Fall 2016 IEOR 8100

Scheduling Algorithms
by Professor Clifford Stein

Lecture 2 Notes

Review and Introduction

Last time we discussed scheduling to identical machines to minimize the makespan
(P||Crnaz). For this problem, we discussed two solutions. First, we discussed List Scheduling,
which greedily assigns the next available job from an arbitrary ordering of jobs to a machine
whenever it becomes idle. List Scheduling is a 2-approximation. Second, we discussed the
Longest Processing Time (LPT) order greedy algorithm, which is a Z51—app1"0><:imat10n.

In the previous lecture we discussed p-approximations for some constant p € R, or solu-
tions whose makespan (Cj..) is at most a p multiple of the optimal solution O PT’; that is,
Crnaz < (p x OPT). In the above examples, p = 2 for List Scheduling and p = 3 for LPT;
in both cases it is a fixed constant.

Some algorithms are general enough such that Ve > 0 the algorithm produces an output
whose ratio with the optimal solution is at most 1+¢; in the context of minimizing makespan
in scheduling, such an algorithm produces a schedule with makespan C,,,, < ((1+¢€)x OPT).
In this description 1+-€ is analogous to p in that it is the ratio between the makespan achieved
and the optimal solution. A polynomial time approximation scheme (PTAS) is an algorithm
that can be described in this manner and has a running time polynomial in n®//()) where
f is some arbitrary function of e. By convention, a PTAS is typically described in terms of
the infinitesimal parameter € rather than the ratio p.

Even if a PTAS exists for some problem, it may not be practical for actual application.
Running time of the PTAS may be very slow for any e sufficiently small to provide a useful
approximation.

A fully polynomial time approximation scheme (FPTAS) is similar to a PTAS except
that it is polynomial in both n and %

For some problems we can prove that approximation beyond a certain constant is N P-
hard, which means there does not exist a p-approximation for any p smaller than this con-
stant, but if a PTAS exists for a problem, then there cannot be such a proof because the

approximation can be arbitrarily close depending on the choice of e.

Hochbaum and Schmoys’ Relaxed Decision Procedure

The algorithm we are about to discuss was published in 1986 by Hochbaum and Schmoys and
it is a Relaxed Decision Procedure (RDP). The basic motivation behind using an RDP is that
optimization problems can be reduced to decision problems using binary search. An RDP
is an algorithm that, given some € > 0 and some desired maximum value 7" of an objective
function will halt in polynomial time and report either that there is no solution with objective
at most 1" or provide an example of a solution with objective at most (1+¢) xT". For example,
in the context of minimizing makespan, an RDP would output one of the following:

e The string “There is no schedule with C,q, < T7

e A representation of a schedule with C. < (1+€) x T.

Note that if the optimal solution has a makespans greater than (1 + €) x T' the algo-
rithm will always correctly say there is no schedule with C.,,. < T, and if the optimal
solution has makespan at most T the algorithm will always provide a schedule (which may
or may not be optimal) with Ci,., < (1 + €) x T, but if the optimal solution OPT is such
that 7" < OPT < (1 + ¢€) x T, the algorithm may not report that “There is no sched-
ule with C),.. < T7, even though that is true, but may instead return a schedule with
Crar < (1+€) xT.

If such an algorithm exists, then we can approximate the optimal makespan OPT by
doing a binary search that repeatedly calls the RDP for different values of 7T'.

Dynamic Programming Special-Case Solution

First, let us consider the problem P||Ci,q, in the special case that among the n jobs,
there are at most s unique processing times. Let us rephrase the optimization problem as
an RDP by asking for some arbitrary “deadline” time 7" whether there is a schedule with
Ciae <T. Consider s to be a constant.

In general with n jobs the jobs are py,ps,...p,. When we describe a schedule that as-
signs these jobs to m machines, each machine can be uniquely characterized by which jobs
it completes, so each machine has at most 2" states. But when we consider that all n jobs
are of some standard size from among only s different sizes, then let us instead describe a
machine by a vector (21, 29, ...25) where the machine completes z; jobs of size 1, etc. Each of
these z; can be at most n, and there are s of them, so the total number of states the machine
can have is n®. This is overcounting somewhat, but for fixed s, it is polynomial in n instead
of exponential. Unfortunately this is only the number of states for one machine; the number
of possible schedules for m machines is (n®)™, which quickly becomes intractable for a large

number of machines because it is exponential in m.

