
IEOR 8100: Scheduling Algorithms
Lecture 4

Instructor: Clifford Stein
Scribe: Sandip Sinha

September 16, 2016

In this lecture, we complete the analysis of the correctness of the polynomial-time
algorithm for R|pmtn|Cmax by showing the existence of a matching among jobs and
machines which includes all the “tight nodes”, prove that R||Cmax is NP-complete, and
give a 2-approximation algorithm for R||Cmax using LP relaxation and rounding.

1 R|pmtn|Cmax (continued from previous lecture)

We complete the analysis of the optimal algorithm for R|pmtn|Cmax. Recall the following
theorem and definition:

Theorem 1. Given a matrix T = (Tij)i∈[m],j∈[n] with non-negative entries, it is always
possible to find a feasible schedule such that

Cmax = max

{
max

i

(∑
j

Tij

)
,max

j

(∑
i

Tij

)}

Definition 1. We say a row i is tight if
∑

j Tij = Cmax. Similarly, we say a column j is
tight if

∑
i Tij = Cmax.

We construct a bipartite graph having nodes for jobs and machines. For a given job
j and machine i, there is an edge e = (j, i) iff Tij > 0. We say a node is tight if the
corresponding row or column in the matrix t is tight. We want to compute the matching
that matches all the tight nodes. The remaining part of the analysis is to show that in
such a graph, there always exists a matching which matches all the tight nodes. This
follows from the Birkhoff-von Neumann theorem.

Definition 2. A doubly stochastic matrix is a square non-negative real matrix with all
entries being real and non-negative, and all row sums and column sums equal to 1.

Definition 3. A permutation matrix is a square 0− 1 matrix with exactly one 1 in each
row and column.

Obviously, a permutation matrix is a doubly stochastic matrix. It is easy to ver-
ify a convex combination of doubly stochastic matrices (and in particular, permutation
matrices) is also a doubly stochastic matrix.

1

Theorem 2 (Birkhoff-Von Neumann). Given any doubly stochastic matrix Q, there exist
k permutation matrices P1, · · · , Pk and non-negative real numbers θ1, · · · , θk for some
k ∈ N such that

Q =
k∑

i=1

θiPi

Clearly, in the above decomposition,
k∑

i=1

θi = 1.

We provide an example of a doubly stochastic matrix along with its decomposition
into permutation matrices.0.3 0.4 0.3

0.5 0 0.5
0.2 0.6 0.2

 = 0.3

1 0 0
0 0 1
0 1 0

+ 0.2

0 1 0
1 0 0
0 0 1

+ 0.3

0 0 1
1 0 0
0 1 0

+ 0.2

0 1 0
0 0 1
1 0 0


It is NP-hard to determine the minimum k in the above decomposition (more pre-

cisely, the problem of deciding, for a given Q and k, whether there exists a decomposition
with at most k permutation matrices is NP-hard).

The following discussion is interesting but not important for the purpose of proving
the main theorem. Fix n ∈ N, and consider the set of n×n doubly stochastic matrices as
a subset of Rn2

. This set is a convex polytope, known as the Birkhoff polytope Bn [1]. It
is easy to verify that a permutation matrix must be a vertex of this polytope. Suppose,
for the sake of contradiction, that P is a permutation matrix which is not a vertex. Then
P can be written as a convex combination of other doubly stochastic matrices:

P =
k∑

i=1

θiQi

with θi > 0 for all i,
∑k

i=1 θi = 1, Qi doubly stochastic matrix and Qi 6= P for all i. As
Q1 6= P , there must exist indices r, c ∈ [n] such that Prc = 0 and Q1rc > 0. Thus we have

k∑
i=1

θiQirc ≥ θ1Q1rc > 0 = Prc

which is a contradiction. Thus, permutation matrices are always vertices of this polytope.
The Birkhoff-von Neumann theorem can be interpreted as saying that the vertices of the
polytope are precisely the permutation matrices and no other doubly stochastic matrices.

There is an obvious bijection from n×n permutation matrices P to perfect matchings
on a bipartite graph G = (U, V,E) with |U | = |V | = n. For simplicity of notation, let
U = V = [n]. We have a vertex in U for each row in P and a vertex in V for each column
in P . There is an edge e = (i, j) ∈ E if and only if Pij = 1.

Claim 1. In any doubly stochastic matrix, there exists a perfect matching on the non-
zero elements.

We will use Hall’s theorem (which we state without proof) to prove the claim. Let
G = (V,E) be an undirected graph. For a vertex v, we define the neighbors of v by

N(v) := {u ∈ V |∃ edge e = (u, v) ∈ E}.

For a subset S ⊂ V , we define the neighbors of S by N(S) :=
⋃

v∈S N(v).

