(F ) grows exponentially quickly depending on F or has discontinuities, the previous
analysis does not imply that HDF has bounded competitiveness. We show the stronger
statement that there are Ω(1) times as many jobs in the optimal schedule that are of
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ONLINE SCHEDULING WITH GENERAL COST FUNCTIONS 129

age at least A. This necessitates that our proof be quite different than that in [3].
It is well known that Shortest Remaining Processing Time is optimal for total

flow time, when all jobs are of equal weight/importance and when g(x) = x. HDF was
first shown to be scalable for weighted flow, when g(x) = x, in [6]. The nonclairvoyant
algorithm Shortest Elapse Time First is scalable for total flow time [15]. The algorithm
LAPS that round robins among recently arriving jobs is also nonclairvoyant and
scalable for total flow time [12]. The nonclairvoyant algorithm WLAPS, a natural
extension of LAPS, was shown to be scalable for weighted flow time [1], and later for
weighted squares of flow time [11].

Recently, Bansal and Pruhs considered the offline version of this problem, where
each job Jj has an individual cost function gj(x) [2]. The main result in [2] is a
polynomial-time O(log lognP )-approximation algorithm, where P is the ratio of the
size of the largest job to the size of the smallest job. This result is without speed
augmentation. Obtaining a better approximation ratio, even in the special case of
uniform linear cost functions, that is, when g(x) = x, is a well-known open problem.
Thus it is fair to say that the problem that considers general cost functions is very
challenging even in the offline setting.

1.2. Basic definitions and notation. Before describing our results, we for-
mally define some notation. Let n denote the total number of jobs. Jobs are indexed
as J1, J2, . . . , Jn. Job Ji arrives at time ri having weight/importance wi and initial
work/size pi. For a certain schedule A, let CA

i be the completion time of Ji under
the schedule A. Let FA

i = CA
i − ri denote the flow time of job Ji. The cost func-

tion g : R≥0 → R≥0 is a nondecreasing function that takes a flow time and gives
the cost for the flow time. That is, it incurs cost g(FA

i ) for the unweighted objec-
tive and wig(F

A
i ) for the weighted objective. If the schedule is clear in context, the

notation A may be omitted. Similarly, we let C∗
i and F ∗

i denote the completion
time and flow time of job Ji by a fixed optimal schedule. We will let A(t) denote
the set of jobs that are not satisfied at time t by the online algorithm A we con-
sider. Likewise, O(t) denotes the analogous set for a fixed optimal solution OPT.
We will overload notation and allow A and OPT to denote the algorithms A and
OPT as well as their final objectives. We will use pAi (t) and pOi (t) to denote the
work remaining at time t for job Ji in A’s schedule and OPT’s schedule, respectively.
Throughout the paper, for an interval I, we let |I| denote the length of the interval I.
For two intervals I and I ′ ⊆ I we will let I \ I ′ denote I with the subinterval I ′

removed.

2. Analysis of HDF. We show that Highest Density First (HDF) is (2 + ε)-
speed O(1ε )-competitive, for any fixed ε > 0, for the objective of

∑
i∈[n] wig(Fi). We

first appeal to the result in [6] that if HDF is s-speed c-competitive when jobs are
unit-sized, then HDF is (1 + ε)s-speed

(
1+ε
ε · c)-competitive when jobs have varying

sizes. Although in [6] this reduction is stated only for the objective of weighted flow,
it can easily be extended to our general cost objective.

Lemma 2.1 (see [6]). If HDF is s-speed c-competitive for minimizing
∑

i∈[n] wig(Fi)

when all jobs have unit size and arbitrary weights, then HDF is (1+ε)s-speed
(
1+ε
ε · c)-

competitive for the same objective when jobs have varying sizes and arbitrary weights,
where ε > 0 is a constant.

Before we prove this lemma, we show how to show that if some online algorithm
A′ is s-speed c-competitive when jobs are unit-sized, then there exists another online
algorithm A that is (1+ ε)s-speed

(
1+ε
ε · c)-competitive when jobs have varying sizes.
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After we show this, we will show how to replace A′ and A with HDF.
Lemma 2.2. Given an online algorithm that is s-speed c-competitive for mini-

mizing
∑

i∈[n] wig(Fi) when all jobs have unit size and arbitrary weights, then there is

an online algorithm that is (1 + ε)s-speed
(
1+ε
ε · c)-competitive for the same objective

when jobs have varying sizes and arbitrary weights where ε > 0 is any constant.
Proof. Let A′ denote an algorithm that is s-speed c-competitive for minimizing∑

i∈[n]wig(Fi) when all jobs have unit size and arbitrary weights. Let ε > 0 be a
constant. Consider any sequence σ of n jobs with varying sizes and varying weights.
From this instance, we construct a new instance σ′ of unit sizes and varying weight
jobs. Here we let Δ denote the unit size, and it is assumed that Δ is sufficiently small
such that pi/Δ and εpi

(1+ε)Δ are integers for all jobs Ji. For each job Ji of size pi and

weight wi, replace this job with a set Ui of unit-sized jobs. There are pi

Δ unit-sized
jobs in Ui; notice that this implies that the total size of the jobs in Ui is pi. Each
job in Ui has weight Δwi

pi
. Each job in Ui arrives at time ri, the same time when Ji

arrived in σ. This completes the description of the instance σ′.
Let OPT denote the optimal solution for the sequence σ, and OPT

′ denote the
optimal solution for the sequence σ′. Note that

(2.1) OPT
′ ≤ OPT.

This is because the most obvious schedule for σ′ corresponding to OPT has cost
no greater than OPT. From the above assumption we made on A′, we know that
with s speed, the cost of A′ on σ′ is at most cOPT

′. Let Ui(t) denote the jobs in
Ui that have been released but are unsatisfied by time t in A′’s schedule. Let βi

denote the first time that |Ui(βi)| = εpi

(1+ε)Δ ; recall that |Ui(ri)| = pi

Δ . Knowing that

each of the jobs in Ui(βi) is completed after time βi in A′’s schedule and that g() is
nondecreasing, we have

(2.2)
∑
i∈[n]

|Ui(βi)|Δwi

pi
g(βi) =

∑
i∈[n]

εwi

1 + ε
g(βi) ≤ A′.

