
Lift-and-Round to Improve Weighted Completion Time on
Unrelated Machines

Nikhil Bansal
∗

TU Eindhoven, Netherlands
n.bansal@tue.nl

Aravind Srinivasan
†

University of Maryland, USA
srin@cs.umd.edu

Ola Svensson
‡

EPFL, Switzerland
ola.svensson@epfl.ch

ABSTRACT
We consider the problem of scheduling jobs on unrelated machines
so as to minimize the sum of weighted completion times. Our main
result is a (3/2−c)-approximation algorithm for some fixed c > 0,
improving upon the long-standing bound of 3/2. To do this, we
first introduce a new lift-and-project based SDP relaxation for the
problem. This is necessary as the previous convex programming
relaxations have an integrality gap of 3/2. Second, we give a new
general bipartite-rounding procedure that produces an assignment
with certain strong negative correlation properties.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms
and Problems]: Sequencing and scheduling
General Terms: Algorithms, Sequencing and Scheduling
Keywords: Approximation algorithms, semidefinite programming, round-
ing theorems, scheduling

1. INTRODUCTION
We consider the classic problem of scheduling jobs on unrelated

machines to minimize the sum of weighted completion times. For-
mally, a problem instance consists of a set J = {1, 2, . . . , n} of
n jobs and a set M of m machines; each job j ∈ J has a weight
wj ≥ 0 and it requires a processing time of pij ≥ 0 if assigned to
machine i ∈ M . The goal is to find a schedule that minimizes the
weighted completion time, that is

∑
j∈J wjCj , where Cj denotes

the completion time of job j in the schedule constructed.
Total completion time and related metrics such as makespan and

flow time, are some of the most relevant and well-studied mea-
sures of quality of service in scheduling and resource allocation
problems. While total completion time has been studied since the
50’s [33], a systematic study of its approximability was started in
the late 90’s by [26]. This led to a lot of activity and progress
on the problem in various scheduling models and settings (such as

∗Supported by NWO Vidi grant 639.022.211 and ERC consolidator
grant 617951.
†Supported in part by NSF Awards CNS-1010789 and CCF-
1422569, and a research award from Adobe, Inc.
‡Supported by ERC Starting Grant 335288-OptApprox.

with or without release dates, preemptions, precedences, online ar-
rivals etc.). In particular, we have now a complete understanding of
the approximability in simpler machine models, such as identical
and related machines. For these settings, non-trivial approximation
schemes were developed more than a decade ago, e.g., in [1, 32,
9]. The more general unrelated machine model behaves very dif-
ferently and is significantly more challenging. Perhaps because of
this, its study has led to the development of many new techniques,
such as interesting LP and convex programming formulations and
rounding techniques [26, 11, 17, 27, 16, 31] (see also the survey by
Chekuri and Khanna [10]).

In spite of these impressive developments, it remains a notori-
ous problem to understand the approximability of total weighted
completion time in the unrelated machines setting. On the posi-
tive side, Schulz and Skutella [27] and independently Chudak [13]
gave a (3/2 + ε)-approximation based on a time-indexed LP for-
mulation, improving upon the previous works of [25, 18]. An-
other 3/2-approximation was obtained by Skutella [31] and in-
dependently by Sethuraman and Squillante [29] based on a novel
convex-programming relaxation. On the other hand, Hoogeveen
et al. [19] showed that the problem is APX-hard, but the hard-
ness factor was very close to 1. The natural question of whether a
(3/2−c)-approximation exists for the problem for some c > 0 has
been proposed widely [10, 27, 21, 35, 28]. In particular, it appears
as Open Problem 8 in the well-known list [28] due to Schuurman
and Woeginger of the “top ten" problems in scheduling. Moreover,
Srividenko and Wiese conjectured [35] that the configuration LP
for this problem has an integrality gap that is strictly less than 3/2.
The unrelated machines setting is one of the most general and ver-
satile scheduling models that incorporates the heterogeneity of jobs
and machines. But besides the practical motivation, an important
reason for interest in the problem is that historically, the exploration
of various scheduling problems in the unrelated machines model
has been a rich source of several new algorithmic techniques [23,
34, 7, 8, 5, 4, 14, 24, 22, 6].

Our Results.
Our main result is such an improved algorithm. In particular, we

show the following.

Theorem 1.1. There is a (3/2 − c)-approximation algorithm for
minimizing the total weighted completion time on unrelated ma-
chines, for some c ≥ 10−7.

Remark: We do not try to optimize the constant c too much,
preferring instead to keep the exposition as simple as possible.
However, it does not seem likely that our analysis would yield
c < 10−2.

The result is based on two key ideas: (i) a novel SDP relaxation
for the problem obtained by applying one round of lift-and-project

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

STOC’16, June 19–21, 2016, Cambridge, MA, USA
c© 2016 ACM. 978-1-4503-4132-5/16/06...$15.00

http://dx.doi.org/10.1145/2897518.2897572

156

a b

1 2 3 4

groups of a groups of b

1 2 3 4

Figure 1: A simple example motivating the novel rounding al-
gorithm with strong negative correlation.

to the standard LP formulation and (ii) a new rounding algorithm
to assign jobs to machines that reduces the “correlation" between
the various jobs assigned to a machine.

Stronger Formulation: The stronger formulation is necessary: we
show that the convex programming relaxation considered by [31,
29] has an integrality gap of 3/2. Such families of instances do
not seem to have been previously known [30]; we describe them in
Section 2. In contrast, our stronger relaxation can be used to derive
new and tighter lower bounds on the optimum value, by exploiting
the PSD constraint on the underlying moment matrix.

We remark that the lower bounds we use to prove Theorem 1.1
can also be obtained using the configuration LP proposed by [35],
which confirms their conjecture that the integrality gap of the con-
figuration LP is also upper bounded by (3/2 − c). However, we
find the SDP formulation more natural as it explicitly reveals the
correlation information that we use.

The Rounding Algorithm: The solution to the SDP gives a frac-
tional assignment of jobs to machines, which we need to convert
to an integral assignment. Interestingly, all the previous algorithms
[27, 31, 29] are based on applying standard (i.e., independent across
jobs) randomized rounding to the fractional solution to find an as-
signment of jobs to machines. However, a very simple example (in
Section 2) shows that no such “independent randomized rounding"
based algorithm can give a 3/2 − Ω(1) guarantee, irrespective of
the underlying convex relaxation. The problem is that the variance
can be too high.

To get around this, we need to introduce some strong negative
correlation among pairs of jobs assigned to any machine i (i.e.,
the ratio of the probability that they are both scheduled on i to the
product of their respective probabilities of assigment on i, should
be 1 − Ω(1)). For intuition, consider the example depicted on the
left in Figure 1: we have a set {1, 2, 3, 4} of four jobs, two ma-
chines a, b, and the SDP assigns each job fractionally 1/2 to both
machines. Note that independent randomized rounding would as-
sign any two jobs j and j′ to machine a (and similarly to b) with
probability 1/4. Ideally, we would like to have strong negative cor-
relation that decreases this probability for all pairs of jobs. Unfor-
tunately, this is not possible in general as can be seen by taking
n� 1 jobs instead of 4 in the considered example1. However, one
can still hope for a randomized rounding with strong negative cor-

1Any schedule π of n jobs on 2 machines, must have
Prj,j′ [π assigns j and j′ to the same machine] ≥ 1/2 − o(1). A
simple proof of this is as follows. Suppose π assigns s jobs to the
first machine and t jobs to the second machine, where s + t = n.
Then, conditional on this, the desired probability is (

(
s
2

)
+
(
t
2

)
)/
(
n
2

)
which is minimized at s = t = n/2, and has value 1/2 − o(1).
Now as Eπ Prj,j′ [π assigns j and j′ to the same machine] =
Ej,j′ Prπ[π assigns j and j′ to the same machine], we have that
there exist two jobs j and j′ that are assigned to the same machine
with probability at least 1/2 − o(1) (and thus to one of them with
probability at least 1/4 − o(1)) no matter which algorithm, i.e.,
distribution over schedules π, that is used.

relation for some of the jobs while maintaining that no two jobs are
assigned to a single machine with probability more than 1/4. This
is what our randomized rounding algorithm achieves.

