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Abstract. We present a polynomial time approximation scheme for the
real-time scheduling problem with fixed priorities when resource augmen-
tation is allowed. For a fixed ε > 0, our algorithm computes an assign-
ment using at most (1+ε)·OPT +1 processors in polynomial time, which
is feasible if the processors have speed 1 + ε. We also show that, unless
P = NP , there does not exist an asymptotic FPTAS for this problem.

1 Introduction

In this paper, we are concerned with a scheduling problem described by Liu
and Layland [11], which has received considerable attention in the real-time and
embedded-systems community. Here one is given a set of tasks T = {T1, . . . , Tn},
where each task T is characterized by two positive values, its period p(T ) and
its running time c(T ). The task T releases a job requiring running time c(T ) at
each integer multiple of its period.

c(T1) = 1
p(T1) = 2

c(T2) = 2
p(T2) = 5

� � �
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If several tasks T ′ ⊆ T are assigned to one processor, then this assignment is
feasible if each job, being released by some task T at time i · p(T ) is finished at
time (i+1)·p(T ), whereby jobs stemming from tasks with smaller period preempt
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those stemming from tasks with larger period. Ties are broken in an arbitrary
but fixed way. In this case, we also speak about an assignment in which each
task is feasible itself. Liu and Layland [11] have shown that this rate-monotonic
scheduling is optimal, meaning if there is a feasible priority assignment, then the
one in which the priority of a task T equals 1/p(T ) is also feasible.

The picture above shows a feasible set T ′ = {T1, T2} of tasks. The arrows
indicate the points in time, where the two tasks T1 and T2 release jobs. At time
0, the first job of T1 as well as the first job of T2 are released. Since the period
of T1 is smaller than the period of T2, the first job of T1 is executed, until it is
finished at time 1. Now the first job of T2 is executed, but interrupted by the
second job of T1 at time 2. The execution of the first job of T2 is resumed at
time 3 and finished at time 4. Notice that the processor is idle for one time unit
at time 9 and that the schedule repeats at the least common multiple of the
periods which is 10. All jobs finish in time. The set T ′ is feasible.

The static-priority real-time scheduling problem is now to determine a parti-
tioning of a task-set T into T1, . . . , Tk, such that each Ti is a feasible set of tasks
for one processor and the number k of processors is minimized. In the real-time
literature, this problem is also known as the static-priority real-time scheduling
problem with implicit deadlines, since the deadlines are implicitly given by the
periods of the tasks.

Related Work. If the periods p(T ) of all tasks in T are one, then the scheduling
problem is simply the well known bin packing problem. This is because a set of
tasks T ′ ⊆ T would be feasible on one processor if and only if the sum of their
running times is bounded by one. Recall that for bin packing an asymptotic
PTAS [4] and even an asymptotic FPTAS exists [8].

The utilization of T ′ is defined as util(T ′) =
∑

T∈T ′ c(T )/p(T ). If T ′ is fea-
sible, then the utilization util(T ′) is at most 1. However, T ′ can be infeasible,
even if util(T ′) < 1. Consider, for example, again the task system T ′ depicted
on the cover page. If we increase the running time of T1 by any ε > 0, then
the set T ′ is no longer feasible and its utilization is util(T ′) = (9 + 5 · ε)/10.
Liu and Layland [11] have shown that T ′ is feasible, if util(T ′) is bounded by
n′(21/n′ − 1), where n′ = |T ′|. This bound tends to ln 2 and the condition is
not necessary for feasibility, as the example with all periods equal to one shows.
Stronger, but still not necessary conditions for feasibility are given in [10,2,12].

It is a longstanding open problem, whether there exists a polynomial time
algorithm which decides whether a set T ′ of tasks is feasible on one processor.
A first result in this direction using resource augmentation was presented by
Fisher and Baruah [5]. In their paper, the authors show that one can efficiently
decide whether a set of tasks is feasible, or infeasible on a faster processor of
speed 1 + ε. Our approximation scheme can be understood as an extension of
their algorithm, which additionally approximates the task-distribution problem.