Now consider constructing an algorithm A for the sequence σ based on A′. When-
ever the algorithm A′ schedules a job in Ui, the algorithm A processes job Ji at a (1+ε)
faster rate of speed (unless Ji is completed). We assume that, at any time, A has at
most one unit-sized job Ui that has been partially processed. The algorithm A will
complete the job Ji at time βi. This is because A′ completed pi

Δ − εpi

(1+ε)Δ = pi

(1+ε)Δ

jobs in Ui before βi. This required A′ spending at least Δ
s · pi

(1+ε)Δ = pi

(1+ε)s time units

on jobs in Ui since A′ has s speed and it takes Δ
s time units for A′ to complete a

unit-sized job. By the definition of A, the algorithm A with (1+ ε)s-speed did at least
pi

(1+ε)s · (1 + ε)s = pi volume of work for jobs in Ui by time βi. Hence A completed

each job Ji by time βi. Knowing this and by (2.1) and (2.2), we have

A =
∑
i∈[n]

wig(βi) =
1 + ε

ε

∑
i∈[n]

εwi

1 + ε
g(βi)

≤ 1 + ε

ε
A′ ≤ 1 + ε

ε
cOPT

′ [by the definition of A]

≤ 1 + ε

ε
cOPT.

Knowing that A processes jobs at most (1+ ε) times faster than A′, we have that
A is (1 + ε)s-speed (1+ε)

ε c-competitive for σ.
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We now prove Lemma 2.1.
Proof of Lemma 2.1. Consider any sequence σ of jobs with varying sizes and

weights. To prove this lemma consider the conversion of σ to σ′ in Lemma 2.2, and
consider setting the algorithm A′ to HDF. Let A denote the algorithm which is
generated from HDF in the proof of Lemma 2.2. To prove the lemma we prove a
stronger statement by induction on time. We will show that at any time t, HDF on
σ has worked on every job at least as much as A on σ. Here HDF and A are both
given the same speed.

We prove this by induction on time t. When t = 0 the claim clearly holds. Now
consider any time t > 0, and assume that HDF has worked on every job at least as
much as A every time before t. Now consider time t. If A does not schedule a job at
time t, then the claim follows. Hence, we can assume that A schedules some job Ji
at time t. Notice that in the proof of Lemma 2.2, when generating a set of unit-sized
jobs Ui from Ji, the density of the unit-sized jobs in Ui is the same as the density
of job Ji. Knowing that HDF has worked at least as much as A on every job, and
given the definition of HDF, this implies that if Ji is unsatisfied in HDF’s schedule at
time t, then HDF will schedule job Ji. Otherwise Ji is finished in HDF’s schedule at
time t. In either case, after time t, HDF scheduled each job at least as much as A on
every job. Knowing that HDF processed every job at least as much as A at all times,
Lemma 2.2 gives the claim.

Lemma 2.1 implies that showing that HDF is 2-speed O(1)-competitive for unit-
sized jobs is sufficient to prove that HDF is (2 + ε)-speed O(1/ε)-competitive for the
varying size job case. Reducing a scheduling problem where jobs have varying sizes
to one where jobs have unit size has become standard; e.g., see [6, 3, 9]. Thus we
will make our analysis assuming that all jobs have unit size, which can be set to 1
without loss of generality by scaling the instance. We assume without loss of generality
that weights are no smaller than 1. For the sake of analysis, we partition jobs into
classes Wl, l ≥ 0, depending on their weight: Wl := {Ji | 2l ≤ wi < 2l+1}. We let
W≥l :=

⋃
l′≥l Wl′ . Consider any input sequence σ where all jobs have unit size. We

consider the algorithm HDF with 2 speed-up. Note that HDF always schedules the
job with the largest weight when jobs have unit size. We assume that HDF breaks
ties in favor of the job that arrived the earliest. To prove the competitiveness of HDF
on the sequence σ, we will recast our problem into a network flow where a feasible
maximum flow maps flow times of the jobs in the algorithm’s schedule and those in
the optimal solution’s schedule. The weight of each job in the algorithm’s schedule
will be charged to jobs in the optimal solution’s schedule that have flow time at least
as large. Moreover, the total weight of the algorithm’s jobs mapped to a single job Ji
in the optimal solution’s schedule will be bounded by O(wi). Once this is established,
the competitiveness of HDF follows.

Formally, the network flow graph G = (V = {s}∪X ∪ Y {t}, E) is constructed as
follows. We refer the reader to Figure 2.1. There are source and sink vertices s and t,
respectively. There are two partite sets X and Y . There is a vertex vx,i ∈ X and
a vertex vy,i ∈ Y corresponding to job Ji. Intuitively, the vertices in X correspond
to jobs in the algorithm’s schedule, and those in Y correspond to jobs in the optimal
solution’s schedule. There is an edge (s, vx,i) with capacity wi for all i ∈ [n]. There is
an edge (vx,i, t) with capacity 8wi for all i ∈ [n]. Making the capacity of edge (vy,i, t)
equal to 8wi ensures that job Ji in the optimal solution’s schedule is not overcharged.
There exists an edge (vx,i, vy,j) of capacity ∞ if Fi ≤ F ∗

j and wi ≤ wj . Recall that Fi

and F ∗
i denote the flow times of job Ji in the algorithm’s and the optimal solution’s

schedules, respectively.
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ts wi
vx,i

vy,j

∞

∞
8wj

X Y

∞

Fig. 2.1. The graph G.

Our main task remaining is to show the following lemma.
Lemma 2.3. The minimum cut in the graph G is

∑
i∈[n] wi.

Assuming that Lemma 2.3 holds, we can easily prove the competitiveness of HDF
for unit-sized jobs.

Theorem 2.4. HDF is 2-speed 8-competitive for minimizing
∑

i∈[n] wi · g(Fi)
when all jobs are unit-sized.

