IEOR E8100, Scheduling Algorithms

Professor Cliff Stein

Fall 2016 — Lecture 5
Sep. 22, 2016
Scribe: Jihye Kwon

1 Introduction: Jobs with Deadlines

In this lecture, we consider the scheduling of jobs with diead. Ta-
Table 1: An instanceble 1 shows an example instance consisting of four jpbaith dead-
with four jobs with linesd;. With such jobs, the scheduling objective can be as follows.
deadlines. Each job
(with the indexj) has
the processing time;
and the deadlin€;. e To minimize the maximum or weighted sum of:

e Feasibility: to schedule all jobs by their deadlines (alsowkn as
hard real-time schedulify

— Latenesd.; = C; — d;
(C} is the completion time of job;.)

— Tardinessl; = max{L;,0}
1, if Cj > dj
0, otherwise

=W N S
— - o oS
— =

o 5 ot w| &

— Unit penaltylU; = {

2 Scheduling Jobs with Deadlines: Earliest Due Date

For scheduling jobs on one machine to meet all their deasllithere is an optimal method called
Earliest Due Date (EDD), Earliest Deadline First (EDF),ackon’s Rule. As the names suggest,
it schedules the job with the earliest deadline first, and tlegeatedly schedules one with the
earliest deadline among remaining jobs. Fig. 1 shows an Efedule for jobs in Table 1. Note
that this EDD schedule meets the deadlines of all jobs extept

Jl JQ J3 J4
0 2 4 11 12

Time

Figure 1: EDD schedule for jobs with deadlines in Table 1.

“Hard’ here means that the deadlines are strict. If a scleathigses a hard deadline of any job, it is considered as
a (system) failure. ‘Soft’ deadlines can be missed with thality of service degraded based on the tardiness [1].

IEOR E8100, Scheduling Algorithms Lecture 5 1

Claim 1. For any instance (set of jobs), if there exists a schedulerttegets all the deadlines, then
an EDD schedule also meets all the deadlines. A contrapesstiatement of this is that if EDD
cannot schedule an instance to meet all the deadlines obtis fhen there exists no schedule for
this instance that meets all the deadlines.

Claim 2. EDD is optimal forl| | Lmax (Lmax = max; L;.)

Claim 1 is equivalent to Claim 2. The intuition to verify trasgument is as follows. Suppose that
there exists a schedule that does not meet all deadlines ioStmce. What is the minimum
such that we can meet the deadlidgs- = for all jobs J; of this instance?

Hence, we will prove Claim 2 to validate both of the aboveroli using Exchange Argument.
This argument is widely used when proving the optimalityeadibility of a scheduling method.

2.1 Exchange argument

proof of Claim 2. Suppose that we have a schedule that is optimal foFf.a but is not EDD.
Then, in this schedule, there must exist two consecutive jptand J,, with deadlinesi; > d;
(i.e., J; is scheduled right beforé,, but.J; has later deadline tha#,). Exchange Argument: We
will show that if we swap jobd; and J; in the schedule, theh ., of the new schedule is not
greater than the original schedulek,,,«. We can apply thi€€xchange Argumentpeatedly to
eventually get an EDD schedule of no gredltgg, than the original schedule.

S Jj T,
t+p;j

Time

/
S iy Jj
t t+pr t+p;+Dpk

Time

Figure 2: An illustration of the exchange argument. Congeeyobs.J; and.J, in scheduleS are
swapped in the new scheduié If d; > dy, thenLnax 0f S” does not increase by this swapping.

As shown in Fig. 2, swapping jobg andJ, does not affect the time at which any other jobs are
scheduled. Thus, it is enough to show thatx (L), L)) < max(Ly, L;) = Ly, whereL; and L
denote the lateness of jobls and J;, respectively, in the new schedu$¢. max(Ly, L;) = Ly
sinceCy, > C; andd;, < d,.

e [< Lyiistrivial as job.J, completes earlier in the new schedule.

o L < Ly, sincel; = Cf — d; = Cy, — d;j < Cy, — d = Ly. (C] is the completion time of
job J; in the new schedulg. C} = t (starting time ofJ; in S) + px + p; = C as shown in
Fig. 2. Also,d; > d;, from the assumption of this exchange argument.)

