
IEOR 8100 Scheduling Algorithms

Instructor: Cliff Stein – Scribe: Nouri Sakr

Friday 23rd September, 2016

Introduction

By now we know the following results for scheduling problems where we want
to minimize the maximum lateness of any job in the presence of release dates:

• 1 | rj | Lmax min maxLj = Cj + qj

• 1 || Lmax EDD: largest delivery time first

• 1 | rj | Lmax LS: 2-approx

L∗max ≥ rmin(S) + p(S) + qmin(S) (1)

Starting from EDD∗ (which we define as the greedy algorithm that
chooses the largest delivery time among available jobs), we will make
observations in order to reach PTAS.

Derivation for PTAS

Consider the following sequence of jobs in a schedule after some idle time:

. . . | (idle time) | a | z | b | y | c | . . .

We refer to c as the critical job, i.e. Lc = Lmax. If job a is the first job
to run after some idle time and before c, then set S contains all jobs that run
between a and c, which we call the critical section.

We observe that Lmax = ra + p(s) + qc and since there is idle time before a, we
can deduce that all jobs in S are released after job a, i.e. ∀j ∈ S, rj ≥ ra = rmin(S)
(We know that EDD does not allow idle time, unless necessary).

Now suppose that all jobs in S have delivery times larger than that of c: ∀j ∈ S,
qc ≤ qj implying that qc = qmin(S).

Since c achieves Lmax = ra + p(S) + qc and given that ra = rmin(S), we get
Lmax = rmin(S) + p(S) + qmin(S) ≤ L∗max (by applying the bound in (1)).
Hence, if c has the smallest delivery time, then EDD∗ is optimal.

1

If EDD∗ is not optimal, then some job j in S has delivery time smaller than that
of the critical job. Let b be the last job in S satisfying qb < qc. (We call this
job an interference job) Furthermore, define sj as the starting time of job j.

Claim: Lmax < L∗max + pb

Proof. Let S′ be the jobs processed between end of b through c (including c).
Then ∀j ∈ S′,qj ≥ qc > qb. Note that when EDD∗ scheduled b at time sb, no
jobs in S′ had been released, hence, ∀j ∈ S′,rj > sb.

By equation (1), we know that
L∗max ≥ rmin(S′) + p(S′) + qmin(S′)> sb + p(S′) + qc.
By our construction, we have that Lmax = Cc + qc = sb + pb + p(S′) + qc.
Plugging the equation derived for L∗max gives us the following inequality:
Lmax < L∗max + pb. (Bound on pb gives PTAS)

This indicates that if interference jobs have very small processing times, EDD∗

still performs very well.

We now want to reason about a modified optimal schedule to allow us to design PTAS.
The main idea is to handle large jobs separately, then use EDD∗ for the smaller ones.

Assume we know the optimal schedule on instance I along with s∗j , the starting
time of job j in the optimal schedule, L∗max(I) and δ > 0 (δ will be chosen later).

We create a modified instance Ĩ with sets:

• S (small jobs): If pj ≤ δ, then r̃j = rj , p̃j = pj , and q̃j = qj (copy job)

• B (big jobs): If pj > δ, set r̃j = s∗j , p̃j = pj , and q̃j = L∗max(I)− pj − s∗j

Note that we have not decreased any delivery times, so instance Ĩ is not easier
than I. We just constrained the big jobs to run where they would have run in
the optimal schedule. If j ∈ B, then Lj = r̃j + p̃j + q̃j = L∗max. Furthermore,

we note that L∗max(I) = L∗max(Ĩ)

We run EDD∗ on our modified instance, Ĩ. If the critical sequence has no in-
terference job, then the solution is optimal. Otherwise, the following condition
holds: L∗max(Ĩ) < L∗max + pb

Claim: b /∈ B, i.e. none of the jobs in B are interference jobs

Proof. Assume fpoc. that b ∈ B and b is an interference job, then
q̃c > q̃b and r̃b = s∗b imply that r̃c > r̃b

Now take S′={c, b}, then by (1) we have:
L∗max ≥ rmin(S′) + p(S′) + qmin(S′) = r̃b + pb + pc + q̃b = L∗max + pc
CONTRADICTION.

2

Corollary: Let Σ be the schedule from running EDD∗ on Ĩ, then by the defini-
tion of δ, we get Lmax(Σ) < L∗max + δ

Goal now: Use this fact to derive PTAS!

PTAS

Let δ = ε
∑
pj , then Lmax < L∗max+ε

∑
pj ≤ (1+ε)L∗max (Recall Σpj ≤ L∗max)

How many jobs are in B?
≤ 1

ε and we can find them easily

Our only problem is that we actually do not know Ĩ
We can guess L∗max(I), but we don’t know s∗j for j ∈ B (too many possibilities).

It is, in fact, sufficient to guess the ”position” of a big job in the optimal
schedule (kth job to run for some k), rather than knowing its starting time.
This may lead us to enumerating all possible (n1/ε) numberings for the big jobs.
Given a numbering, we can run EDD∗ on the small jobs, and insert the big jobs
at the appropriate places in O(n log n) time. This gives us an O(n1+1/ε log
n)-algorithm which finds a schedule with Lmax ≤ (1 + ε)L∗max.