Proof. Lemma 2.3 implies that the maximum flow f is
∑

i∈[n] wi. Let f(u, v)

denote the flow on the edge (u, v). Note that the maximum flow is achieved only
when f(s, vx,i) = wi for all jobs i ∈ [n]. We charge the cost of each job in the
algorithm’s schedule to the optimal cost in the most obvious way, as suggested by the
maximum flow. That is, by charging wig(Fi) to

∑
j f(vx,i, vy,j)g(F

∗
j ), we have

HDF =
∑
i∈[n]

wig(Fi)

=
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(Fi) [since f is conserved at vx,i]

≤
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(F
∗
j ) [since (vx,i, vy,i) ∈ E only if Fi ≤ F ∗

j ]

=
∑
j∈[n]

f(vy,j, t)g(F
∗
j ) [since f is conserved at vy,j ]

≤
∑
j∈[n]

8wjg(F
∗
j ) [8wj is the capacity on vy,j]

= 8OPT.

By Lemma 2.1 and Theorem 2.4, we obtain the next result.
Theorem 2.5. HDF is (2+ε)-speed O(1ε )-competitive for minimizing

∑
i∈[n] wig(Fi)

when jobs have arbitrary sizes and weights.
The remainder of this section is devoted to proving Lemma 2.3. Let (S, T ) be a

minimum s-t cut. For notational simplicity, for any pair of disjoint subsets of vertices
A and B, we allow (A,B) to denote the set of edges from vertices in A to vertices
in B. We let c(e) denote the capacity of edge e, and c(A,B) the total capacity of
all edges in (A,B). Let Xs = X ∩ S, Xt = X ∩ T , Ys = Y ∩ S, and Yt = Y ∩ T .
Note that all edges in ({s}, Xt) are cut by the cut (S, T ); i.e., ({s}, Xt) ⊆ (S, T ) and

D
ow

nl
oa

de
d 

10
/1

8/
16

 to
 1

60
.3

9.
19

2.
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ONLINE SCHEDULING WITH GENERAL COST FUNCTIONS 133

c({s}, Xt) =
∑

vx,i∈Xt
wi. Knowing that (Ys, {t}) ⊆ (S, T ), it suffices to show that

(2.3) 8
∑

vy,j∈Ys

wj ≥
∑

vx,i∈Xs

wi.

This suffices because if we assume that (2.3) is true, we have c(S, T ) ≥ ∑
vx,i∈Xt

wi+

8
∑

vy,j∈Ys
wj ≥

∑
vx,i∈Xt

wi +
∑

vx,i∈Xs
wi =

∑
i∈[n] wi.

Our attention is focused on showing (2.3). For any V ′ ⊆ V , let N(V ′) denote the
set of out-neighbors of V ′; i.e., N(V ′) = {z | (v, z) ∈ E, v ∈ V ′}. Since (S, T ) is a
minimum s-t cut, (S, T ) does not contain an edge connecting a vertex in X to a vertex
in Y ; recall that such an edge has infinite capacity. Therefore N(Xs) ⊆ Ys, where
N(Xs) is the out-neighborhood of the vertices in Xs. For any positive integer l, define
Wl(Xs) := {vx,i | vx,i ∈ Xs, Ji ∈ Wl}; recall that Ji is in class Wl if 2

l ≤ wi < 2l+1.
We show the following key lemma. Here it is shown that the neighborhood of Wl(Xs)
is large compared to |Wl(Xs)|.

Lemma 2.6. The vertices in Wl(Xs) have at least 1
2 |Wl(Xs)| neighbors in Y ,

i.e., |N(Wl(Xs)) ∩ Y | ≥ 1
2 |Wl(Xs)|.

Proof. Consider each maximal busy time interval I where HDF is always schedul-
ing jobs in W≥l. Let C(I, l) be the set of jobs in Wl(Xs) which are completed by
HDF during the interval I. Let Jk be the job that is in Wl(Xs) which is completed
during the interval I and has the highest priority in HDF’s schedule (if such a job
exists). This implies that the job Jk has the shortest flow time of any job in Wl(Xs)
that is completed during the interval I. We will show that vx,k has at least 1

2 |C(I, l)|
neighbors in Y , i.e.,

(2.4) |N({vx,k}) ∩ Y | ≥ 1

2
|C(I, l)|,

and that all jobs corresponding to these neighbors were completed by HDF during I.
Taking a union over all maximal busy intervals will complete the proof.

We now focus on proving (2.4). Recall that Fk = Ck−rk is the flow time of job Jk.
Since Jk has the highest priority among all jobs in C(I, l), Jk is not preempted during
[rk, Ck] by any job in C(I, l) (but could be by higher priority jobs not in C(I, l)).
Hence Jk is the only job in C(I, l) that is completed during [rk, Ck]. Now we count
the number of jobs in C(I, l) that are completed during I \ [rk, Ck]. Since HDF is
2-speed, HDF can complete at most 2|I| − 2Fk volume of work during I \ [rk, Ck].
Since we assumed that all jobs have unit size, the number of such jobs is at most

2|I| − 2Fk�. Hence, using this and by including Jk itself, we obtain

(2.5) 
2|I| − 2Fk�+ 1 ≥ |C(I, l)|.
We now lower-bound |N({vx,k}) ∩ Y | to show (2.4). Roughly speaking, we want

to show that OPT has many jobs of flow time at least Fk. Let JHDF(I) be the set of
jobs that are completed by HDF during I. Note that all jobs in JHDF(I) must arrive
during the interval I. For the sake of contradiction, suppose that this is not true, i.e.,
that there is a job Jj that arrives before the start of I and completes during I. Then
HDFmust be busy processing jobs of weight as high as Jj during [rj , Cj ], contradicting
the definition of the interval I being maximal. Consider the time at e(I) +Fk, where
e(I) is the ending time of the interval I. Since the volume of jobs in JHDF(I) is 2|I|
(recall that HDF has 2 speed) and OPT can process at most |I|+Fk volume of work
during I∪ [e(I), e(I)+Fk ], OPT must have at least 2|I|−(|I|+Fk) = |I|−Fk volume
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timeI

rk Ck

e(I)

e(I) + Fk

Fig. 2.2. The interval I in HDF’s schedule.

of jobs in JHDF(I) left at time e(I) + Fk; see Figure 2.2. Therefore if |I| − Fk is an
integer, OPT has at least |I|−Fk+1 jobs in JHDF(I) that have flow time at least Fk;
here one extra job that is completed by OPT exactly at time e(I)+Fk is counted. If
|I| − Fk is not integral, then OPT has at least �|I| − Fk jobs in JHDF(I) that have
flow time at least Fk. In both cases, we conclude that OPT has at least 
|I|−Fk�+1
jobs in JHDF(I) that have flow time at least Fk. All such jobs have weight at least 2l,
since they are in JHDF(I). Hence the vertices in Y corresponding to such jobs are
neighbors of vx,k, and we have

(2.6) |N({vx,k}) ∩ Y | ≥ 
|I| − Fk�+ 1.

