
IEOR E8100, Scheduling Algorithms

Professor Cliff Stein

Fall 2016− Lecture 5

Sep. 22, 2016

Scribe: Jihye Kwon

1 Introduction: Jobs with Deadlines

Table 1: An instance
with four jobs with
deadlines. Each jobJj

(with the index j) has
the processing timepj
and the deadlinedj.

j pj dj
1 2 3
2 2 5
3 7 10
4 1 12

In this lecture, we consider the scheduling of jobs with deadlines. Ta-
ble 1 shows an example instance consisting of four jobsJj with dead-
lines dj. With such jobs, the scheduling objective can be as follows.

• Feasibility: to schedule all jobs by their deadlines (also known as
hard real-time scheduling1)

• To minimize the maximum or weighted sum of:

– LatenessLj = Cj − dj
(Cj is the completion time of jobJj .)

– TardinessTj = max{Lj , 0}

– Unit penaltyUj =

{

1, if Cj > dj

0, otherwise

2 Scheduling Jobs with Deadlines: Earliest Due Date

For scheduling jobs on one machine to meet all their deadlines, there is an optimal method called
Earliest Due Date (EDD), Earliest Deadline First (EDF), or Jackson’s Rule. As the names suggest,
it schedules the job with the earliest deadline first, and then repeatedly schedules one with the
earliest deadline among remaining jobs. Fig. 1 shows an EDD schedule for jobs in Table 1. Note
that this EDD schedule meets the deadlines of all jobs exceptJ3.

J1 J2 J3 J4
Time

0 2 4 11 12

Figure 1: EDD schedule for jobs with deadlines in Table 1.

1‘Hard’ here means that the deadlines are strict. If a schedule misses a hard deadline of any job, it is considered as
a (system) failure. ‘Soft’ deadlines can be missed with the quality of service degraded based on the tardiness [1].

IEOR E8100, Scheduling Algorithms− Lecture 5 1

Claim 1. For any instance (set of jobs), if there exists a schedule that meets all the deadlines, then
an EDD schedule also meets all the deadlines. A contrapositive statement of this is that if EDD
cannot schedule an instance to meet all the deadlines of the jobs, then there exists no schedule for
this instance that meets all the deadlines.

Claim 2. EDD is optimal for1| |Lmax. (Lmax = maxj Lj .)

Claim 1 is equivalent to Claim 2. The intuition to verify thisargument is as follows. Suppose that
there exists a schedule that does not meet all deadlines of aninstance. What is the minimumx
such that we can meet the deadlinesdj + x for all jobsJj of this instance?

Hence, we will prove Claim 2 to validate both of the above claims, using Exchange Argument.
This argument is widely used when proving the optimality or feasibility of a scheduling method.

2.1 Exchange argument

proof of Claim 2.Suppose that we have a schedule that is optimal for1| |Lmax, but is not EDD.
Then, in this schedule, there must exist two consecutive jobs Jj andJk with deadlinesdj > dk
(i.e.,Jj is scheduled right beforeJk, butJj has later deadline thanJk). Exchange Argument: We
will show that if we swap jobsJj and Jk in the schedule, thenLmax of the new schedule is not
greater than the original schedule’sLmax. We can apply thisExchange Argumentrepeatedly to
eventually get an EDD schedule of no greaterLmax than the original schedule.

...

...

...

...Jj

Jj

Jk

Jk

Time

Time

t

t+ pj

t+ pk t+ pj + pk

S

S′

Figure 2: An illustration of the exchange argument. Consecutive jobsJj andJk in scheduleS are
swapped in the new scheduleS ′. If dj > dk, thenLmax of S ′ does not increase by this swapping.

As shown in Fig. 2, swapping jobsJj andJk does not affect the time at which any other jobs are
scheduled. Thus, it is enough to show thatmax(L′

k, L
′

j) ≤ max(Lk, Lj) = Lk, whereL′

k andL′

j

denote the lateness of jobsJk andJj , respectively, in the new scheduleS ′. max(Lk, Lj) = Lk

sinceCk > Cj anddk < dj.

• L′

k ≤ Lk is trivial as jobJk completes earlier in the new schedule.