The sufficient condition util(T ′) � n′(21/n′ − 1) allows to use first-fit and
next-fit algorithms as in the case of bin packing. The currently best ratio for
such strategies is 7/4 due to [10]. We refer to [3] for a survey of approximation
algorithms based on first-fit and next-fit and to the article [1] for an overview
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on complexity issues of real-time scheduling. The literature on approximation
schemes, especially in scheduling, is extensive. We refer to [13] for a recent ac-
count.

Results. We show that, for each ε > 0 there exists a polynomial time algorithm
which computes a partitioning using at most (1 + ε) · OPT (T ) + 1 subsets.
Each subset is feasible on a processor of speed 1 + ε. Here OPT (T ) denotes
the minimum number of processors to feasibly schedule T . Our result is the
first PTAS for the real-time scheduling problem with resource augmentation.
Furthermore we show that real-time scheduling is harder to approximate than
bin packing. Unless P = NP , there does not exist an algorithm which has an
additive gap of O(n1−ε) for any fixed ε > 0. This implies that there does not exist
an asymptotic FPTAS for real-time scheduling without resource augmentation.

The main insights which lead to our PTAS with resource augmentation are
twofold.

i) Apart from the standard rounding of the instance, we describe the concept of
local feasibility. The effect of far-scattered periods prevents the application
of bin packing techniques. The concept of local feasibility considers these
effects only for those tasks, whose periods are close or local to the period of
the task in consideration. A local feasible schedule is feasible on a slightly
faster machine.

ii) In bin packing, small items are first discarded from the instance and then
distributed with first-fit. Since the utilization is not a good lower bound
for the real-time scheduling problem, a similar approach does not work. We
provide a much different technique to treat small tasks. We re-set periods
and group small tasks with the same period into one large task. A proba-
bilistic argument shows that the optimum of the modified instance does not
grow to much.

2 Preliminaries and Simplifying Assumptions

In [11] it is shown that a set T of tasks is feasible on one processor, if the first
job of each task T ∈ T finishes before its period p(T ), or in other words, if the
response time of each task is smaller than its period.

This response time r of a task T is calculated as follows. A task T ′ with
higher priority interrupts T exactly �r/p(T ′)� many times. Each time, this task
consumes its processing time c(T ′). Therefore r is the smallest fix-point of the
response function

fT (r) = c(T ) +
∑

T ′∈T \{T}:p(T ′)�p(T )

�r/p(T ′)� · c(T ′). (1)

The task system is feasible if there exists for each T a number r∗T � p(T ) with
fT (r∗T ) � r∗T . Notice that one has for each a ∈ N>0 fT (a·r) � a·fT (r). This shows
that the task system T is feasible if and only if there exists an r∗T for each T ∈ T
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with p(T )/2 � r∗T � p(T ) and fT (r∗T ) � r∗T . The vector r∗ = (r∗T1
, . . . , r∗Tn

) is a
certificate of feasibility of the task-system T = {T1, . . . , Tn}. Similarly, we say
that the task-system is feasible on a processor of speed β > 0 if there exists a
vector r∗ = (r∗T1

, . . . , r∗Tn
) with p(T )/2 � r∗T � p(T ) and fT (r∗T ) � β · r∗T . The

next Lemma will be used several times in the sequel. A proof can be found in
the full version of this paper.

Lemma 1. Let T be a set of tasks, then the following holds.

i) If util(T ) � γ with γ > 0, then T is feasible on a processor of speed
(1/ ln(2)) · γ.

ii) util(T ) � OPT (T ) � (2/ ln(2)) · util(T ) + 1.
iii) If T is feasible on a processor of speed β and a second set T ′ has utilization

at most ε, then T ∪ T ′ is feasible on a processor of speed β + 2ε.

Simplifying Assumptions. The number 1/ε can be assumed to be an integer.
Furthermore, we round each period up to the next power of (1+ ε). If a solution
of this rounded instance is feasible, then it is also feasible for the original instance
on a processor of speed (1 + ε).