The inequalities (2.5) and (2.6) prove (2.4), and the lemma follows.
Now we are ready to complete the proof of Lemma 2.3. For a subset S ⊆ X let

N(S) denote the out-neighborhood S, and let N(S, l) := N(S) ∩Wl. By Lemma 2.6
we have

∑
vx,i∈Wl(Xs)

wi ≤ |Wl(Xs)|2l+1 ≤ 2|N(Wl(Xs))|2l+1 [by Lemma 2.6]

= 2
∑
h≥l

|N(Wl(Xs), h)|2l+1 = 2
∑
h≥l

∑
vy,j∈N(Wl(Xs),h)

2l+1

= 4
∑
h≥l

1

2h−l

∑
vy,j∈N(Wl(Xs),h)

2h = 4
∑
h≥l

1

2h−l

∑
vy,j∈N(Wl(Xs)),h)

wj .

Using this, we have that

∑
vx,i∈Xs

wi =
∑
l

∑
vx,i∈Wl(Xs)

wi ≤
∑
l

4
∑
h≥l

1

2h−l

∑
vy,j∈N(Wl(Xs),h)

wj

≤ 4
∑
h

∑
l≤h

1

2h−l

∑
vy,j∈N(Wl(Xs),h)

wj ≤ 4
∑
h

∑
l≤h

1

2h−l

∑
vy,j∈N(Xs,h)

wj

≤ 8
∑
h

∑
vy,j∈N(Xs,h)

wj ≤ 8
∑

vy,j∈Ys

wj .

This completes the proof of (2.3) and thus of Lemma 2.3.

3. Lower bounds. In this section we show that there is no scalable algorithm,
there is no oblivious algorithm better than HDF, and the uniform cost functions are
necessary to obtain O(1)-speed O(1)-competitiveness. All these lower bounds hold
even for randomized algorithms.

Theorem 3.1. For any ε > 0, no randomized online algorithm is constant
competitive with speed 7/6− ε for the objective of

∑
j g(Fj).
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Proof. We will rely on Yao’s min-max principle to prove a lower bound on the
competitive ratio of any randomized online algorithm [8]. The randomized instance is
constructed as follows. Consider the cost function g(F ) = 2c for F > 15 and g(F ) = 0
for 0 ≤ F ≤ 15, where c ≥ 1 is an arbitrary constant. The job instance is as follows:

• Jb: one big job of size 15 that arrives at time 0.
• S1: a set of small jobs that arrive at time 10. Each job has size 35−30s

c , and
the total size of jobs in S1 is 10.

• S2: a set of small jobs that arrive at time 15. Each job has size 35−30s
c , and

the total size of jobs in S2 is 10.
For simplicity, we assume that 10c

35−30s is an integer. The job Jb and the set S1

of jobs arrive with probability 1, while the set S2 of jobs arrives with probability 1
2c .

Let E denote the event that the set S2 of jobs arrives.
Consider any deterministic algorithm A. We will consider two cases depending on

whether A finishes Jb by time 15 or not. Note that A’s scheduling decision concerning
whether A completes Jb by time 15 or not does not depend on the jobs in S2, since
jobs in S2 arrive at time 15. We first consider the case where A did not finish the
big job Jb by time 15. Conditioned on ¬E , A’s cost is at least 2c. Hence A has an
expected cost at least 2c(1− 1

2c ) ≥ c. Now consider the case where A completes Jb by
time 15. For this case, say the event E occurred. Let V (S, t) :=

∑
j∈S pA(t) denote

the remaining volume, under A’s schedule, of all jobs in some set S at time t. Let
s = 7/6 − ε be the speed that A is given, where ε > 0 is a fixed constant. Since A
spent 15

s amount of time during [0, 15] working on Jb, A could have spent at most
15 − 15

s time on jobs in S1. Hence V (S1, 15) ≥ 10 − s(15 − 15
s ) = 25 − 15s and

V (S2, 15) = 10. Since A can process at most 15s volume of work during [15, 30], we
have V (S1 ∪ S2, 30) ≥ 35− 30s = 30ε. Since each job in S1 ∪ S2 has size 35−30s

c , the
number of jobs left is at least c. Since at time 30, each job has flow time at least 15,
the algorithm A has total cost no smaller than 2c2. Recalling that Pr[E ] = 1

2c , A’s
expected cost is at least c.

Now let us look at the adversary’s schedule. Conditioned on ¬E , the adversary
completes Jb first and all jobs in S1 by time 25, thereby having no cost. Conditioned
on E , the adversary delays the big job Jb until it completes all jobs in S1 and S2 by
time 20 and 30, respectively. Note in this schedule that each job in S1 ∪ S2 has flow
time at most 15. The adversary has cost 2c only for the big job. Hence the expected
cost of the adversary is 1

2c(2c) = 1. This, together with the above argument that A’s
expected cost is at least c, shows that the competitive ratio of any online algorithm
is at least c. Since this holds for any constant c, the theorem follows.

Theorem 3.2. For any ε > 0, there is no oblivious randomized online algorithm
that is O(1)-competitive for the objective of

∑
j g(Fj) with speed augmentation 2− ε.

Proof. We appeal to Yao’s min-max principle [8]. Let A be any deterministic
online algorithm. Consider the cost function g such that g(F ) = 2c for F > D and
g(F ) = 0 for 0 ≤ F ≤ D. The constant D is hidden to A and is set to 1 with
probability 1

2c and to n + 1 with probability 1 − 1
2c . Let E denote the event that

D = 1. At time 0, one big job Jb of size n + 1 is released. At each integer time
1 ≤ t ≤ n, one unit-sized job Jt is released. Here n is assumed to be sufficiently large
such that ε(n + 1) − 1 > c. Note that the event E has no effect on A’s scheduling
decision, since A is ignorant of the cost function.