Thus,max(Ly, L) < max(Ly, L;), and Lnax does not increase by swapping these two jobs.]

IEOR E8100, Scheduling Algorithms Lecture 5 2

2.2 Jobs with precedence constraintsl{prec| Limax)

Now, suppose that jobs have precedence constraints assaék aleadlines, and that we want to
schedule them on one machine to minimizgy. In this case {|predLmay), if we do not have any
pair of jobsJ; andJ;, such that/; — J; (i.e., J; precedes/;) andd; > di, then EDD is optimal.
For any instance, if we have such pair of jobs & J, andd; > d;), then we can transform this
instance so that no such pair exists, without chanding.

The instance is transformed as follows. In reverse topolgirdef of jobs J;, if J; — Jj, for
some jobJy, let
dj = min{dj, dk _pk}

For example, Table 2 (a) shows an instance with the (direefjgulence constraints — J; —
Jo — Jp, and Table 2 (b) shows the transformed instance with modileedilines.

Table 2. An instance with precedence constraints and nsfoamation.

(a) Original instance. (b) Transformed instance. (c) C; andL; of EDD for (b).
J4—>J3—>J2—>J1 J4—>J3—>J2—>J1

J | b | 4 J | v | 4 J G | L

1 2 3 1 2 3 1 12 9

2 2 5! 2 2 1 2 10 9

3 7 10 3 7 —1 3 8 9

4 1 12 4 1 —8 4 1 9

After this transformation, for any pair of johs and.J, such that/; — J;, d; < d;, holds. Thus,
an EDD schedule for the transformed instance satisfiesalptécedence constraints of both the
original and the transformed instances. (The two instadidfes only on deadlines.)

We want to show that the maximum latendss, of this schedule is the same for both instances.
During the transformation, if we did not change the valud gfthen the value of.; remains the
same. Otherwise, i.e., if the value @f has been changed # — p;, thenL; for the transformed
instance will be larger than that for the original instargia¢e the deadline has decreased), but the
transformed.; is less than or equal tb;, as follows:

Li=C;—dj=Cj—(di,—pr) =Cj —dp+pp =Cj +pp —di, < Cp —dj, < Ly
Hence, ifd; was modified, therd; < L, for somek and thus it will not affect’may.

In conclusion, an EDD schedule on the transformed instaattsies all the precedence constraints
and itsLmax, Which is optimal for the transformed instance, is the saonéhfe original instance.

2In reverse topological order, joly, is visited before jobJ; if .J; — Jx. (In topological order,/J; is visited first.)

IEOR E8100, Scheduling Algorithms Lecture 5 3

2.3 Jobs with release times and preemptions (r-;, pmtn| Lmax)

When jobs have both release times and deadliieg.Lmax is NP-hard.

If preemptions are allowed,|r;, pmtn Lmax can be scheduled with preemptive EDD, where the
scheduling decision is made 1) at the beginning (at tinef the schedule, 2) when a job com-
pletes, and 3) when a job arrives. At every decision poisglitedules an active job (that has been
released and not completed) with the earliest deadlineistexwith preemption if another job is
running.

Table 3: An instance with four jobs. Each job has the release time, processing time;, and
deadlined;.

