
IEOR 8100: Scheduling Algorithms
Lecture 12

Instructor: Clifford Stein
Scribe: Benjamin Kuykendall

October 20, 2016

In this lecture, we consider some problems in resource augmented scheduling, reviewing a key
lemma, then considering applying simple algorithms to achieve s-speed solutions to hard problems.
We define m-machine augmented schedules. We motivate and define energy-aware scheduling,
considering objective functions in both time and energy. Then we solve 1|rj, dj, pmtn|

∫
sαdt.

Resource Augmentation

Let us review our main lemma on s-speed augmented schedules.

Lemma. For any input I, time t, m ≥ 1, and 1 ≤ β ≤ 2− 1/m, let

α =
2− 1/m

β
.

Consider two busy schedules on I: A using m speed α machines, and A′ using m speed 1 machines.
Then

A(I, βt) ≥ A′(I, t)

where S(I, t) denotes the total amount of work done by schedule S on input I by time t.

One interpretation of this lemma is to take A′ as the optimal schedule, executed on speed 1
machines. Then A can be any busy schedule, and as long as it runs on speed α machines, it will
“keep up” with OPT, completing at least as much work in time βt as OPT does in time t.

Problem P |rj, pmtn|dj. parallel machines; release dates and preemption; meet all deadlines.

Theorem. Earliest Deadline First is a 2-speed algorithm for P |rj, pmtn|dj.

Another interesting solution to this problem uses the concept of laxity. Roughly, a job’s laxity
is how long can you wait before you must start the job. In our notation, at time t a job j has laxity
`j := (dj − t) − (pj − xj) where xj is the amount of work done on the job so far. This gives the
following algorithm.

Theorem. Least Laxity First is a 2-speed algorithm for P |rj, pmtn|dj.

1

Of course, with preemption, both algorithms require a bit of clarification. Like we have done
previously, we must re-evaluate which job to run at some set of times including the release dates,
completion times, and at some periodic interval while executing a job. Though this might need
more consideration for an actual implementation of the algorithm, what we mean is clear enough.

Although we proved neither theorem, they are proved in [1]. However, finding a s-speed algo-
rithm for s < 2 is an interesting open problem.

In addition to augmenting the speed of the available machines, we can increase the number of
machines. An m′-machine algorithm is given m′ machines instead of the m specified in the instance.
In the preemptive case, s-speed algorithms are strictly stronger than (sm)-machine algorithms.
Given a (sm)-machine algorithm, we can always simulate it on m machines running at speed s by
splitting each time interval to emulate time-sharing. We can show the (sm)-machine is weaker by
example. Consider one large job: on a speed s machine, it is done at pj/s, but on any number of
speed 1 machines it takes time pj. The difference between these two settings motivates us to look
for m′-machine solutions to the scheduling problem above.

Theorem. There are O(m log(npmax))-machine and O(m logm)-machine algorithms for P |rj, pmtn|dj.

These algorithms are given in [1] and [2] respectively.

Problem 1|rj, pmtn|
∑
Fj. 1 machine; release dates and preemption; minimize sum of flow times

Recall we have a log(n/m)-approximation for the problem with m machines.

Theorem. Shortest remaining processing time (SRPT) is a 2-speed algorithm for 1|rj, pmtn|
∑
Fj.

This result follows from the lemma. We can show that SRPT2 “keeps up” with OPT by the
lemma, so SRPT2 completes i jobs no later than OPT completes i jobs. Though we skip the formal
proof, we can show optimality with an inductive argument, also in [1].

Energy-Aware Scheduling

The problem of minimizing energy use is well-motivated. In many cases, a machine can run at a
range of speeds, and faster speeds require more energy. Finding a schedule that optimizes for an
objective that keeps time and energy low does have real life applications. Taking the example of a
data center, reducing energy use reduces costs and environmental impact significantly.

We tweak our model slightly to include speed and energy. Each job now has an amount of work
wj associated with it (instead of the tj in previous problems). At each time, a machine is running
at some speed s(t) ∈ [0,∞). To complete a job worked on in times T , we must have

∫
T
s(t)dt = wj.

Define power a function of speed. Usually we set p(s) = sα for some α around 2 or 3. Then our
energy use is E =

∫
p(s(t))dt.

This model matches empirical results fairly well. However, we could conciser more general sit-
uations. For example, maybe taking s ∈ {s1, . . . , sn} with some arbitrary p(s) would better model
cpus, which general have a finite set of speeds. But the model in the paragraph above is both fairly
realistic and easy to analyze.