Suppose that the online algorithm A finished the big job Jb by time n+1. Further,
say that the event E occurs, that is, D = 1. Since 2n+1 volume of jobs in total were
released and A can process at most (2− ε)(n+1) amount of work during [0, n+1], A
has at least 2n+1− (2− ε)(n+1) volume of unit-sized jobs unfinished at time n+1.
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Each such unit-sized job has flow time greater than 1; hence A has total cost at least
2c(ε(n + 1) − 1)) > 2c2. Knowing that Pr[E ] = 1

2c , A has an expected cost greater
than c. Now suppose that A did not finish Jb by time n+ 1. Conditioned on ¬E , A
has cost at least 2c. Hence A’s expected cost is at least 2c(1− 1

2c) > c.
We now consider the adversary’s schedule. Conditioned on E (D = 1), the ad-

versary completes each unit-sized job within one unit time, hence has a nonzero cost
only for Jb, and so has total cost 2c. Conditioned on ¬E (D = n+ 1), the adversary
schedules jobs in a first-in-first-out fashion, thereby having cost 0. Hence the adver-
sary’s expected cost is 1

2c(2c) = 1. The claim follows since A has cost greater than c
in expectation.

Theorem 3.3. There is no randomized online algorithm that is O(1)-speed O(1)-
competitive for the objective of

∑
j gj(Fj).

Proof. To show a lower bound on the competitive ratio of any randomized al-
gorithm, we appeal to Yao’s min-max principle [8] and construct a distribution on
job instances for which any deterministic algorithm performs poorly compared to the
optimal schedule. All cost functions gi have a common structure. That is, each job Ji
is completely defined by two quantities di and λi, which we call Ji’s relative deadline
and cost, respectively: gi(Fi) = 0 for 0 ≤ Fi ≤ di, and gi(Fi) = λi for Fi > di. Hence
Ji incurs no cost if completed by time ri + di, and cost λi otherwise. Recall that ri
and pi are Ji’s arrival time and size, respectively. For this reason, we will say that
Ji has deadline ri + di. For notational convenience, let us use a compact notation
(ri, ri + di, pi, λi) to characterize all properties of each job Ji where pi is Ji’s size.

Let h, T, L be integers such that h ≥ 2s, T = 2h, L > 2cT 2. For each integer
0 ≤ l ≤ h = 2s, there is a set Cl of jobs. (According to a distribution we will define
soon, some jobs in Cl may or may not arrive.) All jobs have deadlines no greater
than T . We first describe the set C0. In C0, all jobs have size 1 and relative deadline 1,
and there is exactly one job that arrives at each unit time. The job with deadline t has
cost Lt. More concretely, C0 = {(t− 1, t, 1, Lt) | t is an integer such that 1 ≤ t ≤ T }.
Note that |C0| = T . We now describe the other sets of jobs Cl for each integer
1 ≤ l ≤ h. All jobs in Cl have size 2l−1 and relative deadline 2l, and at every
2l time steps, exactly one job in Cl arrives. The job with deadline t has cost Lt.

Formally, Cl = {(2l(j − 1), 2lj, 2l−1, L2lj) | j is an integer such that 1 ≤ j ≤ 2h−l}.
Note that |Cl| = 2h−l. Let C =

⋃
0≤l≤h Cl. Notice that all jobs with deadline t have

cost Lt.
As we mentioned above, jobs in C do not arrive according to a probability dis-

tribution. To formally define such a distribution on job instances, let us group jobs
depending on their arrival time. Let Rt denote the set of jobs in C that arrive at
time t. Let R≤t :=

⋃
0≤t′≤t Rt′ . We let Et, 0 ≤ t ≤ T − 1, denote the event that all

jobs in R≤t arrive and these are the only jobs that arrive. Let Pr[Et] = 1
Ltθ , where

θ =
∑

0≤j≤T−1
1
Lj is a normalization factor to ensure that

∑
0≤t≤T−1 Pr[Et] = 1.

The following lemma will reveal a nice structure of the instance we created. Let
Dt denote the set of jobs in C that have deadline t. Let D>t :=

⋃
t<t′≤T Dt′ .

Lemma 3.4. Consider the occurrence of event Et, 0 ≤ t ≤ T − 1. There exists
a schedule with speed 1 that completes all jobs in R≤t ∩ D>t before their deadline.
Further, such a schedule has cost at most 2TLt.

Proof. We first argue that all jobs in R≤t ∩ D>t can be completed before their
deadlines. Observe that there exists exactly one job in Cl ∩ R≤t ∩ D>t for each l.
This is because the set of intervals {[2l(j − 1), 2lj] | j is an integer s.t. 1 ≤ j ≤ 2h−l}
defined by the arrival time and deadline of jobs in Cl forms a partition of the time
interval [0, T ]. We schedule jobs in R≤t ∩ D>t in increasing sizes. Hence the first
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job we schedule is the job in C0 ∩ R≤t ∩ D>t, and it has no choice other than being
scheduled exactly during [t, t+ 1]. Now consider each job Ji in Cl ∩R≤t ∩ D>t. It is
not difficult to see that either [2l(j − 1), 2l(j − 1) + 2l−1] or [2l(j − 1) + 2l−1, 2lj] is
empty and therefore is ready to schedule the job Ji of size 2l−1 in Cl ∩ R≤t ∩ D>t.
Finally, we upper-bound the cost of the above schedule. Since all jobs with deadlines
greater than t are completed before their deadline under the schedule, each job can
incur cost at most Lt. Knowing that there are at most 2T jobs, the total cost is at
most 2TLt.

Corollary 3.5. E[OPT] ≤ 2T 2

θ .
Proof. Recall that Pr[Et] = 1

Ltθ . By Lemma 3.4, we know, in case of the occur-
rence of event E , that there exists a feasible schedule with speed 1 that results in cost

at most 2TLt. Hence we have E[OPT] ≤ ∑
0≤t<T 2TLt 1

Ltθ = 2T 2

θ .
We now show that any deterministic algorithm A performs much worse in expec-

tation than the optimal schedule OPT.
Lemma 3.6. Any deterministic algorithm A given speed less than s has cost at

least L
θ in expectation.