• L′

j ≤ Lk, sinceL′

j = C ′

j − dj = Ck − dj < Ck − dk = Lk. (C ′

j is the completion time of
job Jj in the new schedules′. C ′

j = t (starting time ofJj in S) + pk + pj = Ck as shown in
Fig. 2. Also,dj > dk from the assumption of this exchange argument.)

Thus,max(L′

k, L
′

j) ≤ max(Lk, Lj), andLmax does not increase by swapping these two jobs.

IEOR E8100, Scheduling Algorithms− Lecture 5 2

2.2 Jobs with precedence constraints (1|prec|Lmax)

Now, suppose that jobs have precedence constraints as well as the deadlines, and that we want to
schedule them on one machine to minimizeLmax. In this case (1|prec|Lmax), if we do not have any
pair of jobsJj andJk such thatJj → Jk (i.e.,Jj precedesJk) anddj ≥ dk, then EDD is optimal.
For any instance, if we have such pair of jobs (Jj → Jk anddj ≥ dk), then we can transform this
instance so that no such pair exists, without changingLmax.

The instance is transformed as follows. In reverse topological order2 of jobsJj , if Jj → Jk for
some jobJk, let

dj = min{dj, dk − pk}.

For example, Table 2 (a) shows an instance with the (direct) precedence constraintsJ4 → J3 →
J2 → J1, and Table 2 (b) shows the transformed instance with modifieddeadlines.

Table 2: An instance with precedence constraints and its transformation.

(a) Original instance.

J4 → J3 → J2 → J1

j pj dj
1 2 3
2 2 5
3 7 10
4 1 12

(b) Transformed instance.

J4 → J3 → J2 → J1

j pj dj
1 2 3
2 2 1
3 7 −1
4 1 −8

(c)Cj andLj of EDD for (b).

j Cj Lj

1 12 9
2 10 9
3 8 9
4 1 9

After this transformation, for any pair of jobsJj andJk such thatJj → Jk, dj < dk holds. Thus,
an EDD schedule for the transformed instance satisfies all the precedence constraints of both the
original and the transformed instances. (The two instancesdiffer only on deadlines.)

We want to show that the maximum latenessLmax of this schedule is the same for both instances.
During the transformation, if we did not change the value ofdj , then the value ofLj remains the
same. Otherwise, i.e., if the value ofdj has been changed todk − pk, thenLj for the transformed
instance will be larger than that for the original instance (since the deadline has decreased), but the
transformedLj is less than or equal toLk, as follows:

Lj = Cj − dj = Cj − (dk − pk) = Cj − dk + pk = Cj + pk − dk ≤ Ck − dk ≤ Lk.

Hence, ifdj was modified, thenLj ≤ Lk for somek and thus it will not affectLmax.

In conclusion, an EDD schedule on the transformed instance satisfies all the precedence constraints
and itsLmax, which is optimal for the transformed instance, is the same for the original instance.

2In reverse topological order, jobJk is visited before jobJj if Jj → Jk. (In topological order,Jj is visited first.)

IEOR E8100, Scheduling Algorithms− Lecture 5 3

2.3 Jobs with release times and preemptions (1|rj, pmtn|Lmax)

When jobs have both release times and deadlines,1|rj|Lmax is NP-hard.

If preemptions are allowed,1|rj, pmtn|Lmax can be scheduled with preemptive EDD, where the
scheduling decision is made 1) at the beginning (at time0) of the schedule, 2) when a job com-
pletes, and 3) when a job arrives. At every decision point, itschedules an active job (that has been
released and not completed) with the earliest deadline if exists, with preemption if another job is
running.

Table 3: An instance with four jobs. Each jobJj has the release timerj , processing timepj, and
deadlinedj .

j rj pj dj
1 0 10 20
2 2 5 10
3 3 1 8
4 5 2 9

J1J1 J2J2J2 J3 J4

C1C2C3 C4

Time
0 2 3 4 5 7 10 18· · ·

Figure 3: A preemptive EDD schedule for the instance in Table3.