Let’s consider instead the minimum number of machines needed to process n jobs ex-
pressed in batches as (x; jobs of size s) by time 7. Let us call this M (zy,...x,,T). For
example, if s; = (3,7), z; = (2,3), and T" = 10, then M = 3:

3 |)

Machine
[(\)
|

0 5 7 10
Time
EJob 153 Job 2

Thus, for s = (3,7), M(2,3,10) = 3. However, M(2,3,9) = 4:

4 | l :

w
|

Machine
(\)
|

|

0 3 5 6 7
Time

= Job 153 Job 2

In both of these examples we can see that the schedules shown are optimal because if
we remove the last machine, the remaining machines are at full capacity until the desired
deadline, so they could not possibly have completed all of the jobs without the help of the
last machine. In general, we can calculate these optimal schedules in polynomial time using
a dynamic programming approach.

Let V be the set of all feasible schedules of 1 machine (n® such schedules are possible).

Whatever the optimal schedule is overall, it must assign some number of jobs to the last
machine. For each possible set of jobs that could be completed by a single machine, the
optimal schedule that would assign those jobs to the last machine is the schedule optimal for
the remaining jobs on the remaining machines. If we let v = (z1, ... z,) represent the jobs run
on this last machine, then M(xq, ...z, T) = rvrg} M(xy— 21,20 — 29, ... 25— 25, T) + 1. Since

by overcounting slightly we know there are at most n® possible choices for v and at most n*
possible optimal subschedules containing a given v, solving this by dynamic programming is
of complexity n°).

This problem may sound familiar to anyone who has studied algorithms in general with-
out a focus on scheduling because it is equivalent to the bin packing problem. Given a finite
number of jobs, each of which requires a specified amount of processing time, assigning these
to a finite number of machines with some deadline is like packing a finite number of bins of
fixed capacity with a collection of objects with finite volume.

Approximating the general case

We can use this dynamic programming approach to approximate the optimal solution
to the more general problem of minimizing makespan even in the general case where the
arbitrarily many n jobs do not belong to a fixed number s of job sizes. The high-level
approach is:

1. Round the job sizes to a fixed number s of different sizes
2. Solve the rounded problem using the dynamic programming algorithm
3. Deal with the caveats of:

e Unrounding

e Small jobs

Intuitively, when we round a large job by ¢, € is small relative to the job size so the error
is small, but when we round a small job, the rounding error is a larger fraction of the job
size, which is why we need to worry a little bit more about small jobs. However, because
small jobs are small, they are also easier to cram into the schedule at the end, and we’ll see
that for this reason we can get away with rounding them even despite the larger ratio of
rounding error to job size.

LEMMA

Suppose all p; satisfy p; > (e x T'). Then 3((1 + €)-RDP) for P||Cya-
ProoFr

Round p; down to p; in integer multiples of €2 x T"

° 0<(p—pj) < (e xT)

° #ofjobsizesga%ze%zs
e # of jobs on a single machine in a feasible schedule < % = %

When we use DP on the rounded instance in n°®), because the number of job sizes is

defined in terms of €, the DP algorithm then runs in n®®/ 62), which makes this a PTAS. If
the DP outputs no, we output no. If the DP outputs yes, we unround. Since the number of
jobs on a single machine is at most 1/epsilon, unrounding adds at most (€2 x T' x %) =exT
time, which means that our overall solution has a makespan which is still at most (1+¢) x T,
so we output yes.

ALGORITHM
Suppose S = {jobs w/ p; < e x T'} is the set of small jobs. Then L = J — S is the set of
large jobs. Then the algorithm is as follows:

e Apply the lemma (the DP algorithm) to L
e [f the lemma answers no output no

e Else if the lemma answers yes; then, Vj € S:

— If 3M; w/ load < T, add j to M;.

— Else return “no schedule with makespan < T
Why does this work?

1. If the DP returns no on L, then there is no schedule with the desired makespan even
when we consider only the large jobs, so obviously when we consider the small jobs as
well there is still no schedule.

2. If the DP returns yes on L, then we need to fit in the small jobs. If we can fit these in
one at a time to machines with load less than 7', then after adding the small job each
time the load of the small job is at most € x T" so the machine load with the small job
is at most (14 €) x T', which is exactly within the desired approximation of the target
makespan.

