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1 α-Point Algorithm

1.1 Review and Overview

We are discussing the problem 1/ri/
∑
Ci. Specifically, the problem of scheduling jobs with

release date ri on a single machine subject to minimizing the sum of completion time,
∑
Ci.

Note that this objective is equivalent to minimize the average completion time and the pre-
emption is not allowed.

The problem is easy if we allow preemption, since we can simply schedule the jobs with
shortest remaining process time first. In the last lecture, we first discussed an algorithm
which use the ordering of jobs by their completion time from optimal solution in preemptive
case to create a non-preemptive solution and proved that it provides a 2-approximation. For
0 < α ≤ 1, we denoted the α-point of a job j with processing time pj in a schedule by its
first time at which αpj of the job has complete. Then we considered a generalization of this
algorithm by using the ordering of the α points instead of the completion time[1]. In last

lecture, we showed that this algorithm can only reach 1 +
1

α
≥ 2 in the worst case. However

we will show that this algorithm can actually reach a
e

e− 1
≈ 1.58-approximation by choosing

the value of α wisely, which is the best we can hope in the algorithms that starts with the
optimal preemptive schedule[3]. In the remainder of this lecture, we will discuss a PTAS[2]
of our problem.

1.2 Analysis of the α-Point Algorithm

Here is an outline of the α-point algorithm[1]:

• Pick α ∈ (0, 1] from some p.d.f. f(α);

• Find the optimal solution of our problem with the allowing of preemption;

• Non-preemptively schedule the jobs in order of their α-points in the scheduling of pre-
emptive solution.

1



We begin with some notations. We use Cpi and Cαi to denote the completion time of job
j in the preemptive solution and the solution of the α-point algorithm respectively. In the
preemptive solution, we use Ti to denote the idle time before Cpi and Si(β) to denote the set
of jobs that complete exactly a β fraction before Cpi . By definition Cpi = Ti+

∑
0<β≤1

βp(Si(β)).

Here we use p(X) to denote the sum of processing times of jobs in set X. Note that there are
only finitely many value such that β 6= 0, so we could use the summation here.

Hence by the definition of α-point we have,

Cαi ≤ Ti +
∑
β<α

βp(Si(β)) + (1 + α)
∑
β≥α

p(Si(β))

E[Cαi ] =

∫ 1

0
f(α)Cαi dα ≤

∫ 1

0
f(α)[Ti +

∑
β<α

βp(Si(β)) + (1 + α)
∑
β≥α

p(Si(β))]dα

= Ti +

∫ 1

0
f(α)

∑
β<α

βp(Si(β))dα+

∫ 1

0
f(α)(1 + α)

∑
β≥α

p(Si(β))dα

= Ti +

∫ 1

β
f(α)

∑
0<β≤1

βp(Si(β))dα+

∫ β

0
f(α)(1 + α)

∑
0<β≤1

p(Si(β))dα

= Ti +
∑

0<β≤1

βp(Si(β))[

∫ 1

β
f(α)dα+

∫ β

0

f(α)(1 + α)

β
dα]

≤ Cpi max
0<β≤1

[

∫ 1

β
f(α)dα+

∫ β

0

f(α)(1 + α)

β
dα]

= Cpi (1 + max
0<β≤1

∫ β

0
f(α)

1 + α− β
β

dα)

So now the approximation ratio only depends on max
0<β≤1

∫ β
0 f(α)

1 + α− β
β

dα, which de-

pends on the p.d.f. we use. One example is by setting f(α) = 1, then max
0<β≤1

∫ β
0 f(α)

1 + α− β
β

dα =

max
0<β≤1

(1− β + β/2) = 1. This means that if we uniformly choose the value of α, then we will

reach a 2-approximation, which is the same approximation ratio as setting α to be a constant
1.

The optimal choice of f(α) is by setting f(α) =
eα

e− 1
. Then we have

max
0<β≤1

∫ β

0
f(α)

1 + α− β
β

dα = max
0<β≤1

∫ β

0

eα

e− 1

1 + α− β
β

dα

=
1

e− 1

This implies that E[Cαi ] ≤ Cpi (1 +
1

e− 1
) and moreover E[

∑
Cαi ] ≤

∑
Cpi (1 +

1

e− 1
),

which means that our algorithm is a 1 +
1

e− 1
=

e

e− 1
≈ 1.58-approximation.
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1.3 Observations

1. In [3], Torng and Uthaisombut proved that no ordering rules that starts with the optimal

preemptive schedule provides an approximation ratio better than
e

e− 1
.

2. We can always find a deterministic algorithms which provides a
e

e− 1
-approximation

ratio because by the definition of the expectation we know that for any input there

exists an α such that
∑
Cαi ≤

∑
Cpi (1 +

1

e− 1
). Note that the preemptive schedule

switches jobs only when a new job released or a job finished. Hence there are at most
2n combinatorially distinct α (which means that the different α that actually imply to
different orders). We can simply try all of them.

2 PTAS

In this section we will describe a PTAS[2] for the problem 1/rj/
∑
Cj . The rough idea of this

algorithm is that starting from the input, we will do several different steps T1, T2, . . . , Tk, where
k is a constant, such that each Ti increase op by at most 1 + ε factor. Since (1 + ε)k ≈ 1 + εk,
the algorithm is still a PTAS. Now we will briefly describe the steps and leave the rest to the
next lecture.

Define Rx = (1 + ε)x and Ix = [Rx, Rx+1]. Note that now |Ix| = Rx+1 −Rx = (1 + ε)xε =
εRx.

1. Round rj , pj to the power of (1 + ε) for each job j.

2. Charge the end of the interval as the completion time.

3. Set rj = max(rj , εpj).

4. We claim each job runs at most S = log1+ε(1 +
1

ε
) intervals:

pi ≤
1

ε
ri =

1

ε
Rx =

1

ε2
|Ix|(Let x be such that Rx = rj)

and the size of the next S interval is
∑S−1

j=0 |Ix+j | =
∑S−1

j=0 |Ix|(1 + ε)j =
1

ε2
|Ix|
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