The pairs of jobs that will have strong negative correlation are
decided by a grouping scheme: for each machine i, the jobs are
partitioned into groups with total fractional assignment on i being
at most 1. The jobs in the same group are those that will have
strong negative correlation. This step is illustrated on the right
of Figure 1. Machine a has two groups consisting of jobs {1, 3}
and {2, 4} and machine b has two groups consisting of jobs {1, 2}
and {3, 4}. Viewing this as a bipartite graph with group and job
vertices, we would like to find an assignment with strong negative
correlation on the edges incident to the same group. This is remi-
niscent of the several randomized pipage-based schemes [2, 3, 12,
15, 20] that given a fractional matching produce an integral match-
ing. In fact, these get perfect negative correlation between edges at
a vertex as only one edge is picked at any vertex2.

However, these techniques do not work in our setting of general
assignments due to a somewhat subtle issue; trying to force strong
negative correlation between two edges in a group of a machine can
cause unexpected positive correlations among other edges of that
machine. In particular, in our example, previous rounding tech-
niques would output one of the two perfect matchings with equal
probability (the two perfect matchings are indicated by dashed and
solid edges in the right of Figure 1) – thus yielding perfect positive
correlation, e.g., for jobs 1 and 4 being assigned to machine a.

To get around this we give a new rounding theorem. The main
idea behind the algorithm is to update the fractional assignment us-
ing randomized pipage steps along carefully chosen paths of length
4. In particular, these paths are chosen based on a random 2-
coloring of the edges where the coloring is based on the fractional
assignment and evolves over time. The properties of this general
rounding technique are summarized in the theorem below. We be-
lieve that this technique can be of independent interest, as it appears
to be the first to obtain strong negative correlations. Indeed, our
rounding maintains the desired properties from independent ran-
domized rounding (properties (a), (b), and the second part of (c)
of Theorem 1.2) while also achieving a guaranteed amount of pair-
wise negative – i.e., strong – correlation (the first part of (c)). This
is key for our result, and we are not aware of any prior work in this
vein.

Theorem 1.2. Let ζ = 1/108. Consider a bipartite graph G =
(U ∪ V,E) and let y ∈ [0, 1]E be fractional values on the edges
satisfying y(δ(v)) = 1 for all v ∈ V . For each vertex u ∈ U , se-
lect any familyE(1)

u , E
(2)
u , . . . , E

(κu)
u ⊆ δ(u) of disjoint subsets of

edges incident to u such that y(E
(`)
u) ≤ 1 for ` = 1, . . . , κu. Then

there exists a randomized polynomial-time algorithm that outputs
a random subset of the edges E∗ ⊆ E satisfying

(a) For every v ∈ V , we have |E∗ ∩ δ(v)| = 1 with probability 1;

(b) For every e ∈ E, Pr[e ∈ E∗] = ye;

(c) For every u ∈ U and all e 6= e′ ∈ δ(u),

Pr[e ∈ E∗ ∧ e′ ∈ E∗] ≤{
(1− ζ) · yeye′ if e, e′ ∈ E(`)

u for some ` ∈ [κu],

yeye′ otherwise.

2Although they can introduce positive correlation between non-
adjacent edges.

157

In the above theorem, we use the standard notation δ(w) = {e ∈
E : w ∈ e} to denote the set of edges incident to a vertex w, and
let y(F) =

∑
e∈F ye for any subset F ⊆ E of edges. Also note

that no vertex v ∈ V can have edges incident to multiple subsets
E

(i)
u belonging to the same vertex u as G does not have parallel

edges.

2. PRELIMINARIES AND LOWER
BOUNDS

On a single machine, the weighted completion is minimized by
ordering the jobs in non-increasing order of wj/pj , referred to as
the Smith ordering. In the unrelated machines setting, for each
machine i let �i denote the Smith ordering of jobs on machine i
(i.e., j′ �i j iff wj′/pij′ ≥ wj/pij , breaking ties arbitrarily to get
a total order). Given an assignment of jobs to machines, the total
weighted completion time is simply

∑
i

∑
j∈J(i)

wj ·

 ∑
j′�ij, j′∈J(i)

pij′

where J(i) denotes the set of jobs assigned to machine i.

For each i ∈ M and j ∈ J , consider a binary variable xij that
should take value 1 if and only if job j is assigned to machine i.
Then the exact quadratic program can be formulated as follows:

(QP)

Minimize
∑
i∈M

∑
j∈J

wjxij

 ∑
j′∈J:j′�ij

pij′xij′

subject to

∑
i∈M

xij = 1 for all j ∈ J,

x ∈ {0, 1}M×N .

The Convex Programming relaxation of [31, 29]: We only de-
scribe the relaxation of [31, 29] here and refer to [31] for details
on how it is obtained. They relax the variables xij in (QP) above
to be fractional in [0, 1], together with the fact that x2

ij = xij for
an integral solution and that cTx :=

∑
i

∑
j wjpijxij is a lower

bound on any solution to obtain the following convex relaxation:

(CP)
Minimize z

subject to z ≥ 1

2
cTx+

1

2
xTDx

z ≥ cTx∑
i∈M

xij = 1 for all j ∈ J,

x ∈ [0, 1]M×N .

where xTDx :=
∑
i(
∑
j wj(

∑
j′≺ij

2pij′xij′ + pijxij)xij) can
be shown to be a convex function. We will refer to cTx and xTDx
as the linear and quadratic terms respectively.

A 3/2 integrality gap instance for CP: Consider the following
instance. There are k+1 jobs, all of weight 1. The first k jobs are of
size (processing time) 1 each and can only be placed on machine 1
(i.e., have infinite size on other machines). Job k+1 has size k2 and
can be placed on any machine 2, . . . ,m, where we let m = k + 1.

Claim 2.1. The above instance has an integrality gap 3/2−O(1/k)
for (CP).

Proof. First observe that any integral solution has value greater
than (3/2)k2 as the total completion time of the first k jobs is
k(k + 1)/2 while the last job has a completion time of k2.

Now, consider the fractional solution where each job 1, . . . , k is
assigned to extent 1 on machine 1, and job k+1 is assigned to each
machine i for i = 2, . . . ,m, to an extent of 1/(m− 1) = 1/k. We
will show that this solution has fractional value at most k2 + k.

First, the linear term cTx is k + k2 (k for the first k jobs and k2

for the big job). Second, the quadratic term is

xTDx =

k∑
j=1

(2(j − 1) + 1) +

m∑
i=2

k2

(m− 1)2

= k2 +
k2

m− 1
= k2 + k.

In particular, the first k jobs contribute k2 above, and for the last
job each of the m − 1 machines contributes k2/(m − 1)2. Thus
(CP) has objective value at most k2 + k.

Note that in this example, the problem is that both the linear and
quadratic bounds are weak on the overall instance. In particular,
while the linear bound is exact on the big job, it is very weak on the
small jobs. On the other hand, the quadratic term is exact on the
small jobs, but very weak on the big job.

Limitation of Independent Randomized Rounding based ap-
proaches: The previous-best approximation algorithms are based
on standard (i.e., independent across jobs) randomized rounding.
We show that no such rounding can beat the approximation guar-
antee of 3/2, irrespective of the relaxation. Consider the (trivial)
instance with m jobs each of which can be placed on any of the
m machines, and with wj = pij = 1 for all i, j. The fractional
solution xij = 1/m for all i, j ∈ [m] is a valid solution for any
relaxation (as it is can be expressed as a convex combination of m
perfect matchings). Clearly, the optimal solution assigns one job to
each machine and has value m. However, under independent ran-
domized rounding, for large m, the number of jobs assigned to a
machine approaches a Poisson distribution with mean 1 and so the
probability that a machine gets k jobs is≈ 1/(e ·k!). The expected
completion time on any machine is thus

≈
∞∑
k=0

k(k + 1)

2
· 1

ek!

which is 3/2 as the first and second moments of Poisson(1) are 1
and 2 respectively. Note, however, that the above example does
not preclude independent randomized rounding working well on
suitable extreme-point solutions x: it is an interesting open ques-
tion whether independent randomized rounding can work well with
appropriately-chosen extreme-point solutions.