3. If the DP returns yes on L but we have small jobs remaining and no machine has load
less than 7', then that means that all machines are at full capacity through time T but
not all jobs have been scheduled, so obviously no schedule can exist with makespan at
most 7T

Scheduling with Precedence Constraints

GREEDY We can use list scheduling to approach this problem. When a machine is
available, run a job that has all its precedence constraints completed if one exists. For
example, for the precedence relation above where the node labels in the graph represent the
processing time of each job, we would produce the following schedule:

(]
g
<
=
1 N

0 2) 11 12 15

Time

 Job mmm Idle Job

How closely does that approximate the optimal solution? As before, we want to consider
our lower bounds. The lower bounds we discussed previously still apply, but now we also
have a third lower bound due to the precedence relation:

_ 2D
o pavg - mz

L pmax

® Denain 18 the sum of the job times of the longest (by time) chain of jobs in the directed
acyclic graph of the precedence relation

Now let B be the set of times when all machines are busy. Clearly |B| < pavg (if | B| > Davg
then all machines are busy for more than the average job time, meaning that we’ve completed
more work than is available; that is impossible). But Cyup < |B| 4 Pehain < Pavg + Pehain <
2x LB <2 x OPT. Thus list scheduling is still a 2-approximation for this problem with

the precedence constraints.

We can also consider minimizing makespan under precedence constraints in the special
case where all jobs have length one. Plprec, p; = 1|Ciqp is NP-complete. Also, given
an instance of Plprec, p; = 1|Cpaz, the question “Is there a schedule with C,., < 3 is
N P-complete. As a result, unless P = NP, there cannot be any approximation better
than a %—approximation. If there were such an approximation, it would have to return a
schedule of lenght 3 if one existed, since returning a schedule of length 4 would be less than
a Z31—aupproximabtion if a schedule of length 3 existed. But this would allow us to solve the
N P-complete problem.

We can show that this problem is N P-complete by reducing from the problem of whether
there is a k-clique in a graph, which is known to be N P-complete. Let graph G = (V| E)
where V' is the set of vertices and FE is the set of edges. Then [= Bx(=1) ig the number of
clique edges; k' = |V| — k is the number of non-clique vertices, and I’ = |E| —[is the number
of non-clique edges.

Let us then construct an instance of the scheduling problem Plprec, p; = 1|Cpas. Let
m = max(k,l + k',l') + 1, and let n = 3m. Let us create one job per vertex J,, one job per
edge J., m — k dummy jobs z,, m — [— k' dummy jobs y,, and m — I’ dummy jobs z,. Let
the precedence constraints have .J, — J, if e is incident to v (edges must be scheduled after
the vertices they connect), (Vz,y) z, = vy, and (Vy, 2) y, = 2..

For example, consider this graph:

We would create jobs with precedence constraints as follows:

zZ9

PROOF If there is a k-clique, then we have this schedule:

ONORONC

Time 1

Time 2

Time 3

Clique jobs

All k vertices of k-clique

All [edges of k-clique

Other graph jobs

All ' non-clique vertices

All I’ non-clique edges

Dummy jobs

Allm —kof x

Allm—1—Fk ofy

Allm =1 of 2

Total job count

m jobs

m jobs

m jobs

If there is a k-clique, then we can create the schedule described in the table above where
the jobs representing vertices of the k-clique and the dummy x jobs go at time 1, the edges
of the k-clique, all other vertices of the graph, and the dummy ¥ jobs go at time 2, and
all other graph edges and the dummy z jobs go at time 3. If there is no k-clique, then all
r dummy jobs have to go at time 1 in order to complete the z jobs by time 3, and some
other k vertices can go at time 1 because there are exactly m — k& x dummy jobs in this
construction. However, because there is no [-clique, we cannot schedule [edges at time 2. If
we were able to schedule [edges at time 2, then all the vertices incident to those edges must
have been scheduled at time 1, implying there was a k-clique. As a result, we can sched-
ule at most [— 1 graph edges, and since there are only &’ remaining vertices and exactly
m—1[—k" of the y dummy jobs that can possibly be scheduled, we can schedule at most m —1
jobs. Because we are not using the machines at full load, there is too much load remaining
to complete in time 3, so a schedule with makespan at most 3 is impossible without a k-clique.

This shows that there is a schedule for these jobs that has C,.. < 3 if and only if
there is a k-clique. Because existence of a k-clique in a graph is N P-complete, so is
Plprec, pj = 1|Cpas. However, Py|prec, p;j = 1|Ciq, has several polynomial-time exact
solutions. We will discuss an example in a later lecture.

It is an open question whether Ps|prec, p; = 1|Cpaq, or really P, |prec, p; = 1|Cpaq for
any fixed finite n > 2, has a polynomial-time solution or is N P-complete. This is a tantaliz-
ing open problem because N P-completeness was first described in 1972; in 1978 Garey and
Johnson published a list of commonly discussed algorithms and whether there were polyno-
mial time solutions or they had been shown to be N P-complete or whether it was unknown.
Of the ones that were unknown and listed in that list at that time, this problem is the only
one that is still unknown. The best approximation right now is a (1 + €)-approximation in

. . O(loglogn)
running time on the order of n'°&" .

