
IEOR 8100 SCHEDULING ALGORITHMS

Lecturer: Clifford Stein Lecture 1

Scribe: Vladlena Powers Date: 8 Sep 2016

1 Models. Notation. Applications.

In a scheduling problem the number of jobs is denoted by n and the number of machines by m.

All definitions in this chapter, except the definition of idle time and response time, are borrowed

from [1, p. 14-19].

One of the schedule manipulation interfaces is Gantt chart (see Figure 1). The Gantt chart is

the usual horizontal bar chart with the x-axis representing the time and the y-axis, the various

machines.

Figure 1: Example of a Gantt chart. Numbers specify lengths of jobs.

The following pieces of data are associated with job j:

Processing time (length) pij . The pij represents the processing time of job j on machine i. The

subscript i is omitted if the processing time of job j does not depend on the machine or if job j is

only to be processed on one given machine.

Release date rj . It is the earliest time at which job j can start its processing.

Due date dj . The due date dj of job j represents the committed shipping or completion date.

When a due date must be met, it is referred to as a deadline.

Weight wj . The weight wj of job j is basically a priority factor, denoting the importance of job j

relative to the other jobs in the system.

1

A scheduling problem is described by a tripletα |β |γ, representingmachine | constraints |objective.

The α field describes the machine environment and contains a single entry. The β field provides de-

tails of processing characteristics and constraints and may contain no entry at all or multiple entries.

The γ field describes the objective to be minimized and usually contains a single entry.

Single machine 1. The case of a single machine is the simplest of all possible machine environ-

ments and is a special case of all other more complicated machine environments.

Identical machines in parallel Pm. There are m identical machines in parallel. Job j requires

a single operation and may be processed on any one of the m machines or on any one that belongs

to a given subset.

Machines in parallel with different speeds Qm. There are m machines in parallel with different

speeds. The speed of machine i is denoted by vi. The time pij that job j spends on machine i is

equal to pi/vi (assuming job j receives all its processing from machine i).

Unrelated machines in parallel Rm. This environment is a generalization of the previous one.

There are m different machines in parallel. Machine i can process job j at speed vij (assuming job

j receives all its processing from machine i).

Flow shop Fm. There are m machines in series. Each job has to be processed on each of the m

machines. All jobs have to follow the same route. After completion on one machine, a job joins the

queue at the next machine. Usually, all queues are assumed to operate under the First In First Out

(FIFO) discipline. If the FIFO discipline is in effect, the flow shop is referred to as a permutation

flow shop and the β field includes the entry prmu.

Job shop Jm. In a job shop with m machines, each job has its own predetermined route to follow.

A distinction is made between job shops in which a job may visits each machine at most once and

job shops in which a job may visit each machine more than once. In the latter case, the β-field

contains the entry recrc for recirculation.

Open shop Om. There are m machines. Each job has to be processed on each of the m machines.

However, some of these processing times may be zero.

Sequence dependent setup times sjk. The sjk represents the sequence dependent setup time

between jobs j and k; s0k denotes the setup time for job k if job k is first in the sequence and sj0

the cleanup time after job j if job j is last in the sequence.

Preemptions prmp. Preemptions imply that it is not necessary to keep a job on a machine, once

started, until completion. The schedule is allowed to interrupt the processing of a job at any point

in time and put a different job on the machine instead.

2

Precedence constraints prec. Precedence constraints may appear in a single machine or in a

parallel machine environment, requiring that one or more jobs may have to be completed before

another job is allowed to start its processing.

Completion time Cij . The completion time of the operation of job j on machine i. The time job

j exits the system is denoted by Cj .

Response time Fj . Fj = Cj − rj .

Idle time Ij . Ij = Cj − rj − pj .

Lateness Lj . Lj = Cj − dj .

Tardiness Tj . Tj = max(Cj − dj , 0) = max(Lj , 0).

Unit penalty Uj . Uj =

1, if Cj > dj

0, otherwise

Examples of possible objective functions to be minimized are:

Makespan Cmax. The makespan, define as max(C1, . . . , Cn), is equivalent to the completion time

of the last job to leave the system. A minimum makespan usually implies a high utilization of the

machine(s).

Maximum Lateness Lmax. The maximum lateness is defined as max(L1, . . . , Ln). It measures

the worst violation of the due dates.

Total weighted completion time
∑
wjCj . The sum of the weighted completion times of the n

jobs gives an indication of the total holding or inventory costs incurred by the schedule. The sum

of the completion times if often referred to in the literature as the flow time.

Total weighted tardiness
∑
wjTj .

2 Minimizing Schedule Length

Lemma 1. A scheduling problem with the makespan objective without constraints is a special case of

a scheduling problem with the total weight completion time objective and with precedence constraints.

α | |Cmax ∝ α | prec |
∑
wjcj .