The need for negative correlation in different classes: The above
example might suggest that randomized rounding performs poorly
only when the total mass (

∑
j xij) on a machine i is close to 1,

as intuitively the effect of the variance should be relatively small
if there are many jobs. This intuition is indeed true if the jobs
are similar to each other in terms of size (processing time) and
weight. However, the following example shows that some more
care is needed if the jobs are very dissimilar. Suppose there are `
job classes k = 1, . . . , `, where a class k job has weight Mk and
size M−k for some large M , and that machine i has m jobs from

158

each class, with xij = 1/m for all jobs j. So the total fractional
assignment of jobs to i is `. Now, as the Smith ratios are very dif-
ferent, the jobs from different classes have negligible effect on each
other: only the individual cost of each class matters, and the frac-
tional cost is ≈

∑`
k=1 M

kM−k = `. Now, if we round each job
independently, the expected cost is 3`/2, and it is not hard to see
that to get a ((3/2)−c)–approximation, we need to get a non-trivial
negative correlation in at least an Ω(c) fraction of the classes.

It turns out that this example is in a sense the worst possible;
it motivates our rounding procedure in Section 5. Roughly speak-
ing, it suffices to partition the jobs in different classes so that the
total fractional weight is about 1, and then try to get some strong
negative correlation within jobs of each class.

3. STRONG CONVEX RELAXATION
In this section, we give a strong convex relaxation based on the

paradigm of “systematically” relaxing the exact quadratic mathe-
matical program (QP) to a tractable convex program. In particular,
our relaxation can be obtained “automatically” using the Lasserre/Sum-
of-Squares hierarchy (although we have chosen to write this section
in a self-contained manner).

To obtain a convex relaxation of (QP), we linearize it by replac-
ing each quadratic term xij · xij′ by a new variable x{ij}∪{ij′}
with the exception that xij · xij is always considered replaced by
the existing variable xij (since in any binary solution x2

ij = xij).
For notational convenience, we sometimes refer to x{ij}∪{ij} as
xij and may refer to variable xij as x{ij}; we also introduce an
auxiliary variable x∅ and permnanently make x∅ = 1. The set of
variables of our relaxation is thus
{x∅}∪{x{ij}∪{ij′}}i∈M,j,j′∈J . Clearly any intended solution sat-
isfies that

∑
i∈M xij = 1 and that x is non-negative. Another fam-

ily of valid constraints is as follows. For a machine i ∈ M , let
X(i) be the (n + 1) × (n + 1) matrix whose rows and columns
are indexed by ∅ and {ij}j∈J . The entries of X(i) are defined
by X

(i)
S,T = xS∪T . In particular, this implies that X(i)

∅,{ij} =

X
(i)

{ij},{ij} = xij (that we will use crucially). We impose the con-

straint that X(i) � 0. These are valid constraints: indeed, if X(i)

corresponds to an integral assignment x then

X(i) = zzT � 0 where z = (1, xi1, · · · , xin)T

and X(i)

{ij},{ij} = (zzT)ij,ij = xijxij = xij = X
(i)

∅,{ij}.

The above yields the following convex (semidefinite program-
ming) relaxation of our problem:

(SDP)

minimize
∑
i∈M

∑
j∈J

wj

 ∑
j′∈J:j′�ij

pij′x{ij}∪{ij′}

subject to

∑
i∈M

xij = 1 for all j ∈ J,

X(i) � 0 for all i ∈M,

x∅ = 1,

X
(i)
S,T ≥ 0 for all i ∈M and S, T ⊂ J

with |S|, |T | ≤ 1.

3.1 Lower Bounds on the Objective Value
We briefly sketch why this SDP is stronger; e.g., it is exact on

the 3/2 integrality gap instance from Section 2.
Similar to previous works, our analysis reduces to that of fixing

a single machine i and analyzing the cost of that machine: we com-
pare the contribution of that machine to the objective of (SDP) to
the (expected) cost of that machine in the schedule returned by our
(randomized) algorithm. To do so, it will be important to under-
stand machine i’s contribution to the objective when a job’s pro-
cessing time equals its weight, i.e., pij = wj for j ∈ J . In this
case,

∑
j∈J

wj

 ∑
j′∈J:j′�ij

pij′x{ij}∪{ij′}

=

n∑
j=1

pij(pi1x{ij}∪{i1} + · · ·+ pijx{ij}∪{ij}),

where we numbered the jobs according to the Smith ordering on
machine i.

Interestingly, we can lower-bound this quantity in various ways
as shown in the following lemma. The proof of this lemma cru-
cially uses the SDP constraints and is deferred to the analysis of
our approximation guarantee (see Lemma 5.4).

Lemma 3.1. For any subset S ⊆ {1, . . . , n} of jobs,

n∑
j=1

pij(pi1x{ij}∪{i1} + · · ·+ pijx{ij}∪{ij})

≥
∑
j 6∈S

xijp
2
ij +

1

2

(∑
j∈S

xijp
2
ij +

(∑
j∈S

xijpij

)2)
.

In particular, we can choose the best set S that gives us the tight-
est combination of the linear and the quadratic lower bounds. In
contrast, the relaxations used in [31, 29] basically take the maxi-
mum lower bound (averaged over the machines) obtained by either
setting S = ∅ or S = J .

This flexibility in choosing S will be critical to our analysis. For
the 3/2 gap instance, recall that the linear bound was tight for the
large job, while the quadratic bound was tight for the small jobs,
which makes the SDP exact on that instance.

We often use notation such as {u, v} instead of (u, v) for edges
in graphs, in order to emphasize that the edges are undirected.

4. BIPARTITE ASSIGNMENT WITH
STRONG NEGATIVE CORRELATION

As discussed in Section 2, independent randomized rounding
cannot give a better approximation ratio than 3/2. To improve upon
this ratio, we would ideally like to introduce strong negative corre-
lation on jobs being assigned to a machine of the following type: if
a job j is assigned to a machine, it should be less likely to assign
other jobs to that machine. While it is not always impossible to
introduce such negative correlations among all jobs, Theorem 1.2,
which we prove in this section, shows that it is possible to introduce
strong negative correlation between subsets of jobs (or vertices)
without introducing positive correlations at pairs of edges with a
common end-point. For convenience, we restate the theorem here.

Theorem 1.2. Let ζ = 1/108. Consider a bipartite graph G =
(U ∪ V,E) and let y ∈ [0, 1]E be fractional values on the edges

159

v1 v2

u1 u u2

Figure 2: Illustration of the update in phase 2. Solid edges
are in R and either (i) thick edges are increased by α and slim
edges are decreased by α or (ii) slim edges are increased by β
and thick edges are decreased by β. We note that u1 may equal
u2 but they both differ from u.

satisfying y(δ(v)) = 1 for all v ∈ V . For each vertex u ∈ U , se-
lect any familyE(1)

u , E
(2)
u , . . . , E

(κu)
u ⊆ δ(u) of disjoint subsets of

edges incident to u such that y(E
(`)
u) ≤ 1 for ` = 1, . . . , κu. Then

there exists a randomized polynomial-time algorithm that outputs
a random subset of the edges E∗ ⊆ E satisfying

(a) For every v ∈ V , we have |E∗ ∩ δ(v)| = 1 with probability 1;

(b) For every e ∈ E, Pr[e ∈ E∗] = ye;

(c) For every u ∈ U and all e 6= e′ ∈ δ(u), Pr[e ∈ E∗ ∧ e′ ∈
E∗] ≤{

(1− ζ) · yeye′ if e, e′ ∈ E(`)
u for some ` ∈ [κu],

yeye′ otherwise.

We start by describing the randomized algorithm and then give
its analysis.

Notation: Floating values. A value z ∈ [0, 1] will be called “float-
ing" if z ∈ (0, 1).

4.1 Algorithm
We divide the algorithm into three phases and present each phase

along with some simple observations that will be useful in the anal-
ysis.

