
IEOR 8100: Scheduling Algorithms 6 October, 2016

Lecture 8 – Sum of Completion Times with Release Dates

Instructor: Clifford Stein Scribe: Nishanth Mohan

1 Recap

Last time, we studied the notion of sum of completion times as a metric and proved that in the non-
preemptive case, sorting jobs by shortest processing time first (SPT) solves (1 ||

∑
j Cj) exactly in

polynomial time. In the case of unrelated machines (R ||
∑

j Cj), we reduced it to a matching problem
which was also solved in polynomial time. This time, we consider a slightly more general variant of
(1 ||

∑
j Cj) with release dates i.e. (1 | rj |

∑
j Cj).

2 (1 | rj |
∑∑∑

j Cj) - Hardness

Claim. (1 | rj |
∑

j Cj) is NP-hard.

Proof. (Sketch) We reduce from 3-PARTITION. Recall that the statement of 3-PARTITION is as
follows: given 3n numbers x1, x2, . . . x3n and a target B with

∑
i xi = nB and B/4 ≤ xi ≤ B/2, does

there exist a partition of these numbers into n groups S1, S2, . . . Sn each with three elements such that
the sum of each group Si equals B?

Given an instance of 3-PARTITION, we construct an instance of (1 | rj |
∑

j Cj) where:

• For each xi, we create a job Ji with pi = xi and ri = 0

• For each t = 3n + k with k ∈ {1, 2, . . . n}, we create a set Tk of L jobs (where L � B), each with
processing time 1 and release date kB+(k−1)L i.e. Tk = {Jk,1, Jk,2 . . . Jk,L} with rk,i = kB+(k−1)L
and pk,i = 1.

Given a yes-instance of 3-PARTITION, there exists a schedule for (1 | rj |
∑

j Cj) like so:

S1 T1 S2 T2

0 B B+L 2B+L 2B+2L

Notice that each set Tk finishes at time kB+kL and that in each group Si, the 3 jobs finish in increasing
order of processing times (as is consistent with SPT). Let Snd be the set of non-dummy jobs (those with
processing times pk) and let Sd be the set of dummy jobs (those with processing times pk,i). We have

∑
j∈Snd

Cj ≈
3(B + L)n2

2

∑
j∈Sd

Cj ≈
L2n2

2

1

Since
(∑

j∈Sd Cj

)
�
(∑

j∈Snd Cj

)
, we are better off doing the dummy jobs as they are released. Further,

the non-dummy jobs can be placed exactly in the “gaps” between the dummy jobs and moving them
further back would only increase the sum of completion times. Thus, the schedule above is optimal.

Now, given a no-instance of 3-PARTITION, there exists a “gap” in a group Si that can’t be filled by a
particular non-dummy job pj . We have two options:

• Move pj back without affecting the rest of the schedule. In this case, we increase pj ’s completion
time and thus increase the overall sum of completion times.

• Push some dummy jobs back which also increases the overall sum of completion times.

In either case, we don’t have an optimal schedule (several pages of tedious algebra confirm this).

3 (1 | rj |
∑∑∑

j Cj) - Approximation Algorithms

In a previous lecture, we saw that sorting jobs by shortest remaining processing time first (SPRT)
preemptively was optimal for (1 | pmtn, rj |

∑
j Cj). In fact, if CPj is the completion time of job j in the

SRPT schedule and OPT is the sum of completion times in an optimal non-preemptive schedule, then

n∑
i=1

CPj ≤ OPT

It is thus reasonable to expect that we might glean something useful from the SRPT schedule for a
(1 | rj |

∑
j Cj) instance.

3.1 Extract-from-Preempt

We now present a 2-approximation for (1 | rj |
∑

j Cj), Extract-from-Preempt, which is as follows:

1. Apply SRPT to obtain the optimal preemptive schedule P .

2. Reorder the jobs in increasing order of their completion times in P i.e. j < i if CPj < CPi .

3. Schedule the jobs non-preemptively in this order to get the final schedule N .

As an example, consider the following instance:

j rj pj
1 0 6
2 1 3
3 1 5
4 3 1
5 8 1


Running SRPT on this instance produces the following schedule:

J1 J2 J4 J2 J1 J5 J1 J3

0 1 3 4 5 8 9 11 16

2

while running Extract-from-Preempt produces the following schedule:

J4 J2 Idle J5 J1 J3

3 4 7 8 9 15 20

Claim. Extract-from-Preempt is a 2-approximation for (1 | rj |
∑

j Cj).

Intuition for proof: Consider a schedule Z in which when Ji completes in P , we add another
copy of pi (i.e. schedule it non-preemptively) and move everything after up by pi. Schedule
Z for the instance above would look like this:

J1 J2 J4 J4 J2 J2 J1 J5 J5 J1 J1 J3 J3

0 1 3 4 5 6 9 12 13 14 16 22 27 32

The extra pi blocks are shaded in a darker color in the picture above compared to their
preemptive counterparts. Note that before job Ji starts in Z, there are 2 copies of pk if Jk
finishes before Ji starts (the preemptive blocks and the extra block) and (possibly) some other
preemptive blocks for jobs that haven’t completed by then. Thus, removing the preemptive
components in Z results in a valid non-preemptive schedule Z ′ that has at most twice the
sum of completion times as P . All Extract-from-Preempt does is push the remaining blocks
in Z ′ as far back as possible while respecting release dates.

