
IEOR 8100: Scheduling Algorithms 10/13/16

Lecture 10

Instructor: Cliff Stein Scribed by: Mauro Escobar

1 PTAS for 1|rj|
∑

Cj

Consider an instance I of 1|rj |
∑
Cj with optimal value OPT and ε > 0. Each of the following transformations

of the original instance will increase its optimal value by a factor that is less or equal than (1 + ε). Therefore, we

will get a new instance I ′ which optimal value will be ≤ (1 + ε)k ≈ 1 + kε = 1 + O(ε), where k is the number of

transformations done to I.

Transformations:

1. Round rj and pj up to powers of (1 + ε). The new release date rj will be Rx := (1 + ε)x for some x ∈ N.

Define the interval Ix := [Rx, Rx+1], then |Ix| = (1 + ε)x+1 − (1 + ε)x = ε(1 + ε)x = εRx.

2. Charging the end of the interval as completion time.

3. Set rj = max{rj , εpj}.

With these transformations we have the following lemma.

Lemma 1. Each job runs in at most s := log1+ε

(
1 +

1

ε

)
intervals.

Proof. Note that pj ≤
1

ε
rj =

1

ε
Rx =

1

ε2
|Ix|, for some x ∈ N. Therefore, the size of the s consecutive intervals

(starting with Ix) is
s−1∑
j=0

|Ix+j | =
s−1∑
j=0

|Ix|(1 + ε)j =
(1 + ε)s − 1

ε
|Ix| =

1

ε2
|Ix| ≥ pj .

We say that a job j is small if pj ≤ ε|Ix|, where rj = Rx. Then,

· if all the jobs are small, then SPT is (1 + ε)-optimal;

· there are at most
1

ε
non-small (large) jobs.

Let t = ε7OPT , then

· no more than
1

ε7
jobs have Cj > t.

Lemma 2. There is a (1 + O(ε))-optimal schedule in which each job is either: small when it runs, or runs after

time t.

Proof. Let k = log1+ε

1

ε4
. In the optimal schedule OPT , take each job j that is not small and run before time t,

and move it forward k intervals. Note that

pj ≤
1

ε
Rx =

1

ε2
|Ix| and |Ix+k| = |Ix|(1 + ε)k = |Ix|

1

ε4
.

1

Then, pj ≤
1

ε2
|Ix| = ε2|Ix+k|. Since the intervals are expanded by a factor of (1 + ε), job j can be held inside one

interval when it is moved forward k intervals, moreover, job j is going to be small in interval Ix+k. And even if 1
ε

jobs are sent forward to an interval Ix+k, in total they use ≤ 1

ε
· ε2|Ix+k| = ε|Ix+k|. Therefore,

∑
j: job pushed

forward

Cj ≤
1

ε
· ε3OPT +

1

ε
· ε

3OPT

1 + ε
+

1

ε
· ε

3OPT

(1 + ε)2
+ · · ·

= ε2OPT

(
1 +

1

1 + ε
+

1

(1 + ε)2
+ · · ·

)
= ε2OPT

1 + ε

ε
= ε(1 + ε)OPT.

With these analysis, we consider the following algorithm.

Algorithm 1 PTAS for 1|rj |
∑
Cj

1: Guess which
1

ε7
jobs run after time t.

2: Guess the order these jobs run in.
3: Schedule the remaining jobs by SPT.

The correctness of Algorithm 1 is given by the fact that, by Lemma 2, the completion time of large jobs (the ones

that are moved forward) is O(ε)OPT and SPT is (1 + ε)-optimal for the small jobs. The complexity of Algorithm

1 is O
(
n1/ε

7

n log n
)

. However, this can be improved to O
(
n log n+

(
1
ε

)
!
)
.

2 1|prec|
∑

wjCj

We will consider different mathematical programming formulations for 1|prec|
∑
wjCj :

1. If the variables are {Cj}, the completion times,

minimize
∑

wjCj

subject to Cj ≥ rj + pj , ∀j
Cj ≤ Ck − pk, ∀j ≺ k
Cj ≤ Ck − pk or Ck ≤ Cj − pj , ∀j, k.

(1)

2. If the variables are {δij} where δij =

{
1, if job j runs before job j,

0, otherwise.

3. If the variables are {xjt} where xjt =

{
1, if job j finishes at time t,

0, otherwise.

2

Let T be an upper bound on the schedule length, then Cj =
∑
t≤T txjt.

minimize
∑
j

wj
∑
t≤T

txjt

subject to
∑
t

xjt = 1, ∀j (every job runs)

∑
j

t+pj∑
s=t+1

xjs ≤ 1, ∀t ≤ T (at each t at most one job runs)

∑
t
txjt ≤

∑
t
txkt − pk

t∑
s=1

xjs ≥
t+pk∑
s=1

xks

 ∀j ≺ k, ∀t = rj + pj , . . . , T − pk (precedent constraints)

xjt = 0 if t < rj + pj ∀j,∀t (release dates)

xjt ∈ {0, 1} ∀j,∀t (integrality)

Consider the relaxed problem, that is, replacing the constraint xjt ∈ {0, 1} by the weaker constraint 0 ≤
xjt ≤ 1. What does this relaxed problem mean?