Phase 1 (Forming the collection R∗).
Let y∗ denote the initial fractional assignment. For each ver-

tex v ∈ V , partition its incident edges δ(v) into at most 6 dis-
joint groups by letting each group –except possibly for at most one
group – be a minimal set of incident edges whose y∗-values sum
up to at least 1/6. (Note that this results in at most 6 groups since
y∗(δ(v)) = 1, and that these groups can be formed arbitrarily by
picking the edges in δ(v) greedily in non-increasing order of y∗-
value; the last group may have y∗-value smaller than 1/6.) Now
select a random group, uniformly at random and independently for
each vertex v, and let R∗ be the set of selected edges.

Observation 4.1. Let e, e′ ∈ δ(u) for some u ∈ U . Then, Pr[(e ∈
R∗) ∧ (e′ ∈ R∗)] ≥ 1/36.

Proof. The events that e ∈ R∗ and that e′ ∈ R∗ are independent as
they both are incident to different vertices in V . Now the statement
follows as each v ∈ V selects a random group out of at most 6
many.

Phase 2 (Updating the assignment).
Initially let y = y∗, R = R∗. Repeat the following steps while

there exist edges {u, v1}, {u, v2} ∈ R ∩ E(`)
u for some ` and

{u1, v1} ∈ δ(v1) \ R and {u2, v2} ∈ δ(v2) \ R with floating
y-value. Here u, u1, u2 ∈ U , v1, v2 ∈ V , but are otherwise arbi-
trary. See Figure 2:

1. Let α = min{yu1,v1 , 1− yu,v1 , yu,v2 , 1− yu2,v2} and β =
min{1− yu1,v1 , yu,v1 , 1− yu,v2 , yu2,v2}.

2. With probability α
β+α

, update y as follows for each e ∈ E:

ye =

ye + β if e = {u1, v1} or e = {u, v2},
ye − β if e = {u, v1} or e = {u2, v2},
ye otherwise.

Otherwise (with remaining probability β
α+β

), update y as
follows for each e ∈ E:

ye =

ye − α if e = {u1, v1} or e = {u, v2},
ye + α if e = {u, v1} or e = {u2, v2},
ye otherwise.

3. For v ∈ {v1, v2}, if
∑
e∈δ(v)∩R ye = 1, i.e. if all the edges

incident to v are in R, then update R as

R = (R \ δ(v)) ∪
{

arg max
e∈δ(v)∩R

ye

}
.

That is, remove all edges incident to v from R, except one
with the largest y-value.

We note the following simple observations about this phase.

Observation 4.2. During Phase 2, if a variable ye reaches 0 or
1, then it is not updated anymore. Moreover, at each iteration of
Phase 2, at least one edge with floating y-value has its y-value
reach 0 or 1.

Proof. This follows from that Phase 2 only updates floating y-
values and, in each iteration, α and β is selected so that one of
the selected edges’ y-value will reach 0 or 1.

Observation 4.3. Phase 2 satisfies the invariants y(δ(v)) = 1 for
every v ∈ V and ye ≥ 0 for every e ∈ E.

Proof. Notice that when y is updated then the selection of α and
β guarantees that ye ≥ 0 for every e ∈ E. Moreover, the update
is designed so that the fractional degree of a vertex in V stays con-
stant. Thus the statement follows since we start with y = y∗ for
which y(δ(v)) = 1 for v ∈ V .

Observation 4.4. The setR does not increase in size during Phase
2. Moreover, if an edge e ∈ δ(v) ∩ R is removed from R (in Step
3) then it must be that y(e) ≤ 1/2 after Step 2.

Proof. That R only decreases in size follows directly from Step
3. For the second part, if Step 3 is applied at v and y(e) > 1/2
for some e ∈ δ(v), then as

∑
e′∈δ(v) y(e′) = 1, it must be that

e = arg maxe′∈δ(v) and thus e remains in R.

Observation 4.5. When Phase 2 terminates, then for every u ∈ U
and ` ∈ {1, . . . , κu}, we have |{e ∈ E(`)

u ∩R | ye > 0}| ≤ 1.

160

Proof. Suppose that there exist e1, e2 ∈ E(`)
u ∩R with ye1 , ye2 >

0. Then since any iteration of Phase 2 maintains the value of
y(E

(`)
u ∩R) andR ⊆ R∗ we have y(E

(`)
u ∩R) ≤ y∗(E(`)

u ∩R∗) ≤
1. Hence, ye1 , ye2 < 1. Now by Step 3 of Phase 2, we are
guaranteed that a not-yet-integrally-assigned vertex v ∈ V has
y(δ(v) ∩R) < 1. Therefore, there exist edges e1 = {v1, u}, e2 =
{v2, u} and {u1, v1} ∈ δ(v1) \ R and {u2, v2} ∈ δ(v2) \ R with
floating y-values. This implies that Phase 2 does not terminate in
this case.

Phase 3 (Randomized Rounding).
Form E∗ by, independently for each vertex v ∈ V , selecting a

single edge e ∈ δ(v) so that e ∈ δ(v) is selected with probability
ye. Notice that this is possible because, by Observation 4.3, we
have

∑
e∈δ(v) ye = 1 for all v ∈ V and ye ≥ 0 for all e ∈ E.

4.2 Analysis
We first note that the algorithm terminates in polynomial time.

Phase 1 and Phase 3 both clearly run in polynomial time. Each step
of Phase 2 runs in polynomial time and by Observation 4.2, Phase 2
runs in at most |E| iterations.

We continue to analyze the properties. The intuition for why they
should hold is as follows. The algorithm is inspired by randomized-
rounding algorithms for bipartite matchings such as pipage round-
ing and swap rounding. It is easy to see that these algorithms satisfy
both Property (a) and the marginal probabilities (Property (b)): in-
deed, α and β are defined in order to do so. Moreover, the weak
bound of Property (c) follows basically from the fact that, for each
u ∈ U , the y-values of two edges incident to u are never increased
simultaneously. Finally, the intuition behind the novel strong bound
of Property (c) is as follows. After Phase 2, the probability that two
edges e, e′ ∈ E

(`)
u are in R is at least 1/36. Now using that the

initial y-value of edges in δ(v)∩R is at most 1/3 for every v ∈ V ,
and that the y-values of edges are preserved in expectation, there
is a reasonable probability that both e, e′ will remain in R until the
end. However, in that case, it is easy to see by Observation 4.5 that
at most one of them will be selected in E∗. We now continue to
formally prove these properties.

Property (a): That Property (a) of Theorem 1.2 holds follows from
Observation 4.3 and as Phase 3 chooses exactly one edge incident
to each v ∈ V .

Properties (b) and (c): To show these properties, we will induc-
tively show some invariants. Let Y (k) = (y

(k)
e : e ∈ E) denote

the collection of y-values of edges and R(k) be the set R at the end
of iteration k of Phase 2. For an edge e = {u, v} ∈ R with u ∈ U
and v ∈ V let Rē = {e′ ∈ δ(v) ∩ R : e′ 6= e} be the other edges
in R incident to v.

We show the following invariants hold after each iteration k.
Here, conditioning an event on Y (k) and R(k) means the proba-
bility of that event if the random iterations in Phase 2 are applied
starting from the assignment Y (k) and R = R(k).

Pr[e ∈ E∗
∣∣ Y (k), R(k)] = y(k)

e ∀e ∈ E (1)

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y (k), R(k)] ≤ y(k)

e y
(k)

e′ (2)

∀u ∈ U, e, e′ ∈ δ(u)

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y (k), R(k)] (3)

≤ 2(y(k)(R
(k)
ē) + y(k)(R

(k)

ē′))y(k)
e y

(k)

e′

∀u ∈ U, ` ∈ {1, . . . , κu}, e 6= e′ ∈ E(`)
u ∩R(k)

To show these, we will apply reverse induction. For the base
case, we show that these properties hold after the last iteration of
Phase 2. For the inductive step, we show that if they hold after the
k-th iteration then they also hold after iteration k − 1 (or equiva-
lently at the beginning of iteration k), and hence they also hold for
the y-values and R at the beginning of Phase 2.

Let us first see how this implies the theorem.
At the beginning of Phase 2 we have y(0) = y∗ and R(0) = R∗.