2

Theorem 3 (Hall). A bipartite graph G = (U, V,E) has a perfect matching if and only
if for all subsets S ⊂ U , |N(S)| ≥ |S|.

Note that the theorem considers all subsets of either one of the partitions.

Proof of Claim 1. Suppose Q is a doubly stochastic matrix but there exists no perfect
matching on the corresponding bipartite graph G = (U, V,E). Then, by Hall’s theorem,
there exists S ⊂ U such that |S| > |N(S)| This leads to a contradiction:∑

i∈S,j∈N(S)

Qij = |S| > |N(S)| =
∑

i∈N(N(S)),j∈N(S)

Qij ≥
∑

i∈S,j∈N(S)

Qij

This claim immediately leads to proofs of 1 and 2. In fact, they are essentially different
formulations of the same result, as will be evident from the proofs below.

Proof of Birkhoff Von-Neumann Theorem 2. If Q is a permutation matrix, setting k = 1
and P1 = 1, we are done. Otherwise, the claim guarantees the existence of a perfect
matching M on the non-zero elements of Q. We abuse notation and use M to also refer
to the permutation matrix corresponding to the matching. Let

δ = min{Qij|e = (i, j) ∈M}.

Note that 0 < δ < 1. We have Q = δM + (1 − δ)Q′, where M is a perfect matching
and Q′ is a doubly stochastic matrix with strictly fewer non-zero entries than Q′. We
apply the claim to Q′. Iterating this process at most n2 times, we get the required
decomposition.

Proof of Theorem 1. The matrix T is not necessarily square, nor does it have all row and
column sums equal. Let Tmax be the maximum of the row sums and the column sums.
We will transform T into a non-negative square matrix T̃ having all row and column
sums equal to Tmax.

T̃ :=

(
T Dr

Dc T T

)
where Dr is a m-dimensional diagonal matrix with Dr(i, i) = Tmax −

∑
j Tij and Dc is

a n-dimensional diagonal matrix with Dc(j, j) = Tmax −
∑

i Tij. We demonstrate the
transformation below with the same instance of T as that used in the previous lecture.

3 4 0 4
4 0 6 0
4 0 0 6

 7→


3 4 0 4 0 0 0
4 0 6 0 0 1 0
4 0 0 6 0 0 1
0 0 0 0 3 4 4
0 7 0 0 4 0 0
0 0 5 0 0 6 0
0 0 0 1 4 0 6


As T̃ is a scaled version of a stochastic matrix, we can effectively apply Claim 1 to T̃ .
If a row i is tight in T , then the corresponding diagonal entry Dr(i, i) in T̃ is 0. Hence,
the row i in T̃ contains non-zero entries only in the positions from T and T T . Similarly,
for any tight column j in T , all non-zero entries in the column are restricted to be in
the positions from T and T T . By Claim 1, the matrix T̃ has a matching on the non-zero
elements, and hence the matching includes all the tight nodes in T . This completes the
proof.

3

2 NP-completeness of R||Cmax

We will actually show that it is NP-complete to decide whether a given instance of
R||Cmax has Cmax ≤ 3. Clearly the problem is in NP, as it is easy to verify a given
certificate. The hardness reduction is from the problem of deciding whether there exists
a (perfect) 3D-Matching, which is known to be NP-complete. We note that this reduction
can be improved to show that it is NP-hard to decide if Cmax ≤ 2 for R||Cmax, which
leads to the following Hardness of Approximation result:

Fact 1. Let 1 ≤ ρ < 3
2
. There does not exist a ρ-approximation algorithm for R||Cmax

with all processing times Pij ∈ N, unless P = NP.

Claim 2. 3D-Matching ≤P R||Cmax

Proof. Let G be a tripartite graph with n nodes in each partition and m edges. Specifi-
cally, G = (V,E) where V = A t B t C with |A| = |B| = |C| = n and E ⊂ A × B × C
with |E| = m. We fix an arbitrary ordering on the m edges and the 3n nodes. The
construction is given in detail below:

• Each edge i, 1 ≤ i ≤ m, corresponds to a machine Mi.

• Each node j, 1 ≤ j ≤ 3n, corresponds to a job with processing time

Pij =

{
1 if node j is incident to edge i

3 otherwise

• There are m− n “dummy” jobs j with processing time Pij = 3 for all machines i.

We now show that there exists a 3D-Matching in the graph if and only if Cmax = 3,
i.e. there exists a feasible schedule with makespan 3. Clearly, it is impossible to design a
schedule with less makespan since each dummy job itself takes 3 units of time.

3D-Matching ⇒ Cmax = 3:

Suppose F ⊂ E is a perfect 3D-matching. Then |F | = n. Each edge e = (a, b, c) ∈M
corresponds to a machine Me, and we schedule jobs a, b and c to Me in any order. Each
job takes 1 unit of time and hence each such machine requires 3 units of time. There are
m− n machines remaining, and we schedule each dummy job on one of these machines,
which again requires 3 units of time. As F is a matching, no job is processed by two
machines. Thus, this gives a feasible schedule of makespan 3.

