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degree of uncertainty about the processing times of jobs. In this paper we address both, and study for the first time a
scheduling problem that combines the classical unrelated machine scheduling model with stochastic processing times of jobs.
By means of a novel time-indexed linear programming relaxation, we show how to compute in polynomial time a scheduling
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1. Introduction. The problem to minimize the total weighted completion time on unrelated parallel
machines, denoted R�4rij5�

∑

wjCj in the three-field notation of Graham et al. [8], is one of the most important
classical problems in the theory of deterministic scheduling. Each job j has a weight wj , possibly an individual
release date rij before which job j must not be scheduled on machine i, and the processing time of job j on
machine i is pij . Each job has to be processed nonpreemptively on any one of the machines, and each machine
can process at most one job at a time. The objective is to find a schedule minimizing the total weighted comple-
tion time

∑

j wjCj , where Cj denotes the completion time of job j in the schedule. The special case with identical
parallel machines is already known to be strongly NP-hard (Lenstra et al. [13]) but there do exist polynomial
time approximation schemes (Afrati et al. [1], Skutella and Woeginger [32]). The general setting of unrelated
parallel machines turns out to be significantly harder and there is a complexity gap compared to identical parallel
machines: Hoogeveen et al. [11] prove MaxSNP-hardness and hence there is no polynomial time approximation
scheme. On the positive side, the currently best-known approximation algorithms for deterministic unrelated
parallel machines have performance guarantees 3/2 and 2, for the problem without and with release dates,
respectively, Chudak [4], Schulz and Skutella [26], Sethuraman and Squillante [28], and Skutella [30]. Improv-
ing these bounds is considered to be among the most important open problems in scheduling (see Schuurman
and Woeginger [27]), which is also an indication of the high significance of unrelated machine scheduling.

Stochastic scheduling. We consider for the first time the stochastic variant of unrelated machine scheduling.
Here, the processing time of a job j on machine i is given by random variable Pij . In stochastic scheduling, we
are asked to compute a nonanticipatory scheduling policy. Intuitively, a nonanticipatory scheduling policy must
make its scheduling decisions at time t based on the observed past up to time t as well as the a priori knowledge
of the input data of the problem. A policy, however, is not allowed to anticipate information about the future,
i.e., the actual realizations of the processing times of jobs that have not yet been completed by time t. For a
thorough discussion and definition of nonanticipatory scheduling policies, see subsequent §2. As all previous
work in the area, we assume that the random variables Pij are stochastically independent across jobs. For any
given nonanticipatory scheduling policy, the possible outcome of the objective function

∑

j wjCj is a random
variable, and our goal is to minimize its expected value, which by linearity of expectation equals

∑

j wj Ɛ6Cj 7.
Related Work. Generalizing a well-known result of Smith [34] for deterministic single machine scheduling,

Rothkopf [22] proved in 1966 that the WSEPT rule (weighted shortest expected processing time first: schedule
jobs in order of nonincreasing ratios wj/Ɛ6Pj 7) minimizes the expected total weighted completion time on a
single machine. Apart from Weiss’ results on the asymptotic optimality of WSEPT in stochastic scheduling on
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Table 1. Performance bounds for nonpreemptive stochastic machine scheduling problems. Parameter �> 0 can be chosen arbitrarily small.
Parameter ã upper bounds the squared coefficient of variation ��26Pij 7 = �ar6Pij 7/Ɛ

26Pij 7 for all Pij . The third column shows the results
for ��6Pij 7≤ 1; e.g., uniform, exponential, or Erlang distributions. As usual in stochastic scheduling, these multiplicative bounds hold with
respect to the expected performance of any nonanticipatory scheduling policy.

Worst-case performance guarantee
Stochastic
scheduling model Arbitrary Pij ��6Pij 7≤ 1 Reference

P��Ɛ6
∑

wjCj 7 1 +
4m− 154ã+ 15

2m
2 − 1/m Möhring et al. [18]

P�rj �Ɛ6
∑

wjCj 7 2 +ã 3 Schulz [25]

R��Ɛ6
∑

wjCj 7 1 +
ã+ 1

2
+ � 2 + � This paper

R�rij �Ɛ6
∑

wjCj 7 2 +ã+ � 3 + � This paper

identical parallel machines (Weiss [37, 38]), the first constant factor approximation algorithms for stochastic
scheduling on identical parallel machines have been obtained in 1999 by Möhring et al. [18]. Next to a linear
programming (LP) based analysis of the WSEPT rule, they define list scheduling policies that are based on
linear programming relaxations in completion time variables. The performance bounds are constant whenever
the coefficients of variation of the jobs’ processing times are bounded by a constant. As usual in stochastic
scheduling, all bounds hold with respect to any nonanticipatory scheduling policy. By using an idea from Chekuri
et al. [2], that approach was extended to stochastic scheduling problems with precedence constrains by Skutella
and Uetz [31]. Subsequently, in line with earlier work by Chou et al. [3], Megow et al. [16] combined the
stochastic scheduling model with online scheduling, and derived combinatorial, constant competitive algorithms
that are not guided by linear programming relaxations. Yet all results, including the analysis by Megow et al. [16],
are based on one and the same linear programming relaxation, namely, that of Möhring et al. [18]. With respect
to the underlying relaxation, Schulz [25] goes one step further, and uses the mean busy time relaxation that was
previously used also by Correa and Wagner [5], yet its validity in stochastic scheduling still relies on the validity
of the completion time relaxation of Möhring et al. [18]. Nevertheless, in comparison to Megow et al. [16],
Schulz obtains improved and simpler results through the clever use of an optimal solution to an equivalent
time-indexed LP relaxation for deterministic scheduling.