So having (1) for k = 0, implies Property (b) and (2) implies the
weaker bound in Property (c). For the stronger bound, consider two
edges e 6= e′ ∈ E(`)

u . By (3) above, we have that

Pr[e ∈ E∗ ∧ e′ ∈ E∗]

= ER∗ [Pr[(e ∈ E∗ ∧ e′ ∈ E∗)
∣∣ Y ∗, R∗]]

≤ Pr[e, e′ ∈ R∗] · 2(y∗(Rē) + y∗(Rē′))y
∗
ey
∗
e′

+ (1− Pr[e, e′ ∈ R∗]) · y∗ey∗e′

≤ Pr[e, e′ ∈ R∗] 2y
∗
ey
∗
e′

3
+ (1− Pr[e, e′ ∈ R∗])y∗ey∗e′

≤ 2y∗ey
∗
e′

3 · 36
+

35

36
y∗ey
∗
e′

=
107

108
y∗ey
∗
e′ .

The second inequality follows from the fact that

y∗(Rē), y
∗(Rē′) ≤ 1/6

because e, e′ ∈ R and because after Phase 1,R∩δ(v) is a minimal
group with y∗-value at least 1/6 for each v ∈ V ; and the third
inequality follows from Observation 4.1.

It thus remains to prove (1)-(3) by reverse induction on the itera-
tions in Phase 2. One subtle point in the argument is that the set R
might also change (reduce in size) after an iteration.

Base case (when Phase 2 terminates): In this case Phase 2 will
not change any of the y-values. As each vertex v ∈ V picks an edge
in δ(v) randomly with probability ye, Pr[e ∈ E∗] = ye for every
e ∈ E, so (1) is satisfied. Similarly for (2), we note that for two
edges e 6= e′ ∈ δ(u), it holds that Pr[e ∈ E∗ ∧ e′ ∈ E∗] = yeye′ .

Finally, Observation 4.5 says that the number of edges in E(`)
u ∩

R with positive y-value is at most 1. Therefore, we have that
Pr[e ∈ E∗ ∧ e′ ∈ E∗] = 0 for e 6= e′ ∈ E

(`)
u ∩ R and (3)

holds trivially.

Inductive step: Assuming (1)-(3) holds at the end of iteration k,
we prove that they hold at the end of iteration k − 1).

For notational ease, let us denote Y = Y (k−1),R = R(k−1) and
let Y ′ = Y k andR′ = R(k) denote the (random) updated y-values
and set R.

We first verify (1). By the inductive hypothesis (I.H.) we have
that Pr[e ∈ E∗

∣∣ Y ′] = y′e. So, Pr[e ∈ E∗
∣∣ Y] = EY ′|Y [Pr[e ∈

E∗
∣∣ Y ′]], which is EY ′|Y [y′e]. If Phase 2 did not update the value

of edge e then clearly y′e = ye. Otherwise, we have EY ′|Y [y′e] =
α

α+β
(ye +β) + β

α+β
(ye−α) = ye. Thus, (1) holds in either case.

Similarly, we show (2). By the I.H., Pr[e ∈ E∗∧e′ ∈ E∗|Y ′] ≤
y′ey
′
e′ and thus

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y]

= EY ′|Y [Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y ′]

≤ EY ′|Y [y′ey
′
e′]

161

On the one hand, if Phase 2 only changed the y-value for at most
one of e and e′, then this is at most EY ′|Y [y′e]EY ′|Y [y′e′] = yeye′
by independence. On the other hand, if it changed both of the val-
ues then we have

EY ′|Y [y′ey
′
e′]

=
α

α+ β
(ye + β)(ye′ − β) +

β

α+ β
(ye − α)(ye′ + α)

≤ yeye′

Indeed, if Phase 2 changes the value of two edges incident to
a vertex in U then it always increases the value of one edge and
decreases the value of the other edge. We have thus that (2) is
satisfied.

We finish the analysis by verifying (3). Consider e 6= e′ ∈
E

(`)
u ∩ R for some u ∈ U and ` ∈ {1, . . . , κu}. We wish to

show that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y] ≤ 2(y(Rē) + y(Rē′))yeye′ .

Let R′ be the set R after the single iteration of Phase 2. As
previously we will use that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y] = EY ′|Y [Pr[e ∈ E∗ ∧ e′ ∈ E∗

∣∣ Y ′]
and the I.H., but we cannot do it directly as it might the case that
even though e and e′ belong toR, they may not belong toR′. So we
condition the right hand side depending on whether this happens or
not.

Suppose e 6∈ R′. Then by Observation 4.4, y′(Rē) ≥ 1/2 and
hence we have that 2(y′(Rē) + y′(Rē′))y

′
ey
′
e′ ≥ y′ey′e′ . By (2) we

have that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y ′, R′] ≤ y′ey′e′ ,

this implies that (conditioned on e 6∈ R′)

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y ′, R′] ≤ 2(y′(Rē) + y′(Rē′))y

′
ey
′
e′ .

The same holds if e′ 6∈ R′.
Now if both e and e′ lie in R′ by the I.H. we know that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y ′, R′]

≤ 2(y′(R′ē) + y′(R′ē′))y
′
ey
′
e′

≤ 2(y′(Rē) + y′(Rē′))y
′
ey
′
e′ ,

where the last inequality follows from Observation 4.4, i.e., from
the fact that R′ ⊆ R.

We have thus upper bounded all cases (irrespective of whether
R′ contains e or e′) by the same expression and it suffices to show

EY ′|Y [2(y′(Rē) + y′(Rē′))y
′
ey
′
e′] ≤ 2(y(Rē) + y(Rē′))yeye′

If neither e or e′ is changed by the iteration of Phase 2, then

EY ′|Y [2(y′(Rē) + y′(Rē′))y
′
ey
′
e′]

= EY ′|Y [2(y′(Rē) + y′(Rē′))]yeye′

= 2(y′(Rē) + y′(Rē′))yeye′ ,

where the second equality follows by linearity of expectation and (1).
Now suppose the iteration of Phase 2 changes at least one of e

or e′. Then we claim that y′(Rē) = y(Rē) and y′(Rē′) = y(Rē′).
To see this note that an iteration of Phase 2 changes exactly two
edges in R incident to the same vertex in U and since, in this case,
one of them is incident to u so must the other one. The sets Rē and

Rē′ only contain edges of R that are not incident to u and are thus
left unchanged in this case. Hence,

EY ′|Y [2(y′(Rē) + y′(Rē′))y
′
ey
′
e′]

= 2(y(Rē) + y(Rē′))EY ′|Y [y′ey
′
e′]

≤ 2(y(Rē) + y(Rē′))yeye′ ,

where the last inequality follows from (2). We have thus also proved (3)
which completes the proof.

5. ROUNDING THE FRACTIONAL
SCHEDULE

We now describe our scheduling algorithm. The algorithm solves
the SDP relaxation from Section 3, and applies the bipartite round-
ing procedure from Section 4 to a suitably defined graph based on
the SDP solution. We will analyze this algorithm in Section 5.2,
and in particular show the following result which directly implies
Theorem 1.1.

Theorem 5.1. The expected cost of the rounding algorithm is at
most (3/2 − c) times the cost of the optimal solution to the relax-
ation, where c = ζ/20000 and ζ is the constant in Theorem 1.2.

5.1 Description of Algorithm
Our rounding algorithm consists of defining groups (i.e., the fam-

iliesE(`)
u) for each machine and then applying Theorem 1.2. Specif-

ically, let x denote an optimal solution to our relaxation. We shall
interpret the vector y = (xij)i∈M,j∈J as an fractional assignment
of jobs to machines in the bipartite graph G = (M ∪ J,E) where
E = {ij : yij > 0}. Notice, that y(δ(j)) = 1 for each j ∈ J
and y ≥ 0. Thus, y satisfies the assumptions of Theorem 1.2. It
remains to partition the edges incident to the machines into groups.
To do this, we apply the following grouping procedure to each ma-
chine separately.