Cmax = 3⇒ 3D-Matching:

Suppose S is a schedule with makespan 3. Clearly, the m− n dummy jobs, requiring
3 units of time on each machine, are scheduled on separate machines. This means that
there are m− (m− n) = n machines remaining. Since there are 3n jobs to be scheduled
and only n machines, it must be the case that each machine gets allocated 3 jobs, each of
which requires 1 unit of time to run on that machine. By construction, for each machine
Mi, there is exactly 1 job j in each partition, such that Pij = 1. Thus, the 3 jobs that

4

are allocated to a particular machine with processing time 1 each must be from different
partitions, and hence correspond to an edge in the graph. Define

F := {e = (a, b, c) ∈ E| jobs a, b and c are scheduled on the same machine}

As S is a valid non-preemptive schedule, no job gets scheduled on more than one machine.
Further, by the discussion above, |F | = n. Hence, F is a perfect 3D-Matching.

3 2-approximation for R||Cmax

We show a 2-approximation algorithm for R||Cmax using LP relaxation and rounding.

3.1 Feasibility LP

For i ∈ [m], j ∈ [n], let Xij be the indicator variable for job j running on machine Mi.

Xij :=

{
1 if job j runs on machine i

0 otherwise

We fix a bound D and write a feasibility LP checking if Cmax ≤ D. Ultimately, we
will run a binary search over D and use the algorithm described below as a subroutine
to determine Cmax.

We will work with the following running example, in which the processing times are
specified by the table below and D = 9. Pij = ∞ denotes that it is not possible to run
job j on machine i (in practice, we would replace ∞ by a large constant).

P J1 J2 J3 J4 J5 J6 J7

M1 9 3 1 ∞ ∞ ∞ ∞
M2 12 ∞ ∞ 2 1 ∞ ∞
M3 5 ∞ ∞ ∞ ∞ 2 3

Table 1: An example of processing times Pij

Since the program will be an integer program which is hard to solve, we will relax
the constraint on Xij’s, allowing them to be non-negative real numbers instead of {0, 1}
variables. This essentially means that as per the LP, a job can be scheduled on multiple
machines.

The constraints of the LP are as follows:

n∑
j=1

XijPij ≤ D for all 1 ≤ i ≤ m,

m∑
i=1

Xij = 1 for all 1 ≤ j ≤ n,

Xij ≥ 0, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m,

Xij = 0 if Pij > D for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

5

The final constraint is imposed to facilitate rounding. Note that for a job j and
a machine Mi, if Pij > D, it is not impossible to design a schedule with makespan
Cmax ≤ D in which job j is scheduled on machine i. If this constraint is not enforced,
the LP might put a small non-zero weight on Xij. The rounding procedure might assign
job j to machine i, which can make the rounded solution arbitrarily bad.

There are at mostmn constraints of the last type, and they can be enforced during pre-
processing or simply removing the variables from the LP. We observe that this constraint
requires D to be a known constant, and this is why we write a feasibility LP instead of
writing a minimization LP subject to the first 3 constraints.

3.2 Rounding

LetX be the LP solution. X can be represented as am×n non-negative column-stochastic
matrix. We want a solution that is in the support of this matrix, i.e., a schedule in which
each job j is allocated to a machine i such that Xij > 0.

X J1 J2 J3 J4 J5 J6 J7

M1 1/3 1 1 0 0 0 0
M2 0 0 0 1 1 0 0
M3 2/3 0 0 0 0 1 1

Table 2: An example of the LP solution X for the instance specified by 1

For 1 ≤ i ≤ m, define Ki := d
∑

j Xije. Construct a bipartite graph G = (J,M,E)
with 1 node in J for each job (called a job node), and ki nodes in M for each machine
i (called machine nodes). We denote the Ki copies of machine i by ik, 1 ≤ k ≤ Ki. For
machine i, sort the jobs in decreasing order of Pij, and assign the jobs to the machine
copies ik greedily with 1 unit of X to each node. The values of Xijk in this assignment
are the edge weights on the bipartite graph, as shown in the figure.

Clearly, this is a fractional matching with the total weight on any job node being 1
and the total weight on any machine node being at most 1. We define the value of a
matching as the maximum of the total weight of nodes on either side. The following
theorem guarantees that we can find an integral matching of same value as the fractional
matching.

Theorem 4. Let G = (U, V,E) be a bipartite graph. If there exists a fractional matching
of value V ∗ in G, then there exists an integral matching of the same value V ∗ in G.