Next, choose k ∈ {0, . . . , (1/ε)−1} such that the utilization uk of tasks, having
their period in an interval [(1/ε)i, (1/ε)i+1[ with i ≡ k (mod 1/ε), is minimized.
Clearly uk � ε · util(T ). Thus we may remove all tasks, contributing to uk and
schedule them in a first-fit manner on (2/ ln 2) · OPT + 1 additional processors,
using Lemma 1.ii). This process yields a partitioning of the tasks into blocks
B1, . . . , Bμ with the following properties.

i) If pi and pj are periods of tasks in Bi and Bj with i < j, then (1/ε) ·pi � pj .
ii) The number of different periods of tasks in one block Bi is bounded by

((1/ε) − 1) · log1+ε(1/ε) � 1/ε3 which is a constant.

3 Real-Time Scheduling Is Harder Than Bin Packing

Due to its relation to bin packing, a natural question to ask at this point is
whether real-time scheduling can be approximated as well as bin packing. The
algorithm of Karmarkar and Karp [8] computes a solution to the bin packing
problem in polynomial time, which has an additive approximation guarantee.
More precisely, given an instance I the algorithm computes a solution APX(I)
with APX(I) − OPT (I) � O(log2(OPT (I)). An analogous result cannot hold
for real-time scheduling unless P = NP .

Theorem 2. If P �= NP , there is no ε > 0 such that there exists a polynomial
algorithm which computes an approximate solution APX(T ) for each instance
T with

APX(T ) − OPT (T ) � |T |1−ε.
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Proof. The proof of this theorem is by reduction from 3-PARTITION. An in-
stance of 3-PARTITION is a multiset of 3 · n numbers a1, . . . , a3n ∈ R+. The
problem is to decide, whether this set can be partitioned into triples, such that
the sum of the numbers of each triple is exactly one. 3-PARTITION is strongly
NP-complete see [6]. The idea is now to construct a set of tasks T = T1 ∪· · ·∪Tk

such that the following holds.

a) All tasks in Tj have the same period and Tj consists of 3n tasks with utiliza-
tion a1, . . . .a3n respectively.

b) If a subset T ′ ⊆ T contains 3 tasks and the periods of the tasks in T ′ are
not all equal, then T ′ is infeasible.

With such a construction at hand one needs k · n processors if 3-PARTITION
has a solution while one needs at least n · k + k/2 processors if 3-PARTITION
does not have a solution. If there exists an algorithm which computes a solution
APX(T ) with APX(T )−OPT (T ) � (3 ·k ·n)1−ε for some ε > 0, then one could
use it to test whether 3-PARTITION has a solution, since (3 · k · n)1−ε < k/2
for k = Ω(n1/ε).

What remains to show, is how to construct such an instance T = T1 ∪· · ·∪Tk

as above. If we define new weights a′
i = m/3+ai

m+1 , then this new instance of 3-
PARTITION is equivalent to a1, . . . , a3n, since three new weights sum up to one
if and only if the corresponding old weights sum up to one. This shows that we
can assume that the weights a1, . . . , a3n are between 1/3 − 1/m and 1/3 + 1/m
for an arbitrary m ∈ Z

+.
Next we consider the periods pj = 1+ j/(4 ·k) for j = 1, . . . , k. Those periods

are between 1+1/(4 ·k) and 1+1/4. The group Tj consists now of tasks having
period pj and utilization a1, . . . , a3n respectively, which implies a). To show b),
consider a set T ′ = {T1, T2, T3} of three tasks, where the period of T3 is strictly
larger than the period of T1. We argue that T3 is infeasible, if T ′ is scheduled
on one processor. Consider a fix-point r of the response function of T3

r = c(T3) +
⌈

r

p(T1)

⌉

c(T1) +
⌈

r

p(T2)

⌉

c(T2). (2)

Since c(T3) = util(T3) · p(T3) one has r � c(T3)/(1 − util{T1, T2}) which im-
plies that r � p(T3)(1 − 9/(m + 6)). Notice that p(T3) � p(T1) + 1/(4k), thus
p(T3)/p(T1) � 1 + 1/(4k · p(T1)) � 1 + 1/(5k). If one chooses m = 90k, then
r/p(T1) > 1 and it follows that � r

p(T1)� in (2) is at least 2. This means that
r � c(T3) + 2c(T1) + c(T2) � 4(1/3 − 1/m) which is larger than 5/4 � p(T3).
This implies that T3 is infeasible. 	