3

Proof. We want to prove that α | |Cmax reduces to α | prec |
∑
wjcj . Assume we know how to solve

α | prec |
∑
wjcj . Consider an instance of α | |Cmax with n jobs ji, i = 1, . . . , n. Construct the

precedence constraints in the following way (see Figure 2). Add a new job j0 with length 0. j0 can

be started after all ji, i = 1, . . . , n jobs are finished. Add weights w0 = 1 and wj = 0, i = 1, . . . , n.

Figure 2: Precedence constraints for Lemma 1.

Notice that min
∑n

0 wjcj = min C0 = min Cmax, since p0 = 0 and j0 has to be processed after

all ji, i = 1, . . . , n. The constructed problem is in the form α | prec |
∑
wjcj and has the same

value of objective function as the original problem. We conclude that α | |Cmax is a special case of

α | prec |
∑
wjcj .

The following algorithm and argument about its correctness is borrowed from [1, p. 106].

Algorithm 1. Minimizing Makespan with Preemptions

Step 1 Take the n jobs and process them one after another on a single machine in any sequence.

The makespan is them equal to the sum of the n processing times and is less than or equal to

mC∗max. C∗max = max
(
pmax,

∑n
j=1 pj/m

)
and, pmax is the largest job.

Step 2 Take this single machine schedule and cut it into m parts. The first part constitutes the

interval [0, C∗max], the second part the interval [C∗max, 2C
∗
max], the third part the interval

[2C∗max, 3C
∗
max], and so on.

Step 3 Take as the schedule for machine 1 the processing sequence of the first interval; take as the

schedule for machine 2 the processing sequence of the second interval; and so on.

Proof. (Correctness of the algorithm)

The resulting schedule is feasible. Part of a job may appear at the end of the schedule for machine

i while the remaining part may appear at the beginning of the schedule for machine i + 1. As

preemptions are allowed and the processing time of each job is less or equal to C∗max, such a schedule

4

is feasible. C∗max is a lower bound for Pm | prmp|Cmax. As this schedule has Cmax = C∗max, it is

also optimal. For an example see Figure 3.

Figure 3: Optimal schedule for an instance of P2 | prmp|Cmax.

Theorem 1. The decision version of a scheduling problem with two machines and with the makespan

objective function (P2 ||Cmax) is NP-complete.

Proof. Consider the corresponding decision problem. If there a schedule of makespan ≤ B =

(1/2)
∑n

j=1 pj? If we are given a schedule we can verify in polynomial time whether its makespan

≤ B, given a polynomial encoding of the problem.

We will show reduction from partition. Recall the definition of the partition problem. Given

positive integers a1, . . . , at and B = (1/2)
∑t

j=1 aj , do there exist two disjoint subsets S1 and S2

such that
∑

j∈Si
aj = B for i = 1, 2? [1, p. 538]

Assume we are given an instance of the partition problem. We form a scheduling problem as

follows, n = t, pj = aj , j = 1, . . . , n. We will show that there exists a schedule with an objective

value less than or equal to (1/2)
∑n

j=1 pj if and only if there exists a solution for the partition

problem.

If there is a solution to the partition problem, then schedule jobs with indexes from S1 on machine

1, and jobs with indexes from S2 on machine 2 in any order. This schedule is feasible since we

don’t have preemption and it satisfies Cmax ≤ B.

Now suppose that there is a schedule with an objective value less than or equal to (1/2)
∑n

j=1 pj .

Recall that B is also a lower bound for this scheduling problem. We conclude that indexes of jobs

on servers represent Si, i = 1, 2 and there exists a solution to the partition problem.

Theorem 2. List scheduling for Pm ||Cmax.

List scheduling for Pm ||Cmax gives 2-approximation.

Proof. We adopt the notations from Algorithm 1 and [1, p. 94-95].

5

We are given n jobs ji, i = 1, . . . , n. At t = 0 Assign first two job to the machines. After that,

whenever a machine is freed, the next job on the list is put on the machine. See Figure 4.

We want to show Cmax(LIST)
Cmax(OPT) ≤ 2. Cmax(LIST) denotes the makespan of the List schedule and

Cmax(OPT) denotes the makespan of the optimal schedule. Let T be the latest time when all

machines are busy. There is no job that starts after T . To prove the last statement we assume that

there is a job ji that starts after T , then this violates the list scheduling greedy approach described

above, since by definition of T there must be a machine that finishes processing a job at T . Let

pavg be
∑n

j=1 pj
m . Notice that T = pavg, when all machines stopped processing all jobs exactly at

time T . If there are some machines that are still working on some jobs after time T , then pavg is

larger in this case than the previous, since by the definition of T all machines are busy at T , so

T < pavg. We conclude that in general T ≤ pavg.