Proof. Recall that we schedule jobs in order of their preemptive completion times. This gives us the
following observations:

(i) CNj ≤ max{r1, . . . rj}+
∑j

k=1 pk since all the jobs are available after max{r1, . . . rj}.

(ii) CPj ≥
∑j

k=1 pk since job j can only finish once all of the jobs before it have completed (by our
ordering).

(iii) CPj ≥ max{r1, . . . rj} since job j can only start when all of the jobs until job j have been released
(once again by our ordering).

Using the observations above, we have

CNj ≤ max{r1, . . . rj}+

j∑
k=1

pk (. . . by observation (i))

⇒ CNj ≤ 2CPj (. . . by observations (ii) and (iii))

⇒
n∑
j=1

CNj ≤ 2

 n∑
j=1

CPj


⇒

n∑
j=1

CNj ≤ 2 ·OPT (. . . since
∑
j

CPj ≤ OPT)

3

3.2 Schedule-by-α-points

Definition (α-point). The α-point of a job j in a schedule is the first time at which αpj fraction of the
job has completed for 0 < α ≤ 1.

Consider the following algorithm, Schedule-by-α-points, which non-preemptively schedules jobs in
increasing order of their preemptive α-points:

1. Apply SRPT to obtain the optimal preemptive schedule P .

2. Reorder the jobs in increasing order of their α-points.

3. Schedule the jobs non-preemptively in this order.

Note that Extract-from-Preempt is equivalent to Schedule-by-α-points when α = 1. Scheduling by
α-points can avoid certain bad cases. Consider the following instance: j rj pj

1 0 100
2 99 1


SRPT yields the following schedule with

∑
Cj = 200:

J1 J2 J1

0 99 100 101

However, Extract-from-Preempt yields the following schedule with
∑
Cj = 299:

J2 J1

99 100 200

Finally, Schedule-by-α-points with α = 1/2, yields the following schedule with
∑
Cj = 201:

J1 J2

0 100 101

Claim. Schedule-by-α-points is a (1 + 1/α)-approximation for (1 | rj |
∑

j Cj).

Proof. As before, we have the following observations:

• CNj ≤ max{r1, . . . rj}+
∑j

k=1 pk

• CPj ≥ α
(∑j

k=1 pk

)
• CPj ≥ max{r1, . . . rj}

4

Thus,

CNj ≤
(

1 +
1

α

)
CPj

This bound is tight for certain cases. We thus do no better objectively than Extract-from-Preempt in
the worst case since (1 + 1/α) is maximized when α = 1. In order to avoid this, we can pick a random α
so that we do well on “most” inputs. This approach is addressed in the next section.

3.3 Schedule-by-random-α

Consider the following algorithm, Schedule-by-random-α, which randomizes the choice of α in the
previous algorithm:

1. Pick α′ according to some PDF f on (0, 1].

2. Run Schedule-by-α-points on the input with α = α′.

In order to analyze this algorithm, we introduce some notation:

• Let SPi (β) be the set of jobs that complete exactly β-fraction of their processing before CPi (P is
the preemptive schedule generated by SRPT).

• Let Ti be the idle time before CPi .

• Let p
(
SPi (β)

)
=
∑

j∈SPi (β) pj .

We have

CPi = Ti +
∑

0≤β≤1
βp
(
SPi (β)

)

= Ti +

 ∑
0≤β≤α

βp
(
SPi (β)

)+

 ∑
α<β≤1

βp
(
SPi (β)

)
Let Cαj be the completion time of job j in the schedule generated by Schedule-by-random-α.

Claim. We have

Cαi ≤ Ti +

 ∑
0≤β≤α

βp
(
SPi (β)

)+

(1 + α)

 ∑
α<β≤1

βp
(
SPi (β)

)
Proof. (Sketch) Similar to the analysis in the Extract-from-Preempt algorithm, for all β ≥ α, we can
insert job j non-preemptively after its α-point and throw the remaining (1−α)-fraction of it away. Note
that this is a non-preemptive schedule that respects release dates. Thus, we pay a factor of 1 for the
non-preemptive component and a factor of α for the preemptive component leading to a total contribution
of (1 + α).

5

Claim. We have

IE [Cαi] ≤ CPi
(

1 + max
β

(∫ 1

0
f(α)

[
1 + α− β

β

]
dα

))
Proof. Next time.

Note that

min
f

max
β

(∫ 1

0
f(α)

[
1 + α− β

β

]
dα

)
=

e

e− 1
≈ 1.58

for f(α) = eα

e−1 , so Schedule-by-random-α is a 1.58-approximation algorithm for (1 | rj |
∑

j Cj) in
expectation.

6