Grouping Procedure: For a fixed machine i we define the groups
as follows:

1. Call a job j of class k, if pij ∈ [10k−1, 10k). We assume (by
scaling) that pij ≥ 1 if pij 6= 0.

2. For each class k = 0, 1, 2, . . ., order the jobs in that class
in non-increasing order of Smith’s ratio, i.e., wj/pij , and
form groups as follows. If some job j has xij ≥ 1/10, it
forms a separate group by itself {j}. For the remaining jobs,
greedily pick the jobs in class k so that their total fractional
y-value on i first reaches at least 1/10 and make it a group;
and repeat until the remaining jobs of that class have total
fractional value less than 1/10.

By definition, the ungrouped jobs in each size class k have total
fractional value less than 1/10 on machine i. Note also that sev-
eral singleton groups could be interspersed between jobs of a single
group. For an example see Figure 3.

LetE(1)
i , . . . , E

(κi)
i denote the groups formed, over all the classes,

for machine i. We now apply Theorem 1.2 to the graph G =

(M ∪ J,E) with U = M and the groups E(1)
u , . . . , E

(κ(u))
u at

the machine u ∈ U . Observe that the conditions of the groups are
satisfied, i.e., they are disjoint and the total y-value is at most 1 in
all of them. This gives an assignment of the jobs to machines and
thus a schedule.

162

1/12 1/6 1/121/181/12 1/12

The jobs are ordered in non-
increasing order of Smith’s ra-
tio and the widths of the de-
picted jobs show their y-value
on the considered machine.

The height
of the jobs
represent their
processing
times which
are all in
[10k−1, 10k)
since we only
consider jobs
of class k.

Figure 3: Example of the grouping procedure on a machine i
for the jobs of class k. The different groups are depicted in
different colors; the job corresponding to the white rectangle is
ungrouped.

5.2 Analysis
To analyze the performance of the algorithm above, we proceed

in several steps. We first define some notation and make some ob-
servations that allow us to express the cost of the algorithm and the
relaxation in a more convenient form. In Section 5.2.2 we show
how to upper bound the cost of the schedule produced by the algo-
rithm. In secton 5.2.3 we show how to derive various strong lower
bounds from the SDP formulation, and finally in Section 5.2.4 we
show how to combine these results to obtain Theorem 5.1.

5.2.1 Notation
Let Xij denote the random indicator variable that takes value 1

if the algorithm assigns job j to machine i. The expected value
of the returned schedule of the algorithm can then be written as∑
i∈M ALGi, where ALGi denotes the expected cost of machine i,

i.e.,

ALGi = E

∑
j∈J

Xijwj

∑
j′�j

Xij′pij′

=
∑
j∈J

wj

∑
j′�j

pij′E[XijXij′]

 .

Similarly, the value of the optimal solution x to the relaxation can
be decomposed into a sum

∑
i∈M RELi over the costs of the ma-

chines, where

RELi =
∑
j∈J

wj

 ∑
j′∈J:j′�j

pij′x{ij}∪{ij′}

 .

In order to prove Theorem 5.1, it is thus sufficient to show

ALGi ≤ (3/2− c) RELi for all i ∈M. (4)

To this end, we fix an arbitrary machine i ∈M and use the follow-
ing notation:

• For simplicity, we abbreviate pij by pj ,
xij by xj , x{ij}∪{ij′} by x{j}∪{j′}, and Xij by Xj .

• We let βj = wj/pj denote Smith’s ratio of job j ∈ J on
machine i and rename the jobs J = {1, 2, . . . , n} so that
β1 ≤ β2 ≤ · · · ≤ βn.

With this notation, we can rewrite RELi and ALGi as follows.

Lemma 5.2. We have: ALGi =

n∑
j=1

(βj − βj+1)E

 j∑
j′=1

pj′Xj′(p1X1 + · · ·+ pj′Xj′)

 ,
and RELi =

n∑
j=1

(βj − βj+1)

 j∑
j′=1

pj′(p1x{j′}∪{1} + · · ·+ pj′x{j′}∪{j′})

where for notational convenience we let βn+1 = 0.

Proof. We prove the first equality based on a telescoping sum argu-
ment. The second equality follows exactly by the same arguments.
Using wj = βjpj we can rewrite

ALGi = E

 n∑
j=1

wj

 j∑
j′=1

XjXj′pj′

= E

 n∑
j=1

βjpjXj

 j∑
j′=1

Xj′pj′

 .
We now claim that the right-hand side of this expression equals

n∑
j=1

(βj − βj+1)E

 j∑
j′=1

pj′Xj′(p1X1 + · · ·+ pj′Xj′)

 .
Consider any term pkXkp`X` with k ≤ `. This term appears in
E
[∑n

j=1 βjpjXj
(∑j

j′=1 Xj′pj′
)]

only when j′ = k and j = `

and has a coefficient of β`. The same term appears in the expression∑n
j=1(βj−βj+1)E

[∑j
j′=1 pj′Xj′(p1X1 + · · ·+ pj′Xj′)

]
when

j = `, `+ 1, . . . , n with coefficients (β` − β`+1), (β`+1 − β`+2),
. . . , (βn − βn+1). Thus, by telescoping, the coefficient in front of
pkXkp`X` is again β`.

By combining the above lemma with (4), we have further re-
duced our task of proving Theorem 5.1 to that of proving

E

 n′∑
j=1

pjXj(p1X1 + · · ·+ pjXj)

≤ (3/2− c)

 n′∑
j=1

pj(p1x{j}∪{1} + · · ·+ pjx{j}∪{j})

 (5)

for all n′ ∈ J . The rest of this section is devoted to proving this
inequality for a fixed n′. We shall use the following notation:

• Let G denote those jobs that are in the groups that only con-
tain jobs from {1, . . . , n′}. Let G = {1, . . . , n′} \G denote
the “ungrouped” jobs. Note that, by the definition of the al-
gorithm, specifically, the grouping, we have that each job
class has fractional value less than 1/10 in G. Let G denote
the collection of these groups restricted to jobs {1, . . . , n′}.

• Let L =
∑n′

j=1 xjpj denote the “linear” sum and let Q =∑n′

j=1 xjp
2
j denote the “quadratic” sum. We also use the

notation L and Q to denote the linear and quadratic sums
when restricted to ungrouped jobs, i.e.,
L =

∑
j∈G xjpj and Q =

∑
j∈G xjp

2
j .

163

The proof of (5) is described over the following three subsections.
In Section 5.2.2 we give an upper bound on the left-hand-side (LHS)
of (5); in Section 5.2.3 we give several lower bounds on the right-
hand-side (RHS) of (5); finally, in Section 5.2.4 we combine these
bounds to prove (5).

5.2.2 Upper Bound on the LHS of (5)
We give the following upper bound on the LHS of (5). The

lemma essentially say that we have a “gain” ofO(ζ) for each grouped
job, which follows from our negative correlation rounding.

Lemma 5.3. For Q,Q and L as defined above, we have

E

 n′∑
j=1

pjXj(p1X1 + · · ·+ pjXj)

≤ (1− ζ/200) ·Q+ ζ/200 ·Q+ 1/2 · L2

Proof. Using that X2
j = Xj and a simple recombination of the

terms, we have that

E

 n′∑
j=1

pjXj(p1X1 + · · ·+ pjXj)

= E

1

2

n′∑
j=1

Xjp
2
j +

1

2

 n′∑
j=1

Xjpj

2
As our rounding satisfies the marginals, this can be simplified to
1
2

∑n′

j=1 xjp
2
j + 1

2
E
[(∑n′

j=1 Xjpj
)2
]

. We now upper bound the

latter term.

E

 n′∑
j=1

Xjpj

2 = E

∑
j,j′

XjXj′pjpj′

= E

 ∑
j,j′:j 6=j′

XjXj′pjpj′

+ E

 ∑
j:j=j′

XjXj′pjpj′

≤

∑
j 6=j′

xjxj′pjpj′ − ζ
∑
G′∈G

∑
j 6=j′∈G

xjxj′pjpj′

+
∑
j

xjp
2
j (by Theorem 1.2 and E[X2

j] = E[Xj] = xj)

=
∑
j,j′

xjxj′pjpj′ +
∑
j

(xj − x2
j)p

2
j

− ζ
∑
G′∈G

∑
j 6=j′∈G′

xjxj′pjpj′

≤

(∑
j

xjpj

)2

+
∑
j

xjp
2
j − ζ

∑
G′∈G

∑
j∈G′

xjpj

2

(since ζ ≤ 1).