Table 3 shows an example instance consisting of four jobs with release times and deadlines, and
Fig. 3 shows a preemptive EDD schedule for this instance. As noted in Fig. 3, the completion
times of the jobs areC1 = 18, C2 = 10, C3 = 4, C4 = 7, and thus the lateness areL1 = −2,
L2 = 0, L3 = −4, L4 = −2.

Note that a preemptive EDD schedule cannot have jobs scheduled in the order of “J2, J3, J2, J3.”
The first “J2, J3” suggests thatd3 < d2, sinceJ2 resumes later, meaning thatJ3 is preempting
J2 here. Then, thisJ3 is preempted byJ2 (sinceJ3 resumes at the end) which cannot occur in an
EDD schedule whereJ3 has an earlier deadline thanJ2.

To show the optimality of preemptive EDD, let’s introduce some notations. LetS be a subset of
jobs of an instance. Then, we definermin(S), p(S), anddmax(S) as follows.

• rmin(S) = min
j∈S

rj

IEOR E8100, Scheduling Algorithms− Lecture 5 4

• p(S) =
∑

j∈S

pj

• dmax(S) = max
j∈S

dj

The following claim sets a lower bound on the optimalLmax.

Claim 3. Let J be the set of all jobs of an instance, and letL∗

max be the optimalLmax for this
instance. Then, the following holds:

L∗

max ≥ max
S⊂J

{rmin(S) + p(S)− dmax(S)}.

Proof. Let Jc be the last job to complete inS. Then,

Lc = Cc − dc ≥ rmin(S) + p(S)− dc

≥ rmin(S) + p(S)− dmax(S).

Cc ≥ rmin(S) + p(S) since the earliest time that any job inS can start running isrmin(S) and it
takes at leastp(S) to run all the jobs inS. dc ≤ dmax(S) sinceJc is one job inS.

Now, we will show that preemptive EDD achieves this lower bound.

Claim 4. Preemptive EDD has

Lmax = max
S⊂J

{rmin(S) + p(S)− dmax(S)}.

Proof. Let Jc be a job withLmax = Lc. Let t be the latest time such that every jobJj running in the
interval [t, Cc] hasrj ≥ t. Also, letS be jobs running in the interval[t, Cc]. Then, the following
claims hold.

1) There is no idle time in[t, Cc], and thusp(S) ≥ Cc − t.
(proof) Suppose that there is idle time[t1, t2] in [t, Cc] (t < t1 < t2 < Cc). This interval
[t1, t2] can be idle only if there is no active (released and not completed) job in[t1, t2]. Thus,
any job running aftert2 must be released aftert2. Sincet < t2, this contradicts the definition
of t.

2) rmin(S) = t.
(proof)Both “rmin(S) < t” and “rmin(S) > t” contradict the definition oft.

IEOR E8100, Scheduling Algorithms− Lecture 5 5

3) dmax(S) = dc.
(proof) Suppose not. Then, lett′ be the latest time in[t, Cc] in which a jobJj with dj > dc
is processed (t < t′). Then, for any jobJk that runs in[t′, Cc], dk ≤ dc, and sincedc < dj,
it follows that dk ≤ dc < dj, i.e., Jj has a later deadline thanJk. However,Jj was not
preempted byJk in preemptive EDD, sork ≥ t′. Thus, all jobsJk running in the interval
[t′, Cc] haverk ≥ t′ andt < t′, which contradicts the definition oft.

From 1), 2), and 3),

Lmax = Lc = Cc − dc ≤ t + p(S)− dmax = rmin(S) + p(S)− dmax.

From Claim 3 and Claim 4, preemptive EDD is optimal for1|rj, pmtn|Lmax.

3 Approximation algorithms

Since1|rj|Lmax is NP-hard, let’s considerρ−approximation algorithms for this problem. LetL∗

max

denote the optimalLmax value. Then, aρ−approximation algorithm should achieve

Lmax ≤ ρL∗

max.

Note thatLmax can be0 or negative. IfL∗

max = −10, then for any algorithm it is impossible to
achieveLmax ≤ 2L∗

max = −20, so no2−approximation algorithm exists.