Corollary 3. Unless P = NP , there does not exist an asymptotic FPTAS for
real-time scheduling.

Proof. An asymptotic FPTAS [7] is an algorithm, whose running time is polyno-
mial in n and 1/ε and which yields a solution of cost at most (1+ε)·OPT +p(1/ε)
for some polynomial p. Assume that such an asymptotic FPTAS exists. We
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assume w.l.o.g. that p(1/ε) = ε−α for a fixed exponent α > 0. Then with
ε = (1/n)1/(2α) the algorithm computes a solution with

APX − OPT � ε · OPT + (1/ε)α � n1−1/(2α) + n1/2,

which is a contradiction to Theorem 2. 	


4 Local Feasibility and an Algorithm to Schedule Large
Tasks

Consider the response function (1) for a task T . For local feasibility of T , the
tasks T ′ with p(T ′) � ε · p(T ) contribute only with their utilization to the
response function and the rounding operation in (1) is ignored. Thus the local
response function f local

T (r) is defined as

c(T ) + r · util ({T ′ : p(T ′) � ε · p(T )}) +
∑

T ′∈T \{T}
ε·p(T )<p(T ′)�p(T )

�r/p(T ′)� · c(T ′). (3)

The task T is local feasible, if there exists a number p(T )/2 � r∗T � p(T )
with f local

T (r∗T ) � r∗T . In other words, the contribution of the rounding operation
is only taken into account for tasks which are close or local to the task in
consideration. The other tasks contribute only with their utilization.

We now show that, if an assignment is locally feasible (each task is locally
feasible), then it is feasible on processors of speed 1+2ε. We can therefore relax
feasibility to local feasibility, which will later allow us to optimally distribute
large tasks.

Lemma 4. If a set of tasks T is local feasible on one processor, then it is feasible
on a processor of speed 1 + 2ε.

Proof. Let r∗T be the certificate for local feasibility of T ∈ T , i.e., one has
p(T )/2 � r∗T � p(T ) and f local

T (r∗T ) � r∗T . It is enough to show that fT (r∗T ) �
(1 + 2 ε)f local

T (r∗T ) holds. The difference between fT (r∗T ) and f local
T (r∗T ) can be

bounded by
∑

T ′: p(T ′)�ε·p(T )

c(T ′).

Since 1 � 2 ε · r∗T /p(T ′) this difference is bounded by

2 ε r∗T ·
∑

T ′∈T :p(T ′)�ε·p(T )

c(T ′)/p(T ′) � 2 ε · f local
T (r∗T )

and the result follows. 	
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4.1 A Dynamic Program to Schedule Large Tasks

We describe now an algorithm which optimally distributes a set of tasks in in
polynomial time if we additionally assume that each utilization is bounded from
below by the constant ε and an increase of speed by 1 + O(ε) is allowed.

If we round all running times c(T ) down such that the utilization of T becomes
the nearest integer multiple of ε2, then due to the reason that each c(T )/p(T ) is
at least ε, a feasible schedule for the new task system yields a feasible assignment
for the original task system, if the machines have speed 1 + O(ε). Therefore we
can also assume that each task T has utilization c(T )/p(T ) ∈ ε2

Z.
Let B1, . . . , Bμ be the block-partitioning of the task system T = {T1, . . . , Tn}

(see section 2). How many different types of tasks, can be present in one block
Bi? The number of different periods of Bi is bounded by 1/ε3. The number
of different utilization-values of tasks in T is bounded by 1/ε2. Therefore, the
number of different types of tasks in each block is bounded by a constant. The
tasks are distributed with a dynamic programming algorithm to compute an
optimal assignment of T such that each task is locally feasible. This is done,
block-wise.

A vector a = (a0, ..., a1/ε2) with ai ∈ Z is called a configuration, whereby ai

denotes the number of processors whose utilization is exactly i · ε2. We require
that

∑
i ai = n. Consider the following table entries.