Now, for each group G′ ∈ G, we have
∑
j∈G′ xj ≥ 1/10 and

pj ≥ pj′/10 for j, j′ ∈ G. Therefore,

(
∑
j∈G′

xjpj)
2 ≥

∑
j∈G′

xjp
2
j/100.

Thus, we have that the expected cost of the machine is upper bounded
by n′∑

j=1

xjp
2
j

+

1

2

 n′∑
j=1

xjpj

2

−

ζ ∑
G′∈G

∑
j∈G′

xjp
2
j/100

=

 n′∑
j=1

xjp
2
j

+
1

2

 n′∑
j=1

xjpj

2

−

(
ζ
∑
j∈G

xjp
2
j/100

)
= (1− ζ/200)

 n′∑
j=1

xjp
2
j

+ ζ/200

∑
j∈G

xjp
2
j

+ 1/2

 n′∑
j=1

xjpj

2

5.2.3 Lower Bounds on the RHS of (5)
The lemma below gives a general lower bound that allows us to

the RHS of (5) in various ways by choosing different subsets S.
The particular lower bounds that we later use (by plugging particu-
lar choices of S) are then stated in Corollary 5.5.

Lemma 5.4. For any subset S ⊆ {1, . . . , n′} of jobs3,

n′∑
j=1

pj(p1x{j}∪{1} + · · ·+ pjx{j}∪{j})

≥
∑
j 6∈S

xjp
2
j +

1

2

(∑
j∈S

xjp
2
j +

(∑
j∈S

xjpj

)2)
.

Proof. Similar to the proof of Lemma 5.3,

n′∑
j=1

pj(p1x{j}∪{1} + · · ·+ pjx{j}∪{j})

=
1

2

 n′∑
j=1

xjp
2
j +

n′∑
j,j′=1

x{j}∪{j′}pjpj′

As x and p are non-negative vectors, ignoring the terms x{j}∪{j′}
with j ∈ S and j′ 6∈ S, this can be lower bounded by

1

2

∑
j 6∈S

xjp
2
j +

∑
j,j′ 6∈S

x{j}∪{j′}pjpj′

︸ ︷︷ ︸

(I)

+
1

2

∑
j∈S

xjp
2
j +

∑
j,j′∈S

x{j}∪{j′}pjpj′

︸ ︷︷ ︸

(II)

3Here, and in the following, we mean j ∈ {1, . . . , n′} \ S by
j 6∈ S.

164

Again using that x and p are non-negative, ignoring the terms with
j 6= j we also have that ∑

j,j′ 6∈S

pjpj′x{j}∪{j′}

 ≥∑
j 6∈S

xjp
2
j .

Hence, (I) ≥
∑
j 6∈S xjp

2
j .

Let us now concentrate on (II) and in particular we show that∑
j,j′∈S

x{j}∪{j′}pjpj′ ≥ µ2

where µ =
∑
j∈S xjpj .

To show this we use the PSD constraint on X(i). Let v be the
(|S| + 1) dimensional vector indexed by ∅ and {ij}j∈S whose
entries are defined by v∅ = −µ and vij = pij = pj for j ∈ S. Let
also X

(i)
be the principal submatrix of X(i) containing those rows

and columns indexed by ∅ and {ij}j∈S . Then

vTX
(i)
v

= X
(i)

∅,∅v
2
∅ + 2

∑
j∈S

X
(i)

j,∅vjv∅ +
∑
j,j′∈S

X(i)X
(i)

{j},{j′}vjvj′

= x∅µ
2 −

∑
j

2x{j}pjµ+
∑
j,j′∈S

x{j}∪{j′}pjpj′

= µ2 − 2µ2 +
∑
j,j′∈S

x{j}∪{j′}pjpj′

=
∑
j,j′∈S

pijpij′x{ij}∪{ij′} − µ2,

which is greater than 0 because of the constraint X(i) � 0 in our
relaxation (and hence the submatrix X

(i)
is also positive semidefi-

nite). This shows that

(II) ≥ 1

2

(∑
j∈S

xjp
2
j +

(∑
j∈S

xjpj

)2)
and completes the proof of the lemma.

Let LB(S) denote∑
j 6∈S xjp

2
j+

1
2

(∑
j∈S xjp

2
j +

(∑
j∈S xjpj

)2
)

. By setting S =

∅,G and J , the lemma directly implies the following lower bounds:

Corollary 5.5. We have the following lower bounds on

n′∑
j=1

pj(p1x{j}∪{1} + · · ·+ pjx{j}∪{j}) :

LB(∅) = Q,

LB(J) = 1/2(Q+ L2),

LB(G) = 1/2(Q+Q+ (L− L)2).

5.2.4 Proof of Inequality (5): Bounding the Approxi-
mation Guarantee

We use Lemma 5.3 and Corollary 5.5 to prove (5). Let ε =
1/100. We divide the proof into two cases. Intuitively, the first
case is when we have “few” ungrouped jobs and then we get an im-
provement from the ζ in Theorem 1.2. In the other case, when we
have “many” ungrouped jobs, note that jobs of different job classes

have (informally) very different processing times and thus does not
affect each other. This together with that the total fractional mass
of ungrouped jobs in each class is less than 1/10 actually gives that
a simple randomized rounding does better than the factor 3/2. The
formal proof of the two cases are as follows:

Case L ≤ (1−
√
ε)L : We will upper bound the LHS of (5))(

1− ε ζ

100

)
LB(J) +

(
1

2
− ζ

100
+ ε

ζ

200

)
LB(∅)

+
ζ

100
LB(G). (6)

By Corollary 5.5 this is at most(
1− ε ζ

100

)
+

(
1

2
− ζ

100
+ ε

ζ

200

)
+

ζ

100

=

(
3

2
− ε ζ

200

)
times the RHS of (5).

By the definition of LB(J),LB(∅) and LB(G), (6) can be
written as(

1− ε ζ

100

)(
Q

2
+
L2

2

)
+

(
1

2
− ζ

100
+ ε

ζ

200

)
Q

+
ζ

100

(
Q+Q+ (L− L)2

2

)
=

(
1− ζ

200

)
Q+

ζ

200
Q

+

(
1− ε ζ

100

)
L2

2
+

ζ

100

(L− L)2

2

≥
(

1− ζ

200

)
Q+

ζ

200
Q+

(
1− ε ζ

100

)
L2

2

+ ε
ζ

100

L2

2
(since L ≤ (1−

√
ε)L)

=

(
1− ζ

200

)
Q+

ζ

200
Q+

L2

2
,

which is the upper bound on the LHS of (5) from Lemma 5.3
and thus completes this case.

Case L > (1−
√
ε)L : Let µ = L/(

∑
j∈G xj) denote the ex-

pected job size in G, i.e., of the ungrouped jobs, and let k
denote the class of µ. LetN ⊆ G denote jobs inG in classes
k − 1 and higher. Also let X(N) =

∑
j∈N xj .

We claim that x(N) ≤ 1/2. Indeed, by Markov’s inequality,
the total mass of jobs in G in classes k + 2 or higher is at
most 1/10. Moreover, as the mass of each class in G is at
most 1/10, we get x(N) ≤ 3/10 + 1/10 ≤ 1/2.

Let us define L(N) =
∑
j∈N xjpj and

Q(N) =
∑
j∈N xjp

2
j . By Cauchy-Schwarz, we have

(
∑
j∈N

xjp
2
j)(
∑
j∈N

xj) ≥ (
∑
j∈N

xjpj)
2

and hence

Q(N) ≥ L(N)2

x(N)
≥ 2L(N)2.

Next we show that the total expected size of jobs in G \ N
is negligible compared to L(N). Indeed a job of class k − h

165

has processing time at most µ/10h−1 and the total mass of
jobs of class k − h in G is at most

∑
j∈G xj since this is

the total mass of all jobs in G. This gives us the rough upper
bound

L− L(N) ≤
∞∑
h=2

1

10h−1
· µ

∑
j∈G

xj

 =
L

9
.