2

Now consider some possible objectives in both time and energy. Taking a traditional scheduling
objective T (e.g. Cmax,

∑
Cj,
∑
Fj, . . .), there are different ways to combine it with an energy goal.

• Fix some maximum E and optimize for T

• Fix some T and minimize E

• Optimize some function f(E, T)

Although these are all reasonable objectives, deadlines also give an even more natural problem.

Problem 1|rj, dj, pmtn|
∫
sαdt. 1 machine; release and due dates and preemption; minimize energy

Supposing α ≥ 1, we have an efficient algorithm given in [3]. First some preliminaries.

Fact 1. Let T be a set of times in which work w is completed. Then a function s(t) minimizes the
energy

∫
T
s(t)αdt when s(t) = w/|T | for all t ∈ T .

Proof. This fact follows directly from the convexity of xα. By Jensen’s inequality, we have(
1

|T |

∫
T

s(t)dt

)α
≤ 1

|T |

∫
T

sα(t)dt.

The left hand side evaluates to (w/|T |)α. Observe that choosing s(t) = w/|T | achieves the bound:

1

|T |

∫
T

(
w

|T |

)α
dt =

(
w

|T |

)α
.

Now for any interval T = [t, t′], define the set of jobs that must run in T

J(T) = {j | rj, dj ∈ T}.

We say this interval has an intensity

g(T) =
1

z − z′
∑
J

wj.

Fact 2. In any interval T , for jobs J(T) to complete, we must have s(t) ≥ g(T) for all t ∈ T .

With these two facts in mind, we sketch an algorithm:

1. Find the T of maximal g(T).

2. Schedule the jobs J(T) in T by preemptive earliest deadline first at speed s = g(T).

3. Remove the interval T and jobs J(T) from the input and repeat.

We claim this is an efficient algorithm: clearly, the T of maximal intensity will begin on some rj
and end on some dj, so there are at most n2 intervals to consider. As each round removes at least
1 job, there are at most n rounds.

We exclude a formal proof of correctness. The following example demonstrates the algorithm.

3

0 1 2 3 4 5 6 7 8 9 10

5/4
5/6

3 2 31 1

T1

T2

Figure 1: The optimal schedule. Each job runs in the numbered rectangle. The horizontal axis
plots time, the vertical machine speed. Intervals of maximal intensity are shown in braces above.

j rj dj wj
1 0 10 5
2 2 3 1
3 1 5 4

In the first round, we have intensities

g([0, 10]) =
w1 + w2 + w3

10− 0
= 1 g([1, 5]) =

w2 + w3

5− 1
=

5

4
g([2, 3]) =

w2

3− 2
= 1

Thus we select T1 = [1, 5]. Let s = 5/4, and run job 3 on [1, 2] and [3.8, 5] and job 2 on [2, 3.8].

This leaves only one interval for the second round

g([0, 1] ∪ [5, 10]) =
w1

(10− 5) + (1− 0)
=

5

6

Thus we select T2 = [0, 1] ∪ [5, 10]. Let s = 5/6, and run job 1 on [0, 1] and [5, 10].

Alternatively, we can look at this problem as a convex optimization. Although the greedy al-
gorithm above should be faster than minimizing numerically, the program is still a useful tool for
analysis of this and other problems.

Consider only the times t1, . . . , tk in {rj} ∪ {dj} numbered in increasing order.
The we denote Ii = [ti, ti+1] and J(i) the jobs that can execute in Ii (i.e. rj ≤ ti ≤ ti+1 ≤ dj).

Using this notation, we define the following convex program:

Variables: The wij are the work done on job j in interval i.

Objective: Minimize the energy
∑
i

(∑
j wij

ti+1 − ti

)α
(ti+1 − ti).

Constraints:
The wij are all non-negative, but are 0 when j cannot run in i.
For each job

∑
iwij ≥ wj gives that it must complete.

It is easy to verify this is a convex optimization problem: the objective is convex in the variables,
and the feasible region is given by an intersection of half-spaces.

4

References

[1] Phillips, Stein, Torng, Wein. “Optimal Time-Critical Scheduling Via Resource Augmentation”
STOC 97. http://dl.acm.org/citation.cfm?id=258570

[2] Chen, Megow, Schewior. “An O(log m)-Competative Algorithm for Online Machine Minimiza-
tion” SODA 2016. https://arxiv.org/pdf/1506.05721v1.pdf (pre-print).

[3] Yao, Demers, Shenker. “A Scheduling Model for Reduced CPU Energy” FOCS 95.
https://www.computer.org/csdl/proceedings/focs/1995/7183/00/71830374.pdf

5