A(a, �) =

⎧
⎨

⎩

1 if tasks in B1, ..., B� can be scheduled in a locally feasible way
such that utilization bounds of configuration a are met

0 otherwise

Note that a has fixed dimension, thus the table has a polynomial number of en-
tries. We now describe, how to compute A(a, �) efficiently. Let b = (b0, . . . , b1/ε2)
be a processor configuration from a distribution of the tasks B1, . . . , B�−1. Then
LocalRTS(B�, b, a) is defined to be 1, if the tasks in block B� can be additionally
distributed among the processors, such that the bounds of configuration a are
met. The base cases are

A(a, 1) = LocalRTS(B1, (n, 0, ..., 0), a)

For all � > 1 note that A(a, �) = 1 if and only if there exists a b ∈ Z
1/ε2+1 with

0 � bi � ai for all i and

A(b, � − 1) = 1 and LocalRTS(B�, b, a) = 1

After computing all entries, the optimal number of processors can be read out
of the table.

It remains to show, how to determine LocalRTS efficiently. The block B� has
only a constant number of different task-types, each having a utilization, which
is lower-bounded by a constant. Suppose that B� has tasks, whose running-
time and period are from the tuples (c1, p1), . . . , (ck, pk). A pattern is a vector
(x1, . . . , xk) ∈ N

k
0 which represents a set of tasks with these types of total uti-

lization at most 1 (the set, defined by the pattern, contains xi times task type
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(ci, pi)). There is only a constant number of patterns, which can be used to
distribute the tasks in B�. This shows that LocalRTS can be computed in poly-
nomial time with integer programming in fixed dimension [9]. Details of the
model are described in the full version of this paper. We have the following
result.

Theorem 5. Let T = {T1, . . . , Tn} be a set of tasks and let ε > 0 be a con-
stant such that c(T )/p(T ) � ε for all T ∈ T . Then we can distribute the tasks
using OPT (T ) many processors in polynomial time, such that the tasks on each
processor are feasible if the processors have speed 1 + O(ε).

5 Small Tasks

The well known approximation algorithms for bin packing [4,8] use the fact that
small items of weight at most ε can first be discarded from the instance and then
be added in a first-fit way after the larger items have been packed. If a new bin
had to be opened to pack the small items, then the weight of each bin, except
possibly the last bin, exceeds 1 − ε. If m bins are then open, then (m − 1)(1 − ε)
is a lower bound on OPT (I) which implies that m � (1 + 2ε)OPT (I) + 1.

For the real-time scheduling problem, an analogous approach to deal with
tasks having small utilization does not work. This is again because a subset of
tasks might be infeasible, even if its utilization only slightly exceeds ln(2). In
this section we describe a tailored procedure to eliminate small tasks. It has two
steps.

I) In a first step, we discard tasks and re-set periods such that the utilization
of each period is at least ε6. Here, the utilization of a period p is the sum
of the utilization of the tasks having period p. The total utilization of the
discarded tasks is bounded by O(ε) · util(T ).

II) In a second step we cluster small tasks of the same period into groups, each
of which will be identified into one single task having utilization ε6.

After these discards, re-setting of periods and identification of small tasks, we
obtain a new instance T̃ . If OPT denotes the minimum number of processors to
feasibly schedule T , then T̃ can be scheduled using (1+O(ε))·OPT +1 processors
of speed 1 + O(ε). The next sections describe these two steps in detail.

Periods with Small Utilization

Let p be a period of a task in T . The utilization of this period is the sum of the
utilizations of tasks, having period p

util(p) =
∑

T∈T :p(T )=p

c(T )/p.

Suppose now that B1, . . . , Bμ is the partitioning of T into blocks and let Bi be the
first block having utilization � ε2. Let j be minimal such that util(Bi∪· · ·∪Bj) �
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ε2. If this utilization is larger than ε, then we discard Bi, . . . , Bj−1 from T .
Otherwise, we re-set the period of each task to an arbitrary value sandwiched
between the smallest and the largest period of a task in Bi ∪ · · · ∪ Bj. Thereby
the utilization of this period is at least ε2. We repeat this procedure until such
a block Bi having utilization ε2 cannot be found anymore. The utilization of the
tasks which are discarded with this procedure is bounded by ε · util(T ). With
first-fit, these tasks can be scheduled on O(ε) · OPT + 1 additional processors.