Note that there is an exponential number of variables and constraints. However, we can deal with problem,

instead of considering t ∈ {1, . . . , T} we allow t ∈ {1, (1 + ε), (1 + ε)2, . . .}, which is a set of size log1+ε T . We

obtain then a poly-sized integer program whose optimum is a (1 + ε)-approximation of the real optimum.

About the or constraints in (1):

Cj ≤ Ck − pk or Ck ≤ Cj − pj , ∀j, k (2)

From [1]: the difficulty with this ‘disjunctive’ constraints is that they are not linear inequalities and cannot be

modeled using linear inequalities. Instead we use a class of valid inequalities introduced by Queyranne (1993) and

Wolsey (1985), that are motivated by considering Smith’s rule for scheduling the jobs when there are no release

dates or precedence constraints. Smith (1956) proved that a schedule is optimal if and only if the jobs are scheduled

in order of non-decreasing ratio pj/wj . As a result, if we set wj = pj for all j, then the sum
∑
j wjCj =

∑
j pjCj

is invariant for any ordering of the jobs. In particular, for the ordering 1, . . . , n, if there is no idle time in schedule

then Cj =
∑j
k=1 pk; therefore, for any schedule we can write down the valid constraint

n∑
j=1

pjCj ≥
n∑
j=1

pj

j∑
k=1

pk =

n∑
j=1

j∑
k=1

pjpk =
1

2

(
p2(J) + p(J)2

)
, (3)

where the inequality results from the possibility of idle time in the schedule, and

p(S) :=
∑
j∈S

pj , p(S)2 =
(∑
j∈S

pj

)2
, p2(S) =

∑
j∈S

p2j .

Consider the completion times for a feasible schedule, Cj , j ∈ J . For each subset S ⊂ J , we can consider the

instance induced by S; the induced completion times Cj , j ∈ S, correspond to a feasible schedule for this smaller

instance. Hence, we can apply the precious inequality (3) to each subset and derive the following valid inequalities:∑
j∈S

pjCj ≥
1

2

(
p2(S) + p(S)2

)
, ∀S ⊆ J. (4)

3

As explained in [1], we note that these inequalities remain valid even if we allow the schedule to be preemptive;

that is, the processing of a job may be interrupted and continued at a later point in time. Furthermore, Queyranne

(1993) and Wolsey (1985) have shown that constraints (4) are sufficient to describe the convex hull of completion

time vectors of feasible schedules for instances of 1||
∑
wjCj . These constraints are no longer sufficient, however, if

we add constraints that enforce release dates. Although we do not have exact characterizations for 1|prec|
∑
wjCj ,

1|rj |
∑
wjCj , or 1|rj ,prec|

∑
wjCj , we will show a linear relaxation that can be used to find near optimal solution

of 1|prec|
∑
wjCj .

Note also that there is an exponential number of constraints in (4). Therefore, we can use the Ellipsoid method

with a separation oracle to solve the relaxation of

minimize
∑

wjCj

subject to Cj ≤ Ck − pk, ∀j ≺ k∑
j∈S

pjCj ≥
1

2

(
p2(S) + p(S)2

)
, ∀S ⊆ J.

(5)

Algorithm 2 2-approximation of 1|prec|
∑
wjCj

1: Solve the LP relaxation of (5). Let C ′1, . . . , C
′
n be the solution.

2: Renumber the jobs so that Ĉ1 ≤ · · · ≤ Ĉn.
3: Schedule greedily in the order of Ĉj , to obtain C̃j .

Claim 3. Ĉj ≥
1

2

j∑
k=1

pk.

Proof. Let S = {1, . . . , j}. Then,

j∑
k=1

pkĈk ≥
1

2

(
p2(S) + p(S)2

)
and Ĉj ≥ Ĉk, ∀k ∈ {1, . . . , j}.

Therefore,

p(S)Ĉj =

j∑
k=1

pkĈj ≥
j∑

k=1

pkĈk ≥
1

2

(
p2(S) + p(S)2

)
≥ 1

2
p(S)2.

Finally, Ĉj ≥
1

2
p(S) =

1

2

j∑
k=1

pk.

Lemma 4. Algorithm 2 is 2-approximation of 1|prec|
∑
wjCj.

Proof. By feasibility of {C ′j}, we have that C ′j ≤ C ′k − pk ≤ C ′k for all j ≺ k, that is {C ′j} satisfy the precedent

constraints. Therefore, after renumbering the jobs, the schedule given by the order of {Ĉj} also satisfy the precedent

constraints.

Finally, by Claim 3 we obtain that C̃j =
j∑

k=1

pk ≤ 2Ĉj . Then,
∑
j wjC̃j ≤ 2

∑
j wjĈj = 2LP.

References

[1] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time: Off-line

and on-line approximation algorithms. Mathematics of Operations Research, 22(3):513–544, Aug. 1997.

4

