
IEOR E8100: Scheduling Algorithms

Lecture 13

Yunjie Sun

In the last lecture, we talked about the problem of minimize energy while meeting deadlines.

In today’s lecture, we are going to discuss another type of problem related to energy, which is to

minimize flow time (min ∑
Fj) subject to an energy budget (E).

Let’s first consider a warm-up, simple problem with unit work jobs, one machine, p(s) = sα,

and ri = 0. Let

• xi = time spent on job i,

• Ci = completion time of job i,

• Fi = flow time of job i,

• E = energy budget.

Furthermore, we can calculate the energy spent on job i in the following way:

energy on i = sαi xi = (1
xi

)αxi = x1−α
i . (1)

Therefore, we can formulate the problem as:

min
∑

Ci (2)

s.t. Ci = Ci−1 + xi (3)∑
i

x1−α
i ≤ E. (4)

1

The above formulation is a convex programming program so it can be solved in polynomial time.

Suppose ri 6= 0, we can modify the above formulation to:

min
∑

(Ci − ri) (5)

s.t. Ci ≥ Ci−1 + xi (6)

Ci ≥ ri + xi (7)∑
i

x1−α
i ≤ E. (8)

If we only have two jobs, idealy, we will use more energy on the first job. As discussed in

section 3.3 in Pruhs et al. [2008], the first job is more important than the second one in this

case which leads to spending more energy on the first job in the optimal solution. So 1) speed

decreases over time in optimal solution; 2) speed is proportional to the number of released but

unfinished jobs.

Following is the identity in scheduling which we will use later in analysis:

∑
Fj =

∫
t
(Number of released but unfinished jobs (t))dt (9)

The following figure describes the correctness of (9). The total area is Figure 1 is the sum of flow

Figure 1: Example

2

time of all jobs. The left hand side of (9) calculates the summation in horizontal while the right

hand side calculates the same area by adding it vertically (corresponding to the dotted lines).

The above formulations and analysis are for the case of offline. However, we want to do

something online. For the online problem, we have the same assumptions as before but with

release time constraints, rj. Moreover, in the online version of the problem, we have jobs arrive

over time and we don’t know about a job until it arrive.

We now argue that there is no good online algorithm for minimizing flow time subject to an

energy budget. Suppose at time 0, 3 jobs arrive, then we have to use at least E
c

energy, where

c is some constant, because those might be the only jobs that arrive. If at time t1, 3 more jobs

arrive, again we have to use at least some fraction of the remaining energy. Suppose at some

time t, we finished L jobs with ε energy left, then if L3 number of jobs are released, then clearly

we are in trouble. Therefore, there is no "good" online algorithm for the problem of minimizing∑
Fj.

We now look at the problem of minimizing ∑Fj +E, more specifically, 1|rj, pmtn|∑Fj +E.

There exists a constant competitive online algorithm for this problem.

For this problem, we allow more general model of p(s). We need p(s) to have the following

properties:

1. p(s) is continuous and differentiable ∀s ∈ (0,∞)

2. p(0) = 0

3. p(s) is strictly increasing in s

4. p(s) is strictly convex

5. p(∞) is unbounded

The following figure shows how it could be between our algorithm (ALG) and the optimal

(OPT). There are different ways in analyzing online algorithms,

• ∀t, A(t) ≤ c ·OPT (t)

• ∀t,
∫ t
s=0 A(s)ds ≤ c ·

∫ t
s=0 OPT (s)ds

3

Figure 2: ALG vs. OPT

Here, we will use potential function to do the analysis instead.

Let G be the objective, i.e., GA = ∑
Fj + E = FA + EA, where EA =

∫
p(sA(t))dt, and

FA =
∫
nA(t)dt. In the previous equation, nA(t) represents the number of released but unfinished

jobs at time t by algorithm A. Therefore, GA(t) represents the increase in objective G with

algorithm A at time t, and could be written as GA(t) = p(sA(t)) + nA(t).

Now, we define the term Amortized local competitiveness (A.L.C) in the following sense:

Given a φ(t) s.t.: (1) φ(0) = 0, φ(T) ≥ 0; (2) GA(t) + dφ(t)
dt
≤ c ·GOPT (t). From A.L.C, we can

get the competitive argument by the following,

∫ T

0
GA(t) +

∫ T

0

dφ(t)
t
≤
∫ T

0
c ·GOPT (t) (10)

⇒ GA + φ(T)− φ(0) ≤ c ·GOPT (11)

⇒ GA ≤ c ·GOPT by property of φ(·) (12)

4

Therefore, our plan is to first choose an algorithm (choose jobs and speed), then choose φ,

and last show A.L.C. holds.

Our idea here to to set two terms, EA, and FA equal. Suppose p(s) ≈ s2, let p(s) = nA(t)

gives us s2 = nA(t), results in s =
√
nA(t). This is a 4-approx.

In general,

p(sA(t)) =


p−1(nA(t) + 1) if nA(t) ≥ 1,

0 if nA(t) = 0.
(13)

In this case, p(sA(t)) = p(p−1(nA(t) + 1)) = nA(t) + 1.

In the algorithm, we will use shortest remaining process time (SRPT) to decide which job to

run. In our analysis, let’s assume p(s) = sα. Let φ(t) = max{0, nA(t) − nOPT (t)}, and n≥qA (t)

represent the number of released but unfinished jobs at time t in algorithm A of remaining size

≥ q. So, we have n≥q(t) = max{0, n≥qA (t) − n≥qOPT (t)}. Also, we define φ(t) = 3
∫∞

0 f(n≥q(t))dq,

where f(0) = 0, and f(i)− f(i− 1) = p′(p−1(i)).

Now, we discuss the intuition to get φ(·). We need the following equation to hold,

GA(t) + d(φ(t))
dt

≤ c ·GOPT (t) (14)

which is equivalent to

pA(t) + nA(t) + dφ

dt
≤ c · (pOPT (t) + nOPT) (15)

By choosing sA which makes FA ≈ EA and setting c = 2, we get

2pA(t) + dφ

dt
≤ 2(pOPT (t) + nOPT). (16)

We want φ to be a function of N = nA−nOPT . Notice that upon arrival, A and OPT do the same

thing, so the worst case is nOPT = 0, nA = N . Under this case, we can write dφ
dt

= dφ

dN
· dN
dt

.

Intuitively, dN
dt

= sOPT − sA. Plug this into (16) gives us

2pA(t) + dφ

dN
(sOPT − sA) ≤ 2pOPT because nOPT (t) = 0 (17)

5

From (17), we can express dφ

dN
as

dφ

dN
= 2

(
pOPT − pA
sOPT − sA

)
≈ 2dp(sA)

ds
≈ 2dp(p−1(N))ds

ds
, (18)

which results in

dφ ≈ 2 · p′(p−1(N))dN (19)

For verifying this φ function satisfies A.L.S, we refer to the proof in Section 3 in Bansal et al.

[2009]

References

Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Woeginger. Getting the best response for

your erg. ACM Transactions on Algorithms (TALG), 4(3):38, 2008.

Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power function.

In Proceedings of the twentieth annual ACM-SIAM symposium on discrete algorithms, pages

693–701. Society for Industrial and Applied Mathematics, 2009.

6