J | i | P d;
1 0 10 20
2 2 5 10
3 3 1 8
4 5 2 9

S | S| J3| J2| Jo J1 l ,
Time

0 2 3 4 5 7 10 <. 18
\ \ \ \
Cg 04 CQ Cl

Figure 3: A preemptive EDD schedule for the instance in Table

Table 3 shows an example instance consisting of four jobis regiease times and deadlines, and
Fig. 3 shows a preemptive EDD schedule for this instance. dtschin Fig. 3, the completion
times of the jobs ar€’; = 18, C; = 10, C3 = 4, C; = 7, and thus the lateness ate = —2,

L2 - 0, L3 - —4, L4 = -2

Note that a preemptive EDD schedule cannot have jobs satduthe order of 75, J3, Jo, J3.”
The first “J,, J3” suggests thatl; < d», since.J, resumes later, meaning thaj is preempting

Jo here. Then, thig/; is preempted by, (sinceJ; resumes at the end) which cannot occur in an
EDD schedule wheré; has an earlier deadline thah.

To show the optimality of preemptive EDD, let’s introducers®notations. Leb be a subset of
jobs of an instance. Then, we defingn(.S), p(S), anddmax(S) as follows.

o rmin(S) = minr;

JjeS

IEOR E8100, Scheduling Algorithms Lecture 5 4

e p(S)= > p;

JjES
The following claim sets a lower bound on the optindgly.

Claim 3. Let J be the set of all jobs of an instance, and Igt,, be the optimalLmax for this
instance. Then, the following holds:

Liax > rgca?]({rmin(S) + p(S) — dmax(S) }-

Proof. Let J. be the last job to complete ii. Then,

L.=C.—d.> Tmin(S) —i—p(S) —d,
> Tmin(S) + p(S) — dmax(S)-

C. > rin(S) + p(S) since the earliest time that any job $thcan start running ismin(S) and it
takes at least(S) to run all the jobs inS. d. < dmax(S) sinceJ. is one job inS. O

Now, we will show that preemptive EDD achieves this lower thau

Claim 4. Preemptive EDD has

Lmax= rb{lg}{rmin(s) + p(S) - dmax(S)}-

Proof. Let J. be ajob withLy.x = L.. Lett be the latest time such that every jgprunning in the
interval ¢, C.] hasr; > t. Also, letS be jobs running in the intervat, C..]. Then, the following
claims hold.

1) Thereis no idle time i, C.], and thup(S) > C, — t.
(proof) Suppose that there is idle tinig, 5] in [¢t,C.] (t < t; < ty < C.). This interval
[t1,t2] can be idle only if there is no active (released and not coteg)gob in[t,, ¢;]. Thus,
any job running aftet, must be released aftey. Sincet < t,, this contradicts the definition
of t.

2) Tmin(S) =1t.
(proof) Both “rmin(S) < t” and “rmin(S) > t” contradict the definition of.

IEOR E8100, Scheduling Algorithms Lecture 5 5

3) dmax(S) = d..
(proof) Suppose not. Then, I¢tbe the latest time ift, C.] in which a job.J; with d; > d.
is processedt(< t'). Then, for any jobJ, that runs int’, C|, di, < d., and sincel. < d;,
it follows thatd, < d. < dj;, i.e., J; has a later deadline thaf. However,J; was not
preempted byJ, in preemptive EDD, s@,, > t'. Thus, all jobsJ, running in the interval
it', C.] haver, >t andt < ¢/, which contradicts the definition of

From 1), 2), and 3),

Lypax=L.=C.—d. <t +p(5) — dmax = Tmin(S) +p(5) — dmax

From Claim 3 and Claim 4, preemptive EDD is optimal for;, pmtn Lax.

3 Approximation algorithms

Sincel|r;|Lmax is NP-hard, let's consider—approximation algorithms for this problem. L&},
denote the optimal . value. Then, @—approximation algorithm should achieve

Linax < pLax.