This is obviously not true for non-bipartite graphs. The triangle K3 with all edges
having weight 1/2 is itself a fractional matching of value 3/2. However, no integral
matching of value 3/2 exists.

This result follows from the fact that the adjacency matrix of a bipartite graph is
totally unimodular (the determinant of any square submatrix is 0, 1 or −1). However,
we give a simple proof sketch which avoids this result. Given a fractional matching, we
construct an integral matching iteratively.

Proof. Let Mf be a fractional matching in the graph. If it is integral, we are done.
Otherwise, choose a vertex u1 ∈ U which has an edge e = (u1, v1) ∈Mf with 0 < we < 1.
Since e is incident on v1, there must be another edge of fractional weight e′ = (u2, v2) ∈Mf

with u2 6= u1. Continuing in this manner, we can eventually find a cycle (of even length)

6

1

2

3

4

5

6

7

11

12

13

21

22

31

32

33

1/3

2/3

1/3

2/3

1/3

1

1

2/3

1/3

2/3

1/3

2/3

Figure 1: The fractional matching X̃ constructed from 2. The green, blue and black lines
represent edges of weight 1/3, 2/3 and 1 respectively.

C ⊂ Mf of fractional edges in the matching. Starting with e1 = (u1, v1), label the edges
in the cycle as ‘+’ and ‘-’ alternatively. Let δ = min(we, 1− we) over all e ∈ C. Clearly,
0 < δ ≤ 1/2. Without loss of generality (since we can invert the signs on all edges),
assume δ is achieved for a ‘+’ edge e∗. If we∗ < 1/2, modify the edge weights w′e = we− δ
for all ‘+’ edges and w′e = we + δ for all ‘-’ edges. Otherwise, set w′e = we + δ for all ‘+’
edges and w′e = we − δ for all ‘-’ edges. The weights remain unchanged for all e /∈ C.

It is easy to observe that with the changed weights, we still have a valid fractional
matching of the same value, due to the fact that all new edge weights satisfy 0 ≤ we ≤ 1
and for each vertex, there is a bijection between ‘+’ and ‘-’ edges. By this procedure, the
weight of some edge e = (u, v) in the cycle gets modified to 1 or 0. If w′e = 1, then u and
v are matched by an integral edge. All other edges incident to u or v must have weight 0
and hence they can be removed without affecting the value of the matching. Otherwise,
w′e = 0, in which case this edge can be removed. In either case, we have managed to
remove at least one edge with fractional weight, and hence obtained a fractional matching

7

with fewer edges. Iterating this process at most |Mf | ≤ m times, we can find an integral
matching of the same value.

Thus, the algorithm is simply to construct G using the LP solution X, compute an
integral matching in G and schedule jobs to machines according to the matching. It
remains to analyze the maximum load on a machine after this assignment.

3.3 Analysis

Let X be the LP solution, X̃ be the set of edge weights in the constructed graph, and X ′

be the integral matching in the graph. Fix a machine i. For a job j, Xij is split across
Ki copies of Mi in G. However, the processing time Pij remains the same for all copies.
Hence, we have

Ki∑
k=1

n∑
j=1

X̃ijkPij =
n∑

j=1

Ki∑
k=1

X̃ijkPij =
n∑

j=1

XijPij ≤ D

For k ∈ [Ki], let Pmax
ik and Pmin

ik denote the maximum and minimum processing time of
a job assigned to the kth copy of i respectively. We note that the maximum load on a
particular copy of a machine is at most the minimum load on the previous copy of the
same machine, due to the greedy assignment of jobs. Further, Pmax

i1 ≤ D due to the final
constraint in the LP. Finally, Pmin

ik , being the minimum among the processing times of

all jobs for the kth copy of the machine, is at most
n∑

j=1

X̃ijkPij since
n∑

j=1

Xijk = 1 for all

k < Ki (the minimum of a set of numbers is bounded above by any convex combination).

Load(i) ≤
Ki∑
k=1

Pmax
ik

= Pmax
i1 +

Ki∑
k=2

Pmax
ik

≤ Pmax
i1 +

Ki−1∑
k=1

Pmin
ik

≤ Pmax
i1 +

Ki−1∑
k=1

n∑
j=1

X̃ijkPij

≤ D +D

= 2D

Thus, if there exists a schedule of makespan D, then this algorithm returns a schedule
of at most 2D, which implies a 2-approximation for R||Cmax since we can run a binary
search over D to approximate Cmax.

References

[1] Wikipedia article on Doubly Stochastic Matrix,
https://en.wikipedia.org/wiki/Doubly stochastic matrix (last accessed on 22
September, 2016)

8

	R | pmtn | Cmax (continued from previous lecture)
	NP-completeness of R || Cmax
	2-approximation for R || Cmax
	Feasibility LP
	Rounding
	Analysis

