
September 15, 2016

Scheduling Algorithms Class Notes

Lecture 3

We began by discussing the open problem Pm|prec, pj = 1|Cmax for a fixed number of
machines m, recalling that we don’t know whether this is in P or NP -complete. This
precedence constraint problem remains one of the few unsolved problems in Garey and
Johnson’s ”A Guide to the Theory of NP-Completeness”.

What is known about this problem:

• Saw 2-approximation (e.g. List Scheduling, solves even with general processing times)

• We have 4
3
-approx for m = 3

• In general for m ≥ 4, we have a best approximation of 2− 7
3m+1

.

• More so, there’s no 2− ε approximation assuming the Unique Games Conjecture.

Unique Games Conjecture: Given Σ = Zn and a set of linear equations mod n, for every
0 < ε < 1

2
,∃ Σ s.t. there is no poly-time algorithm that, given a Unique Game w/range Σ

in which it is posible to satisfy (1 − ε) fraction of the equations, can satisfy ε fraction of
the equations. (e.g. given a solution that satisfies 90% of the equations, 10% can be satisfied).

Solving this can give better approximation algorithms for many problems, but surprisingly,
there is very little idea on whether this is true or not.

Best recent result for the scheduling problem Pm|prec, pj = 1|Cmax: gets (1 + ε)-

approximation in n(lgn)O(lglgn)
time (this complexity is in between poly and exp). This could

be a good area for a research project!

Note that if the number of machines is not fixed, and m is part of the input, this precedence
problem is NP-Complete (showed last time).

We then discussed the specific problem with 2 machines: P2|prec, pj = 1|Cmax, and its
relation to a matching problem. (Note: this algorithm was finalized in Lecture 5).

General concept for algorithm:

• Each job is represented as a node, with precedence constraints as directed edges be-
tween them.

• Find matching between nodes as jobs to schedule together.

• At each timestep, find two (if there exist two) jobs whose predecessors have all been
scheduled. (Not that there will never be zero such jobs, but there may not always exist
two.

1

Related Machines
Q|Cmax: this problem involves m machines with speeds v1, v2, . . . vm and n jobs with
processing times p1, p2, . . . pn. Assume that v1 ≥ v2 ≥ · · · ≥ vm and p1 ≥ p2 ≥ · · · ≥ pn for
convenience.

Running job j on machine i takes
pj
vi

time (rate of processing). For example, given
p1 = 10, v1 = 4, if we run J1 on M1 for unit of time, 6 units of work still remain.

First, note that the naive idea of List Scheduling is bad in this case, because there may be
huge differences in the speeds of machines. The most intuitive following solution is to put
the job with LPT on the fastest machine. This naive idea gives a 1.2-approx and PTAS.

The pre-emptive case Q|pmtn|Cmax can be solved in poly time.

Lower bound: max{ max
1≤s<m

∑s
j=1 pj∑s
i=1 vi

,
∑n

j=1 pj∑m
i=1 vi
}

The idea is that we lower bound by the maximum of the average load, and by the biggest
job on the fastest machine.

We can always achieve this lower bound C∗
max by running LRPT-FM (longest remaining

processing time, fastest machine). However, if interpreting this literally, this means there
could be a constant switching of jobs between machines to always be using the fastest
machine optimally.

Unrelated Machines The pre-emptive R|pmtn|Cmax is polynomial, but the non-pre-
emptive is still NP-Complete (this makes intuitive sense, since the unrelated case just makes
the problem harder).

The input to this kind of problem is a matrix, where every cell Pij represents the time it
takes machine i to process job j. (∞ is used to denote a pair of machine and job that is
not possible.) These values can be interpreted as rate of computation (if we run the first
job on the first machine in the below example for 1 unit of time, 1

10
of the job is done). This

matrix represents a problem with 3 machines and 4 jobs.