Cmax(LIST) ≤ T + pmax ≤ pavg + pmax ≤ 2C∗max ≤ Cmax(OPT).

Figure 4: Example of a list scheduling algorithm for an instance of
P2 ||Cmax.

We can prove (2− 1/m)-approximation using the idea from [1, p.95]:

Cmax(LIST) ≤ pmax +

∑n−1
j=1 pj

m
= pmax

(
1− 1

m

)
+

∑n
j=1 pj

m
.

It follows that

Cmax(LIST)

Cmax(OPT)
≤ pmax(1− 1/m)

Cmax(OPT)
+

∑n
j=1 pj/m

Cmax(OPT)
≤ 1− 1

m
+ 1 = 2− 1

m
.

Theorem 3. LPT rule for Pm ||Cmax.

LPT rule for Pm ||Cmax gives 4/3-approximation.

Proof. This proof contains ideas from [1, p.94-96].

The Longest Processing Time first (LPT) rule assigns at t = 0 the m largest jobs to the m machines.

6

After that, whenever a machine is freed, the longest job among those not yet processed is put on

the machine. This heuristic ties to place the shorter jobs toward the end of the schedule, where

they can be used for balancing the loads. [1, p. 94]

By contradiction. Assume that there exists one or more counterexamples where the ratio is strictly

larger than 4/3. If more than one such counterexample exist, there must exist an example with

the smallest number of jobs. Consider this smallest counterexample and assume it has n jobs.

This smallest counterexample has a useful property: under LPT, the shortest job is the last job to

start its processing and also the last job to finish its processing. Also, if this job is not the last to

complete its processing, the deletion of this smallest job will result in a counterexample with fewer

jobs. Assume pn is the shortest job. [1, p. 95]

Let T be defined the same as in the Theorem 2. Cj ≤ T+pmin, for j = 1, . . . , n =⇒ Cmax(LPT) ≤
T + pmin. There are two possible cases:

1. pmin ≤ 1
3Cmax(OPT) → Cmax ≤ 4

3Cmax(OPT).

2. pmin >
1
3Cmax(OPT). In this case there has to be fewer than three jobs per machine and

LPT rule gives the optimal schedule. It can be proven by induction.

We conclude that there are no examples of the problem for which the ratio is strictly larger than

4/3. Contradiction to the assumption of the existence of such examples. The statements is proved.

See Figure 5 for an example of the application of the LPT rule.

Figure 5: Example of the application of the LPT rule for an instance of
P2 ||Cmax.

Theorem 4 and Example 1 are borrowed from [1, p. 95-96].

Theorem 4. LPT rule for P2 ||Cmax.

LPT rule for P2 ||Cmax gives 4
3 −

1
3m -approximation.

7

Proof. Similarly to Theorem 3 we prove the statement by contradiction. Assume there exists the

smallest counterexample. It has a property: under LPT, the shortest job is the last job to start its

processing and also the last job to finish its processing. Let pn be the shortest job. It follows that

Cmax(LPT)− pn ≤
∑n−1

j=1 pj

m
.

The right-hand side is an upper bound on the starting time of the shortest job. This upper bound

is achieved when scheduling the first n − 1 jobs according to LPT results in each machine having

exactly the same amount of processing to do.

Cmax(LPT) ≤ pn +

∑n−1
j=1 pj

m
= pn

(
1− 1

m

)
+

∑n
j=1 pj

m
.

Since

Cmax(OPT) ≥
∑n

j=1 pj

m
,

the following series of inequalities holds for the counterexample:

4

3
− 1

3m
<
Cmax(LPT)

Cmax(OPT)
≤ pn (1− 1/m)

Cmax(OPT)
+

∑n
j=1 pj/m

Cmax(OPT)
≤ pn (1− 1/m)

Cmax(OPT)
+ 1.

Thus
4

3
− 1

3m
<
pn (1− 1/m)

Cmax(OPT)
+ 1

and

Cmax(OPT) < 3pn.

This implies that for the smallest counterexample the optimal schedule can result in at most two

jobs on each machine. In this case the LPT schedule is optimal and the ration of the two makespans

is equal to one. This contradiction completes the proof of the theorem.

Example 1. A worst case example of LPT rule for Pm ||Cmax.

Consider four parallel machines and nine jobs whose processing times are given in the following

table:

jobs 1 2 3 4 5 6 7 8 9

pj 7 7 6 6 5 5 4 4 4

8

Scheduling the jobs according to LPT results in a makespan of 15, while the optimal schedule has

a makespan of 12. This particular instance is thus a worst case when there are four machines in

parallel (see Figure 6).

Figure 6: A worst case example of LPT

References

[1] Pinedo, M. Scheduling. Theory, algorithms, and systems.. Upper Saddle River, New Jersey:

Prentice Hall, 2002.

9

	Models. Notation. Applications.
	Minimizing Schedule Length