Define pmin(T ) = min{p(T ) | T ∈ T } and pmax(T ) = max{p(T ) | T ∈ T }.
The next lemma shows that re-setting the periods of the tasks in Bi∪· · ·∪Bj to an
arbitrary period in [pmin(Bi ∪· · ·∪Bj), pmax(Bi ∪· · ·∪Bj)] is a feasible operation,
if we are to run the tasks on machines of speed 1 + O(ε). More precisely, the
lemma implies that, if the tasks could be scheduled on k machines before the
re-setting operation, then they can be scheduled on k machines of speed 1+O(ε)
after the re-setting operation.

Lemma 6. Suppose that T1 ∪ · · · ∪Tk is a feasible task system with the property
that pmax(Ti) � ε·pmin(Tj) whenever i < j. Let I ⊆ {1, . . . , k} be a set of indices i
with util(Ti) � ε and let T ∗ be an instance emerging from T1∪· · ·∪Tk by assigning
for each i ∈ I to each task T ∈ Ti an arbitrary period in [pmin(Ti), pmax(Ti)]
while keeping the utilization of the tasks invariant. The tasks T ∗ are feasible on
a processor with speed 1 + O(ε).

Proof. By Lemma 4 it is enough to show that each such changed task is locally
feasible on a processor of speed 1 + O(ε). For this purpose, suppose that T ∈ Ti

and let T ∗ be the task stemming from T by changing its period. Furthermore
let T ∗

i be the changed tasks Ti. Lemma 1.iii) shows that (T \ Ti)∪ T ∗
i is feasible

on a processor of speed 1 + O(ε). Thus, after changing the periods in Ti only,
the system is feasible on a processor of speed 1 + O(ε).

In particular T ∗ is local feasible on a processor of speed 1 + O(ε). Scaling
the periods in the other sets Tj , j �= i leaves the local response function for T ∗

unchanged. This shows the claim. 	


After applying the procedure described above, the situation is now as follows.
Each block of the task system has utilization at least ε2. Choose γ = ε6 and
remove the tasks of all periods having utilization less than γ. Recall that the
number of periods in each block is bounded by 1/ε3, thus we remove a utilization
of at most γ/ε3 = ε3 from each block. Comparing this to the total utilization of
each block, one observes that this removed tasks can be scheduled, using again
O(ε) · OPT + 1 many extra processors.

Periods with Large Utilization

Each period has now a utilization of at least γ = ε6. Next, we partition T into
Tlarge, T1, . . . , Tq such that Tlarge contains all tasks with utilization at least γ,
the tasks in Ti have the same period pi and γ � util(Ti) � 3 · γ.

The idea is now to treat the tasks in the sets Ti with period pi as one single
task having period pi and utilization util(Ti). By doing so, we lose some flexibility
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to distribute small tasks. Those belonging to one group must be assigned to the
same processor. The next theorem establishes that we do not loose too much in
terms of optimality, if we again allow processors of speed 1+O(ε). The theorem
is proved by applying a Chernoff-type argument.

Theorem 7. Let γ = ε6 and let T be a set of tasks which can be partitioned
into subsets Tlarge, T1, . . . , Tq such that the following conditions hold.

a) Tlarge contains all tasks with utilization at least γ.
b) The tasks in Ti have the same period pi and γ � util(Ti) � 3 · γ.

If T ′ denotes the instance stemming from identifying each set Ti as one task with
period pi and running time

∑
T∈Ti

c(T ), then for ε � 1
3 one can schedule T ′ on

(1 + O(ε)) · OPT (T ) + 1

machines of speed 1 + O(ε).

Proof. We have to show that there exists a solution which uses at most (1 +
O(ε))OPT (T ) + 1 processors of speed 1 + O(ε), in which the tasks of each Ti

are scheduled together on one processor. To do so, consider an optimal schedule
for T which uses the processors P1, . . . , Pk. Clearly, we can identify the tasks
S ⊆ Ti which are assigned to the same processor Pj into one task with period pi

and processing time
∑

T∈S c(T ). Therefore, we can assume that each processor
contains at most one task from each set Ti. In the new solution the tasks in
each set Ti are scheduled on one processor. This is done using randomization. If
a processor does not contain a task from Ti, then Ti will not be assigned to it.
Otherwise suppose that T ∈ Ti is assigned to the processor P . The probability
that all tasks in Ti are assigned to P will be util(T )/util(Ti).