Proof. Note that the total size of jobs in C0 is T , and the total size of jobs
in each Cl, 1 ≤ l ≤ h, is T/2. Hence the total size of all jobs in C is at least
(h/2 + 1)T ≥ (s + 1)T . The algorithm A, with speed s, cannot complete all jobs in
C before their deadlines, since all jobs have arrival times and deadlines during [0, T ].
Let Ji be a job in Dt+1 that A fails to complete before its deadline for an integer
0 ≤ t ≤ T − 1. Note that Ji arrives no later than t since all jobs have size at least 1.
Further, the decision concerning whether A completes Ji before its deadline or not
has nothing to do with jobs in Rt+1. Hence it must be the case that, for at least
one of the events E0, . . . , Et, A does not complete Ji by time t + 1, which incurs an
expected cost of at least 1

LtθL
t+1 ≥ L

θ .
By Yao’s min-max principle, Corollary 3.5 and Lemma 3.6 show that the com-

petitive ratio of any randomized algorithm is at least L
θ

/
2T 2

θ = L
2T 2 > c.

4. Analysis of FIFO for unit-size jobs. In this section we will show that
FIFO is (1 + ε)-speed O( 1

ε2 )-competitive for minimizing
∑

i∈[n] g(Fi) when jobs have
uniform sizes and unit weights. Without loss of generality, we can assume that all
jobs have size 1, since jobs are allowed to arrive at arbitrary times. The proof follows
similarly as in the case where jobs have unit size and arbitrary weight. Recall that
in the previous section we charged the flow time of a job in the algorithm’s schedule
to jobs in the optimal solution’s schedule that have larger flow time. In this case
we can get a tighter bound on the number of jobs in the optimal solution’s schedule
that a job in FIFO’s schedule can charge to, which allows us to reduce the resource
augmentation.

Consider an input sequence σ, and fix a constant 0 < ε ≤ 1
2 . Let Fi denote

the flow time of job Ji in FIFO’s schedule, and F ∗
i be the flow time of Ji in OPT’s

schedule. Let G = (V,E) be a flow network. There are source and sink vertices s
and t, respectively. As before, there are two partite sets X and Y . There is a vertex
vx,i ∈ X and a vertex vy,i ∈ Y corresponding to job Ji for all i ∈ [n]. There is an
edge (s, vx,i) with capacity 1 for all i ∈ [n]. There is an edge (vy,i, t) with capacity 4

ε2

for all i ∈ [n]. There exists an edge (vx,i, vy,j) of capacity ∞ if Fi ≤ F ∗
j . The focus of

this section is showing the following lemma.
Lemma 4.1. The maximum flow in G is n.
Assuming that this lemma is true, then the following theorem can be shown.
Theorem 4.2. FIFO is (1 + ε)-speed 4

ε2 -competitive for minimizing
∑

i∈[n] g(Fi)
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when all jobs are unit sized.
Proof. Lemma 4.1 states that the maximum flow in G is n. Let f denote a

maximum flow in G, and let f(u, v) be the flow on an edge (u, v). Note that the
maximum flow is achieved only when f(s, vx,i) = 1 for all i ∈ [n]. We have that

FIFO =
∑
i∈[n]

g(Fi) =
∑
i∈[n]

f(s, vx,i)g(Fi)

=
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(Fi) [f is conserved at vx,i]

≤
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(F
∗
j ) [vx,i, vy,j ∈ E only if Fi ≤ F ∗

j ]

≤
∑
j∈[n]

4

ε2
g(F ∗

j ) [f is conserved at vy,j, and the capacity of vy,jt is
4
ε2 ]

=
4

ε2
OPT.

Thus it only remains to prove Lemma 4.1. Clearly the min-cut value is at most n;
thus we focus on lower-bounding the min-cut value. Let (S, T ) be a minimum cut
such that S contains the source s and T contains the sink t. To simplify the notation
let Xs = X ∩ S, Xt = X ∩ T , Ys = Y ∩ S, and Yt = Y ∩ T . By definition each edge
connecting s to a vertex in Xt is in (S, T ), and the total capacity of these cut edges
is
∑

vx,i∈Xt
1. Knowing that each edge from a vertex in Ys to t is in (S, T ), it suffices

to show that

(4.1)
∑

vy,j∈Ys

4

ε2
≥

∑
vx,i∈Xs

1.

As in the proof of Lemma 2.3, Ys is a subset of the out-neighborhood of the
vertices in Xs since the edges connecting vertices in X and Y have capacity ∞. We
now show a lemma similar to Lemma 2.6.

Lemma 4.3. The vertices in Xs have at least
ε2

4 |Xs| neighbors in Y ; i.e., |N(Xs)∩
Y | ≥ ε2

4 |Xs|.
Proof. Consider a maximal time interval I where FIFO is always busy scheduling

jobs. Let Jk be the job (if it exists) in Xs that has arrived the earliest (and thus
has highest priority in FIFO) out of all the jobs in Xs scheduled during I. Let
C(I) be the jobs in Xs scheduled by FIFO during I. We will show that vx,k has at

least ε2

4 |C(I)| neighbors in Y such that for each such neighbor vy,j , FIFO completed
the corresponding job Jj during the interval I. By taking a union over all possible

intervals I, we will have that the neighborhood of Xs has size at least ε2

4 |Xs|.
Notice that FIFO does a (1+ ε)(|I| −Fk) volume of work during I \ [rk, Ck] since

FIFO is given (1+ε) speed and is busy during this interval. Knowing that jobs are unit-
sized, FIFO completes at most 
(1+ ε)(|I| −Fk)� jobs during I \ [rk, Ck]. The job Jk
is the only job in C(I) scheduled during [rk, Ck] because Jk has the highest priority in
FIFO’s schedule of the jobs in C(I). This implies that |C(I)| ≤ 
(1+ ε)(|I|−Fk)�+1.
FIFO completes a volume of (1 + ε)|I| work during I. Further, every job FIFO
completes during I arrived during I since FIFO was not busy before I and FIFO
scheduled these jobs during I. Let e(I) denote the ending time point of I, and
JFIFO(I) be the jobs completed by FIFO during I. The previous argument implies
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timeI

rk Ck

e(I) + Fk

t*

e(I)
I

Fig. 4.1. The intervals I and I′ in FIFO’s schedule.