1 | dj = D |
∑

wjCj (Knapsack)

In the following two cases of single machine, we obtain the optimal schedule
using simple rules, namely Shortest Processing Time when minimizing
makespan and Smith’s Rule when minimizing the weighted sum of completion
times.

1 ||
∑
Cj

Claim: SPT sorts by increasing
pj and is optimal:

j pj wj
1 5 10
2 2 5
3 7 2

SPT gives 23

∑
Cj =

∑
C(j) =

∑
(n− i+ 1)P(i)

1 ||
∑
wjCj

Claim: SMITH’S RULE sorts
by decreasing

wj

pj
and is optimal

Assume fpoc. that we have an
optimal schedule not obeying
Smith’s Rule, then there exist
two consecutive jobs with

wj

pj
< wk

pk
.

SWAP them:∑
wj(Cj − C ′j) = wkpj − wjpk > 0

Parallel Machines.

In the setting of parallel machines, a job can be processed on any of the available
machines, but shall be processed by one machine at a time. A machine also
processes one job at a time.

3

P ||
∑
Cj

In the example below, we are interested in minimizing the sum of completion
times. Assume we have 3 machines available to process the following jobs, what
would be the optimal schedule?

j 1 2 3 4 5 6 7 8
pj 1 2 5 6 7 10 15 16

M3 J3 | J6
M2 J2 | J5 |J8
M1 J1 | J4 | J7

We mentioned earlier that SPT is an exact algorithm for 1 || ΣCj . Given parallel
identical machines, the optimal schedule applies SPT here as well. In a sense, it
is like assuming we have one machine, but instead of having to schedule, say J1,
J2 and J3 on one machine, we assign them in the same order but on separate
machines (simultaneously). That is: We sort all jobs in ascending order of their
processing times and schedule the jobs on any idle machine. In this example,
we run J1 on M1, J2 on M2 and J3 on M3. J4 and each subsequent job
will then run once its turn has come and one of the three machines has become
available. Note that due to SPT, we can guarantee that the job assignment
will be balanced among all jobs. That is: The 4th job will never finish before
first three, as it (1) has the fourth smallest processing time, (2) will run after
one of the three (in particular the first) jobs. Since J1 is the job with shortest
processing time, M1 will be the first machine to become available again and
will, hence, process J4. The table on the right above, shows the job assignment
after applying SPT.

P ||
∑
wjCj

The problem of minimizing the weighted sum of completion times becomes NP-
complete in a parallel machine environment, however, Smith’s Rule gives a
1+
√
2

2 -approx.

R ||
∑
Cj

In an unrelated machine environment, machines have different capabilities and
thus their relative performance on a job is unrelated. In other words, the
processing time of a job becomes both job- and machine-dependent. This
polynomial-time algorithms matches each job to its position on one of the ma-
chines in order to obtain the optimal schedule.

Construct the following bipartite graph (Figure 1):
1. The left set of n nodes representing n jobs.
2. The right set of nodes represent m sets, a set for each machine.
3. Each set consists of machine copies labeled by position k from last on that
machine: “last”, “last-1”, “last-2”, etc.
3. Assign an edge from each job j to each position “last-k” of each machine i
with cost (k+1)pij .
4. Match all jobs to positions s.t. the weighted bipartite matching is minimized

4

We claim that a minimum-weight perfect matching in this graph cor-
responds to an optimal schedule.

Jobs

J1

J2

Jn

Machine Copies

M1: last

M1: last-1

M1: last-k

Mm: last

Mm: last-1

Mm: last-k

...

...

p11

p1j

2p1j

(k + 1)p1j

...

pmj

2pmj

(k + 1)pmn

Figure 1: Graph for R || ΣCj : The nodes on the left (green) represent jobs
and the node sets (red and blue) on the right represent machines. Each set
has copies of the same machine representing different positions depending on
when the job gets executed on that machine - starting from the last position
and moving backwards.

The idea here –as illustrated by Figure 1– is to create copies of each machine
that are labeled by the position of the job. That is: If machine 1 processes jobs
3, 4 and 7 in that order, then we will match job 7 to the node of machine 1
that represents the last position on machine 1, job 4 to position “last-1” and job
3 to position “last-2”. Note that the costs of the arcs are position-dependent
because each job has an effect on the entire schedule depending on its position
on a certain machine. The claim here is that each job running in position
“last-k” contributes to the sum of completion times by exactly (k+1)
times its processing time and this can be easily verified.

An optimal schedule is in one-to-one correspondence with a minimum weight
bipartite matching for the model in Figure 1. Note that no optimal matching
will “skip” positions, i.e. cannot –for instance– assign a job to “last-1” on
a machine if ”last” is not already occupied simply because if “last” were not
occupied, then there would exist an optimal matching of less cost where we
simply switch the edge to point to the “last” position instead. The argument
holds for any “skipped” position, so that we can always keep “pushing” positions
with the gain of minimizing cost, until we have no more “gaps”.

5