Note thatLn.x can be0 or negative. IfL; ., = —10, then for any algorithm it is impossible to
achieveljax < 2L —20, so no2—approximation algorithm exists.

max —

On the other hand, sindg; = C; — d;, we can decrease all deadlingsby the same amountto
increaselmax t0 Lmax + 0. Let's assume that an instance Hgs,, = 3. Then, a2—approximation
algorithm needs to achieve,.x < 6. If we decrease all deadlines Bg000, thenL;,,, = 10003
and the requirement for Z—approximation algorithm becomés,,x < 20006. The two problem
instances (before and after shifting the deadlines) arenéisfly equivalent from the scheduling
perspective (an optimal schedule for one instance is alsmapfor the other), but decreasing the
deadlines makes the problem easier for approximation ighgas.

These observations may imply thhg,, is not an appropriate metric to represent the quality of
scheduling that we want to compare approximation algomstinith. Motivated by this argument,
we consider another metric: delivery times [2]. Let

¢ = —dj.

Then,
Lj:Cj—dj:Cj+Qj,

IEOR E8100, Scheduling Algorithms Lecture 5 6

and we want to work od; + ¢; instead of orC; — d;. We call thisg; the delivery time.

With this, the problem is defined as follows. A job has release time;, processing time;, and
delivery timeg;. JobJ; can only be processed aftgt After its completion at’;, J; needsy; time

to deliver the result. With a single processor, at most ohefn be processed at any time, but the
delivery time of different jobs can overlap. Delivery fdy is done atL; = C; + ¢;, and we want

to minimize this time. Thus, the objective for this problesn i

min max L;.
J

As before, letLnax = max; L;. There is a simple 2-approximation algorithm minimizingsth
objective.

Claim 5. In List scheduling, whenever the processor becomes avejltte next active (released
and not completed) job on the list starts running. List schied is a 2-approximation algorithm
for the above problemi(r;| Lnax defined with delivery times).

Proof. Let L ., be the optimal value of the objectivg,... It is obvious that

L*max > ij (1)
j
and
L*max > +p;+q;, Vj. (2)
Let J. be ajob withL,. = Lnaxin a List schedule. Then,
Lmax = C’c + de
Src“'zpj_‘_ck (3)
J
<(re+q.)+ L - fromEq.(1)
< Lmax + Liax .-+ from Eq. (2)
=2L%

max®

The inequality(3) holds because there is no idle timeip, C.] by List scheduling (after jol. is
released, the processor cannot become idle before conptéts active job on the list.) O

On the next page, Table 4 contains a simple example instaiticéwo jobs.J; and.J, to demon-
strate the gap between a List schedule and an optimal se&hdelgl 4 shows a list schedule where
Jp is processed frori to M, because only; is released dt, and thenJ; is processed from/ to

M + 1. With this schedulelnax is 2M + 1 sinceJ; takesM time units for the delivery. Fig. 5
shows an optimal schedule where it is idl€@tl], and att = 1 whenJ; is released,/; is pro-
cessed foil time unit, soL, = 2 + M. J; is processed fro to M + 2 and its delivery time i9),
SoL; = M + 2. Thus,Lnax = M + 2 for the optimal schedule. As the constartincreases, the
ratio between thé. ., Of the List schedule to that of the optimal schedule appreszh

IEOR E8100, Scheduling Algorithms Lecture 5 7

Table 4: An instance with two jobs. Each job has the release timg, processing time;, and
delivery timeg;. Let M be a large constant.

J rj Pj q;
0 M 0
2 1 1 M

—_

Ji L >| ,
Time
0 M M+1 2M +1
|
Limax

V] 7

0 1 2 M +2

max

Figure 5: An optimal schedule with,,.x = M + 2 for the instance in Table 4.

Time

References

[1] J. W. S. W. Liu,Real-Time SystembBlpper Saddle River, NJ, USA: Prentice Hall PTR, 1st ed.,
2000.

[2] L. A. Hall and D. B. Shmoys, “Jackson’s rule for single-ohéne scheduling: making a good
heuristic better,Mathematics of Operations Reseafgbl. 17, no. 1, pp. 22-35, 1992.

IEOR E8100, Scheduling Algorithms Lecture 5