that at least a (1 + ε)|I| − |I| − Fk = ε|I| − Fk volume of work corresponding to jobs
in JFIFO(I) remains in OPT’s queue at time e(I) + Fk since OPT has 1 speed. If
ε|I|−Fk is integral, then at least ε|I|−Fk+1 jobs in JFIFO(I) have flow time at least
Fk in OPT’s schedule; here there is one job that could be completed exactly at time
e(I) + Fk that is counted. Otherwise, OPT has �ε|I| − Fk = 
ε|I| − Fk�+ 1 jobs in
JFIFO(I) that have flow time at least Fk. In either case, at least 
ε|I| − Fk�+ 1 jobs
in JFIFO(I) have flow time at least Fk in OPT’s schedule.

First consider the case where Fk ≤ ε
2 |I|. In this case at least 
ε|I| − Fk� + 1 ≥


 ε
2 |I|�+ 1 jobs wait at least Fk time in OPT. Knowing that |C(I)| ≤ 
(1 + ε)(|I| −

Fk)� + 1 ≤ 
(1 + ε)|I|� + 1, the neighborhood of vx,k contains at least 
 ε
2 |I|� + 1 ≥

ε
2(1+ε)
(1 + ε)|I|� − ε

2(1+ε) + 1 ≥ ε
2(1+ε)(
(1 + ε)|I|� + 1) ≥ ε

2(1+ε) |C(I)| ≥ ε2

2 |C(I)|
nodes. The last inequality follows from ε < 1/2.

Let us consider the other case that Fk > ε
2 |I|. Let t∗ be the earliest time before

Ck such that FIFO only schedules jobs that arrived no later than rk during [t∗, Ck].
Equivalently, t∗ is the beginning of the interval I by definition of FIFO. Notice that
t∗ ≤ rk. Let I ′ = [t∗, Ck]. We know that FIFO completes a (1 + ε)|I ′| volume
of work during |I ′|. Let JFIFO(I

′) denote the jobs completed by FIFO during I ′.
Any job in JFIFO(I

′) arrives after t∗ because FIFO was not scheduling a job before
t∗ by definition of I ′. Note that any job in JFIFO(I

′) will have flow time at least
Fk if it is not satisfied until time Ck, since the jobs arrived no later than rk. See

Figure 4.1. Therefore, at least a (1 + ε)|I ′| − |I ′| = ε|I ′| ≥ εFk > ε2

2 |I| volume of
work corresponding to jobs in JFIFO(I

′) remains unsatisfied in OPT’s schedule at
time Ck because OPT has unit speed and it was assumed that Fk > ε

2 |I|. Thus at

least � ε2

2 |I| jobs in JFIFO(I
′) have flow time at least Fk in OPT. We also know that

|C(I)| ≤ 
(1 + ε)(|I| −Fk)�+1 ≤ (1 + ε)|I| since Fk ≥ 1
1+ε . Together this shows that

vx,k has at least ε2

2(1+ε) |C(I)| ≥ ε2

4 |C(I)| neighbors in Y knowing that ε ≤ 1
2 .

Using Lemma 4.3, we can complete the proof of Lemma 4.1. By Lemma 4.3 we
have |Xs| ≤ 4

ε2 |N(Xs) ∩ Y | ≤ 4
ε2 |Ys|, which implies (4.1) and Lemma 4.1.

5. Analysis of WLAPS for concave functions. In this section we consider
the objective function

∑
i∈[n] wig(Fi), where wi is a positive weight corresponding to

job Ji and g : R≥0 → R≥0 is a twice-differentiable, nondecreasing, concave function.
We let g′ and g′′ denote the derivative of g and the second derivative function of
g, respectively. For this objective we will show a (1 + ε)-speed O( 1

ε2 )-competitive
algorithm that is nonclairvoyant. The algorithm that we consider is a generalization
of the algorithm WLAPS [12, 13, 11].

Consider any job sequence σ, and let 0 < ε ≤ 1/3 be fixed. Without loss of
generality it is assumed that each job has a distinct arrival time. We assume that
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WLAPS is given (1 + 3ε)-speed. At any time t, let A(t) denote the jobs in WLAPS’s
queue. The algorithm at each time t finds the set of the most recently arriving
jobs A′(t) ⊆ A(t) such that

∑
Ji∈A′(t)wig

′(t − ri) = ε
∑

Ji∈A(t) wig
′(t − ri). The

algorithm WLAPS distributes the processing power among the jobs in A′(t) according
to their current increase in the objective. That is, Jj ∈ A′(t) receives processing power
(1 + 3ε)wjg

′(t− rj)/(ε
∑

Ji∈A′(t) wig
′(t− ri)).

In case where there does not exist such a set A′(t) such that the sum of wig
′(t−ri)

over all jobs A′(t) is exactly ε
∑

Ji∈A(t)wig
′(t − ri), we make the following small

change. Let A′(t) be the smallest set of the most recently arriving jobs such that
the sum of wig

′(t − ri) over all jobs in A′(t) is no smaller than ε
∑

Ji∈A(t) wig
′(t −

ri). We let the job Jk, which arrives the earliest in A′(t), receive processing power∑
Ji∈A′(t) wig

′(t−ri)−ε
∑

Ji∈A(t) wig
′(t−ri). For simplicity, throughout the analysis,

we will assume that there exists such a set A′(t) of the most recently arriving jobs
such that

∑
Ji∈A′(t) wig

′(t − ri) = ε
∑

Ji∈A(t) wig
′(t − ri). This is done to make the

analysis more readable and the main ideas transparent.
To prove the competitiveness of WLAPS we define the following potential func-

tion. (For a survey on potential functions for scheduling problems, see [14].) For a
job Ji let pAi (t) be the remaining size of job Ji in the WLAPS schedule at time t,
and let pOi (t) be the remaining size of job Ji in OPT’s schedule at time t. Let
zi(t) = max{pAi (t)− pOi (t), 0}. The potential function is

Φ(t) =
1

ε

∑
Ji∈A(t)

wig
′(t− ai)

∑
Jj∈A(t),rj≥ri

zj(t).