For a task T ∈ T let ET be event that fT (r∗T ) exceeds (1 + 2ε) · r∗T . We next
show that the probability of ET is bounded by ε. This means that the expected
utilization of the tasks which exceed their deadline even on the faster processors
is bounded by ε · util(T ). By removing those tasks and by scheduling them on a
set of new processors in a first-fit manner, we only require an additional number
of at most (2/ ln 2) · ε · OPT (T ) + 1 processors and the result follows.

We show this first for a task T ∈ Tlarge. Suppose T ∈ Tlarge is assigned to
processor P . Let I ⊆ {1, . . . , q} be the set of indices corresponding to the sets Ti

whose tasks Ti on P have higher priority than T . Let T ′
large be the set of tasks

in Tlarge that lie on P and have higher priority than T . To bound Pr[ET ] we
inspect the response function

fT (r) = c(T ) +
∑

T ′∈T ′
large

⌈
r

p(T ′)

⌉

· c(T ′) + r ·
∑

i∈I

pi

r
·
⌈

r

pi

⌉

· c(Ti)/pi.

Since T meets its deadline, there exists a number r∗T with p(T )/2 � r∗T � p(T )
and fT (r∗T ) � r∗T . From this, we can conclude that the number ai = pi

r∗
T

· �r∗T /pi�
satisfies 1 � ai � 2.
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After randomly redistributing the tasks in T1, . . . , Tq the evaluation of the
response function at r∗T is a random variable of the form

c(T ) +
∑

T ′∈T ′
large

⌈
r∗T

p(T ′)

⌉

· c(T ′) + r∗T ·
∑

i∈I

ai · Xi

where the Xi ∈ {0, util(Ti)} are independent random variables. For X :=
∑

ajXj

one has E[X ] � 1. It is sufficient to show that Pr[X � E[x] + ε] � ε. This can
be done with a variant of the Chernoff bound. Choose

α := max
i

{ai · util(Ti)} � 2 · 3ε6 = 6ε6.

A Chernoff-type argument yields, that

Pr[X � E[X ] + ε] = Pr
[

X �
(

1 +
ε

E[X ]

)

E[X ]
]

� e
− 1

6ε6
ε2

3E[X]2
E[X] � ε,

where the last inequality follows from E[X ] � 1 and ε � 1/3.
If T ∈ Ti for some i, then the above analysis can be applied after the observa-

tion that c(T ) grows at most up to 3 · γ · p(T ). This can be bounded by 6 · γ · r∗T
which is bounded by ε · r∗T . 	


By combining the treatment of periods with small utilization and periods with
large utilization, we obtain the main result of this section.

Theorem 8. Let T be a set of tasks and ε < 1/3. There is a polynomial time
algorithm which discards a subset T ′ with util(T ′) � O(ε) · util(T ), constructs
an instance T̃ such that each task of T̃ has utilization of at least ε6 and T̃ can be
scheduled on (1+O(ε)) ·OPT (T )+1 processors of speed 1+O(ε). Furthermore,
each feasible packing of T̃ ∪T ′ on k processors of speed 1+O(ε) yields a feasible
packing of the original task set T on k processors of speed 1 + O(ε).

Notice that we had to discard tasks of utilization O(ε) · util(T ) processors three
times in this paper. If we collect all discarded tasks and then schedule this tasks
once in a first-fit manner, this requires at most O(ε) · OPT + 1 processors. Thus
by combining Theorem 8 with Theorem 5, we obtain the main result of this
paper.

Theorem 9. For each ε > 0 there exists a polynomial time algorithm, which
partitions a set of tasks T into T1, . . . , Tk such that each Ti is feasible on a
processor of speed 1 + O(ε) and k � (1 + O(ε)) · OPT + 1.
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