On the other hand, sinceLj = Cj − dj, we can decrease all deadlinesdj by the same amountδ to
increaseLmax to Lmax+ δ. Let’s assume that an instance hasL∗

max = 3. Then, a2−approximation
algorithm needs to achieveLmax ≤ 6. If we decrease all deadlines by10000, thenL∗

max = 10003
and the requirement for a2−approximation algorithm becomesLmax ≤ 20006. The two problem
instances (before and after shifting the deadlines) are essentially equivalent from the scheduling
perspective (an optimal schedule for one instance is also optimal for the other), but decreasing the
deadlines makes the problem easier for approximation algorithms.

These observations may imply thatLmax is not an appropriate metric to represent the quality of
scheduling that we want to compare approximation algorithms with. Motivated by this argument,
we consider another metric: delivery times [2]. Let

qj = −dj.

Then,
Lj = Cj − dj = Cj + qj ,

IEOR E8100, Scheduling Algorithms− Lecture 5 6

and we want to work onCj + qj instead of onCj − dj. We call thisqj the delivery time.

With this, the problem is defined as follows. A jobJj has release timerj , processing timepj , and
delivery timeqj . JobJj can only be processed afterrj . After its completion atCj , Jj needsqj time
to deliver the result. With a single processor, at most one job can be processed at any time, but the
delivery time of different jobs can overlap. Delivery forJj is done atLj = Cj + qj, and we want
to minimize this time. Thus, the objective for this problem is

minmax
j

Lj .

As before, letLmax = maxj Lj . There is a simple 2-approximation algorithm minimizing this
objective.

Claim 5. In List scheduling, whenever the processor becomes available, the next active (released
and not completed) job on the list starts running. List scheduling is a 2-approximation algorithm
for the above problem (1|rj|Lmax defined with delivery times).

Proof. Let L∗

max be the optimal value of the objectiveLmax. It is obvious that

L∗

max ≥
∑

j

pj (1)

and
L∗

max ≥ rj + pj + qj , ∀j. (2)

Let Jc be a job withLc = Lmax in a List schedule. Then,

Lmax = Cc + qc

≤ rc +
∑

j

pj + qc (3)

≤ (rc + qc) + L∗

max · · · from Eq.(1)

≤ L∗

max+ L∗

max · · · from Eq. (2)

= 2L∗

max.

The inequality(3) holds because there is no idle time in[rc, Cc] by List scheduling (after jobJc is
released, the processor cannot become idle before completing this active job on the list.)

On the next page, Table 4 contains a simple example instance with two jobsJ1 andJ2 to demon-
strate the gap between a List schedule and an optimal schedule. Fig. 4 shows a list schedule where
J1 is processed from0 to M , because onlyJ1 is released at0, and thenJ2 is processed fromM to
M + 1. With this schedule,Lmax is 2M + 1 sinceJ2 takesM time units for the delivery. Fig. 5
shows an optimal schedule where it is idle at[0, 1], and att = 1 whenJ2 is released,J2 is pro-
cessed for1 time unit, soL2 = 2 +M . J1 is processed from2 toM + 2 and its delivery time is0,
soL1 = M + 2. Thus,Lmax = M + 2 for the optimal schedule. As the constantM increases, the
ratio between theLmax of the List schedule to that of the optimal schedule approaches2.

IEOR E8100, Scheduling Algorithms− Lecture 5 7

Table 4: An instance with two jobs. Each jobJj has the release timerj, processing timepj, and
delivery timeqj . LetM be a large constant.

j rj pj qj
1 0 M 0
2 1 1 M

J1 J2
Time

0 M M + 1 2M + 1

Lmax

‖

Figure 4: A List schedule withLmax = 2M + 1 for the instance in Table 4.

��

��

J1J2
Time

0 1 2 M + 2

Lmax

‖

Figure 5: An optimal schedule withLmax = M + 2 for the instance in Table 4.

References

[1] J. W. S. W. Liu,Real-Time Systems. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1st ed.,
2000.

[2] L. A. Hall and D. B. Shmoys, “Jackson’s rule for single-machine scheduling: making a good
heuristic better,”Mathematics of Operations Research, vol. 17, no. 1, pp. 22–35, 1992.

IEOR E8100, Scheduling Algorithms− Lecture 5 8