We will look into noncontinuous changes of Φ(t) that occur due to job arrivals and
completions, and continuous changes of Φ(t) that occur due to WLAPS’s processing,
OPT’s processing, and time elapsed. We will aggregate all these changes later.

Job arrival. Consider when job Jk arrives at time t. There the change in the
potential function is 1

εwkg
′(0)zk(rk) + 1

ε

∑
Ji∈A(t)wig

′(t − ai)zk(rk). When job Ji
arrives, zi(ri) = 0, so there is no change in the potential function.

Job completion. The optimal solution completing a job has no effect on the po-
tential function. When the algorithm completes a job Ji at time t, some terms may
disappear from Φ(t). In this case, the potential function can only decrease, since all
terms in Φ(t) are nonnegative.

Continuous change. We now consider the continuous changes in the potential
function at time t. These include changes due to time elapsed and changes in the z
variable due to OPT and WLAPS processing jobs. First consider the change due to
time. This is equal to

d

dt
Φ(t) =

1

ε

∑
Ji∈A(t)

wig
′′(t− ai)

∑
Jj∈A(t),rj≥ri

zj(t).

We know that wi and zi(t) are positive for all jobs Ji ∈ A(t). Further, g′′ is
always nonpositive since g is concave. Therefore, time changing can only decrease the
potential.

Now consider the change due to OPT’s processing. It can be seen that the
most OPT can increase the potential function is by working exclusively on the job
which has the latest arrival time. In this case, for any job Ji ∈ A(t) the variable∑

Jj∈A(t),rj≥ri
zj(t) changes at rate 1 because OPT has speed 1. The increase in the
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potential due to OPT’s processing is at most

d

dt
Φ(t) ≤ 1

ε

∑
Ji∈A(t)

wig
′(t− ai).

Now consider the change in the potential function due to the algorithm’s pro-
cessing. The algorithm decreases the z variable and therefore can only decrease the
potential function. Recall that a job Jj ∈ A′(t) is processed by WLAPS at a rate
of (1 + 3ε)wjg

′(t − rj)/(
∑

Ji∈A′(t) wig
′(t − ri)) because WLAPS is given (1 + 3ε)-

speed. Therefore, for each job Jj ∈ A′(t) \ O(t) the variable zj decreases at a rate of
(1 + 3ε)wjg

′(t − rj)/(
∑

Ji∈A′(t) wig
′(t− ri)). Hence we can bound the change in the

potential as

d

dt
Φ(t) ≤ −1

ε

∑
Ji∈A(t)\A′(t)

wig
′(t− ai)

∑
Jj∈A′(t)\O(t)

(1 + 3ε)wjg
′(t− rj)∑

Jk∈A′(t) wkg′(t− rk)

≤ −1− ε

ε

∑
Ji∈A(t)

wig
′(t− ai)

∑
Jj∈A′(t)\O(t)

(1 + 3ε)wjg
′(t− rj)∑

Jk∈A′(t) wkg′(t− rk)

[by definition of A′(t)]

= −1− ε

ε2

∑
Jj∈A′(t)\O(t)

(1 + 3ε)wjg
′(t− rj)

≤ −1 + ε

ε2

∑
Jj∈A′(t)

wjg
′(t− rj) +

2

ε2

∑
Jj∈O(t)

wjg
′(t− rj) [since 0 < ε ≤ 1/3]

≤ −1 + ε

ε

∑
Jj∈A(t)

wjg
′(t− rj) +

2

ε2

∑
Jj∈O(t)

wjg
′(t− rj). [by definition of A′(t)]

By combining the changes due to OPT and the algorithm’s processing and the
change due to time, we determine the continuous change in the potential function to
be at most

1

ε

∑
Ji∈A(t)

wig
′(t− ai)− 1 + ε

ε

∑
Jj∈A(t)

wjg
′(t− rj) +

2

ε2

∑
Jj∈O(t)

wjg
′(t− rj)

= −
∑

Jj∈A(t)

wjg
′(t− rj) +

2

ε2

∑
Jj∈O(t)

wjg
′(t− rj).

Completing the analysis. At this point we are ready to complete the analysis.
We know that Φ(0) = Φ(∞) = 0 by definition of Φ, which implies that the total sum
of noncontinuous changes and continuous changes of Φ(t) is 0. Further, there are
no increases in Φ for noncontinuous changes. Hence, we have

∫∞
t=0

d
dtΦ(t) ≥ 0. Let

WLAPS denote the algorithm’s final objective, and OPT denote the optimal solu-
tion’s final objective. Let d

dtWLAPS(t) =
∑

Jj∈A(t)wjg
′(t − rj) denote the increase

in WLAPS objective at time t, and let d
dtOPT(t) =

∑
Jj∈O(t) wjg

′(t− rj) denote the
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increase in OPT’s objective at time t. We have that

WLAPS =

∫ ∞

t=0

d

dt
WLAPS(t)

≤
∫ ∞

t=0

d

dt
WLAPS(t) +

d

dt
Φ(t)

≤
∫ ∞

t=0

d

dt
WLAPS(t)− d

dt
WLAPS(t) +

2

ε2
d

dt
OPT(t)

≤ 2

ε2
OPT.

This proves the following theorem.
Theorem 5.1. The algorithm WLAPS is (1 + ε)-speed O( 1

ε2 )-competitive for
minimizing

∑
i∈[n] wig(Fi) when g : R≥0 → R≥0 is a concave nondecreasing positive

function that is twice differentiable.

6. Conclusions and discussion. One obvious question is whether there exists
an online algorithm that is O(1)-competitive with speed less than two. To obtain such
an algorithm (if one exists), one must exploit the structure of cost functions. Our
analysis can be extended to show that there exists an O(1)-speed O(1)-competitive
algorithm on identical parallel machines.

Acknowledgment. We thank Ravishankar Krishnaswamy for extensive and
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