The above gives us that

L2 ≤ L
2

(1−
√
ε)2
≤
(

9

8(1−
√
ε)

)2

L(N)2

≤
(

9

8(1−
√
ε)

)2
Q(N)

2

=

(
10

8

)2
Q(N)

2
=

25

32
Q(N) ≤ 25

32
Q.

By Lemma 5.3, we have that the LHS of (5) is at most 4

Q+
L2

2
≤
(

1 +
25

64

)
Q

=

(
1 +

25

64

)
LB(∅) <

(
3

2
− c
)

LB(∅),

which completes this case and the proof of (5) (and thus The-
orem 5.1).

6. ACKNOWLEDGEMENTS
This work was done in part while the first author was visiting

the Simons Institute for the Theory of Computing. We thank Nick
Harvey and Bruce Shepherd for organizing the Bellairs Workshop
on Combinatorial Optimization 2015, which was the starting point
for this work. We also thank the STOC 2016 referees for their
several helpful comments. Aravind Srinivasan thanks Amit Chavan
and Karthik Abinav Sankararaman for their substantial help with
LATEX packages.

7. REFERENCES
[1] Foto N. Afrati, Evripidis Bampis, Chandra Chekuri,

David R. Karger, Claire Kenyon, Sanjeev Khanna, Ioannis
Milis, Maurice Queyranne, Martin Skutella, Clifford Stein,
and Maxim Sviridenko. Approximation schemes for
minimizing average weighted completion time with release
dates. In Foundations of Computer Science, FOCS, pages
32–44, 1999.

[2] Alexander A. Ageev and Maxim Sviridenko. Approximation
algorithms for maximum coverage and max cut with given
sizes of parts. In Integer Programming and Combinatorial
Optimization IPCO, pages 17–30, 1999.

[3] Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new
rounding procedure for the assignment problem with
applications to dense graph arrangement problems. Math.
Program., 92(1):1–36, 2002.

[4] Arash Asadpour, Uriel Feige, and Amin Saberi. Santa Claus
meets hypergraph matchings. ACM Transactions on
Algorithms, 8(3):24, 2012.

4This bound is loose and can also be obtained using independent
randomized rounding instead of our negative-correlation rounding.
The importance of the new rounding appears in the other case.

[5] Arash Asadpour and Amin Saberi. An approximation
algorithm for max-min fair allocation of indivisible goods. In
Symposium on Theory of Computing, STOC, pages 114–121,
2007.

[6] Yossi Azar and Amir Epstein. Convex programming for
scheduling unrelated parallel machines. In Symposium on
Theory of Computing, pages 331–337, 2005.

[7] Nikhil Bansal and Maxim Sviridenko. The santa claus
problem. In Symposium on Theory of Computing, STOC,
pages 31–40, 2006.

[8] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna.
On allocating goods to maximize fairness. In Foundations of
Computer Science, FOCS, pages 107–116, 2009.

[9] Chandra Chekuri and Sanjeev Khanna. A PTAS for
minimizing weighted completion time on uniformly related
machines. In ICALP, pages 848–861, 2001.

[10] Chandra Chekuri and Sanjeev Khanna. Approximation
algorithms for minimizing averageweighted completion time.
In Handbook of Scheduling - Algorithms, Models, and
Performance Analysis. 2004.

[11] Chandra Chekuri, Rajeev Motwani, B. Natarajan, and
Clifford Stein. Approximation techniques for average
completion time scheduling. SIAM J. Comput.,
31(1):146–166, 2001.

[12] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen.
Multi-budgeted matchings and matroid intersection via
dependent rounding. In Symposium on Discrete Algorithms,
SODA, pages 1080–1097, 2011.

[13] F. A. Chudak. A min-sum 3/2-approximation algorithm for
scheduling unrelated parallel machines. Journal of
Scheduling, 2(2):73–77, 1999.

[14] Uriel Feige. On allocations that maximize fairness. In
Symposium on Discrete Algorithms, SODA, pages 287–293,
2008.

[15] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and
Aravind Srinivasan. Dependent rounding and its applications
to approximation algorithms. J. ACM, 53(3):324–360, 2006.

[16] Michel X. Goemans, Maurice Queyranne, Andreas S.
Schulz, Martin Skutella, and Yaoguang Wang. Single
machine scheduling with release dates. SIAM J. Discrete
Math., 15(2):165–192, 2002.

[17] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and
Joel Wein. Scheduling to minimize average completion time:
Off-line and on-line approximation algorithms. Mathematics
of Operations Research, 22(3):513–544, 1997.

[18] Leslie A. Hall, David B. Shmoys, and Joel Wein. Scheduling
to minimize average completion time: Off-line and on-line
algorithms. In Symposium on Discrete Algorithms, SODA,
pages 142–151, 1996.

[19] Han Hoogeveen, Petra Schuurman, and Gerhard J.
Woeginger. Non-approximability results for scheduling
problems with minsum criteria. In Integer Programming and
Combinatorial Optimization, IPCO, pages 353–366, 1998.

[20] Jeff Kahn and P. Mark Kayll. On the stochastic independence
properties of hard-core distributions. Combinatorica,
17(3):369–391, 1997.

[21] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan
Parthasarathy, and Aravind Srinivasan. Minimum weighted
completion time. In Encyclopedia of Algorithms. 2008.

[22] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan
Parthasarathy, and Aravind Srinivasan. A unified approach to

166

scheduling on unrelated parallel machines. J. ACM, 56(5),
2009.

[23] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos.
Approximation algorithms for scheduling unrelated parallel
machines. Math. Program., 46:259–271, 1990.

[24] Konstantin Makarychev and Maxim Sviridenko. Solving
optimization problems with diseconomies of scale via
decoupling. In Foundations of Computer Science, FOCS,
pages 571–580, 2014.

[25] Cynthia A. Phillips, Clifford Stein, and Joel Wein. Task
scheduling in networks. SIAM J. Discrete Math.,
10(4):573–598, 1997.

[26] Cynthia A. Phillips, Clifford Stein, and Joel Wein.
Minimizing average completion time in the presence of
release dates. Math. Program., 82:199–223, 1998.

[27] Andreas S. Schulz and Martin Skutella. Scheduling unrelated
machines by randomized rounding. SIAM J. Discrete Math.,
15(4):450–469, 2002.

[28] Petra Schuurman and Gerhard Woeginger. Polynomial time
approximation algorithms for machine scheduling: Ten open
problems. Journal of Scheduling, 2(5):203–213, 1999.

[29] Jay Sethuraman and Mark S. Squillante. Optimal scheduling
of multiclass parallel machines. In ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 963–964, 1999.

[30] Martin Skutella. Personal communication. Oct 2015.
[31] Martin Skutella. Convex quadratic and semidefinite

programming relaxations in scheduling. J. ACM,
48(2):206–242, 2001.

[32] Martin Skutella and Gerhard J. Woeginger. A PTAS for
minimizing the weighted sum of job completion times on
parallel machines. In Symposium on Theory of Computing,
STOC, pages 400–407, 1999.

[33] W. E. Smith. Various optimizers for single-stage production.
Naval Research Logistics, 3:59Ű66, 1956.

[34] Ola Svensson. Santa Claus schedules jobs on unrelated
machines. SIAM J. Comput., 41(5):1318–1341, 2012.

[35] Maxim Sviridenko and Andreas Wiese. Approximating the
configuration-LP for minimizing weighted sum of
completion times on unrelated machines. In IPCO, pages
387–398, 2013.

167

	Introduction
	Preliminaries and Lower Bounds
	Strong Convex Relaxation
	Lower Bounds on the objective value

	Bipartite Assignment with Strong Negative Correlation
	Algorithm
	Analysis

	Rounding the Fractional Schedule
	Description of Algorithm
	Analysis
	Notation
	Upper Bound on the LHS of (5)
	Lower Bounds on the RHS of (5)
	Proof of Inequality (5): Bounding the Approximation Guarantee

	Acknowledgements
	References