10 3 ∞ 10
3 3 5 5
20 3 5 15

We could keep track of the time units that each job runs on each machine in the following way:

xijt =

{
1 if job j is on machine i from [t− 1, t]

0 otherwise

We discussed that an exact solution would require variables like these xijt, which tell us
exactly which job runs on which machine at each time step. However, we do not pursue this

2

approach. Instead, we formulate an LP which only assigns jobs to machines for amounts of
time, but does not compute a schedule. The overall plan take the solution to this LP and
then uses a separate matching algorithm to convert it to an explict schedule.

Composing an LP:

Define T = Σpj (our solution may not be poly in T). The LP has the following variables:

tij = total time that job j is run on machine i.
Cmax (the value we are trying to minimize).

Additional constraints:

1. Every job runs (
∑m

i=1
tij
pij

= 1∀j)

2. Each machine has ≤ Cmax load assigned to it (
∑n

j=1 ≤ Cmax∀i)

3. Each job runs for ≤ Cmax total time (
∑m

i=1 ≤ Cmax∀j).

This LP has nm variables, and 2n + m constraints → polynomial-time LP. Let tij be the
output of the LP. Note that this output gives us a a matrix of times for corresponding jobs
and machines, but does not give us a schedule – for instance, it does not require that a job
not be processed on more than one machine at the same time. However, we show that given
this output, we can always find an optimal schedule.

Theorem. Given a matrix tij, it is always possible to find a feasible schedule s.t.

Cmax = max{max
i

(
∑
j

tij),max
j

(
∑
i

tij)} (1)

In other words, if we get our output tij from the LP, then we get the desired Cmax.

Proof: This is equivalent to the pre-emptive ”open shop” problem O|pmtn|Cmax. Recall
that in the shop environment, each job j is made up of operations, with each operation
required to run on a specific one of m given machines. Different operations may take
different amounts of time (possibly 0). The open shop environment allows the operations
of jobs to be processed in any order, as long as no two operations from the same job are
processed on different machines at the same time. The general idea for our conversion
is to interpret operations in our open shop instance as fractions of the original jobs in
the unrelated machine instance. Thus, if we find an open shop schedule, then we get a
pre-emptive schedule of the same length in which no two fragments of a job are running at
the same time. We do this by creating an operation oij for each tij > 0 with size tijpij. We
then use a matching algorithm to find an optimal schedule as follows:

We know that both the maximum machine load and job size are bounded from above by
Cmax. We call the maximum machine load Πmax and the maximum job size Pmax, but
in this case the values are both equal to Cmax. At any point in time, any given machine

3

is processing at most one job, so we aim to find a sequence of matchings that determine
which machines are running which jobs at any moment in time. If we process jobs on their
corresponding matched machine for some time t, we can then reduce both Πmax and Pmax

by t. Then, we recompute the matching and repeat the process, eventually reducing both
values to 0.

To aid in this process, we define the following notion of ’tightness’, where either a job or a
machine is tight if they take up all of the processing time. In other words, if we look at our
grid of jobs and machines:

Row i is tight if
∑

j tij = Cmax.
Column j is tight if

∑
i tij = Cmax.

For any matching, we must process every tight job and every tight machine, because
otherwise we will be unable to reduce Πmax and Pmax. Thus, we are looking for a matching
in which every tight machine and job is matched, and that, in addition, each matching edge
requires some positive processing time t. This kind of matching is deemed a decrementing
set, and we can show that one always exists.

To find such a set, we construct a bipartite graph G with a node representing each job and
each machine, and include edges between machine i and job j only if job j requires non-zero
processing time on machine i. Again, we do so in a way that matches each tight node.

Once this set has been found, we schedule machines to run on jobs matched to them until
either one of the matched jobs becomes completed, or a new job or machine becomes tight.
Executing an edge for time tij reduces both Πmax and Πmax by tij.

With every iteration, either a job-machine pair goes to 0 because it has been processed, or
either a row or column becomes tight. Note that because once a job or machine becomes
tight, it stays tight forever, the number of tight nodes is bounded by n + m, which means
that constructing this schedule can be done in nm+n+m iterations, which is a polynomial
bound for this algorithm that gives us a schedule of optimal length.

4