Two other research directions are related to our work, yet for different models and independent of the tech-
niques of Möhring et al. [18] as well as ours. One is approximation algorithms for preemptive stochastic
scheduling by Megow and Vredeveld [15]. They use a single machine relaxation that is optimally solved by a
Gittins index policy, and thereby achieve a competitive ratio of 2 for preemptive online stochastic scheduling
on parallel identical machines. The other is work by Scharbrodt et al. [23] and Souza and Steger [35], who
analyze the expected competitive ratio rather than the expected performance of a policy ç. In that model, one
analyzes the ratio Ɛ6v4ç5/v4Offline-Opt57, where v4ç5 is the objective function value of a policy ç. In this
paper, however, we follow Megow et al. [16], Möhring et al. [18], Schulz [25], and Skutella and Uetz [31] and
focus on the ratio Ɛ6v4ç57/Ɛ6v4çOpt57 instead, where çOpt is an optimal, nonanticipatory scheduling policy, and
not the point-wise optimal offline solution as in Scharbrodt et al. [23] and Souza and Steger [35]. We refer to
Scharbrodt et al. [23] for a discussion of the pros of their model as opposed to the one considered here. Note that
here we restrict to a weaker adversary, since the adversary is also bound to be nonanticipatory. For a thorough
discussion of this issue in the context of competitive analysis, see also Koutsoupias and Papadimitriou [12].

Note that all results discussed so far are restricted to the model with identical parallel machines. Table 1
gives an overview of currently best-known performance bounds in nonpreemptive stochastic scheduling with a
min-sum objective, next to the new results obtained in this paper.

With respect to algorithmic ideas and techniques, the evolution of stochastic scheduling has largely benefited
in the past from progress being made for the corresponding deterministic scheduling problems. For example,
all LP-based approximation results for stochastic scheduling on identical parallel machines outlined above build
upon a class of linear programming relaxations in completion time variables that dates back to Wolsey [39]
and Queyranne [20] (for single machine scheduling) and was later generalized to identical parallel machines
by Schulz [24] and Hall et al. [10] who also presented LP-based approximation algorithms for deterministic
scheduling problems.

Our contribution. We obtain the first approximation algorithms for stochastic scheduling on unrelated
machines. Despite the fact that the unrelated machine scheduling model is significantly richer than identical
machine scheduling, our bounds essentially match all previous performance bounds that have been obtained for
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the corresponding stochastic scheduling problems on identical parallel machines; see Table 1. We also give a
tight lower bound, showing that the dependence of the performance bound on the squared coefficient of vari-
ation ã is unavoidable for the class of policies that we use. For the first time we completely depart from the
LP relaxation of Möhring et al. [18], and show how to put a novel, time-indexed linear programming relaxation
to work in stochastic machine scheduling. We are optimistic that this approach will inspire further research and
prove useful for other stochastic optimization problems in scheduling and related areas.

Time-indexed linear programming relaxations have played a pivotal role in the development of constant
factor approximation algorithms for deterministic scheduling on unrelated parallel machines (see Schulz and
Skutella [26]). In spite of that, it remained a major open problem how to come up with a meaningful time-
indexed LP relaxation for stochastic scheduling problems (see Megow [14]). Here the main difficulty is that, in
contrast to deterministic schedules that can be fully described by time-indexed 0-1-variables, scheduling policies
feature a considerably richer structure including complex dependencies between the execution of different jobs
that cannot be easily described by time-indexed variables.

In §3 we show how to overcome this difficulty and present the first time-indexed LP relaxation for stochastic
scheduling on unrelated parallel machines. Here, the value of the time-indexed variable xijt represents the
probability of job j being started on machine i at time t. Note that even for simple scheduling policies like
the WSEPT rule, determining this probability is nontrivial. The machine capacity constraints say that each
machine can process at most one job at a time, and formulating this is rather easy for deterministic unrelated
machine scheduling. The situation is somewhat more complicated in the stochastic setting, and we require a fair
amount of information about the exact probability distributions of random variables Pij in order to formulate
that constraint.

Notice that, because of the stochastic nature of processing times, even a schedule produced by an optimal
policy can lead to the situation where infinitely many variables xijt may take positive values. This already
happens for one machine when considering the start time of the second of two jobs with exponentially distributed
processing time. Nonetheless, we show how to overcome this difficulty. Indeed, we show that we can compute
an LP-solution in polynomial time that approximates the optimal LP solution with arbitrary precision.

In §4 we discuss how to turn a feasible solution to the time-indexed LP relaxation into a simple scheduling
policy. Our approach is inspired by the randomized rounding algorithm for deterministic scheduling on unrelated
parallel machines in Schulz and Skutella [26]. Each job j is randomly assigned to a machine i with probabil-
ity
∑

t xijt; then, on each machine i, the WSEPT policy is used to schedule the jobs assigned to i. The analysis,
however, is based on a somewhat more elaborate, random sequencing of jobs that is determined by a two-stage
random process. We show how to extend our results to the setting with release dates in §5.

The scheduling policies that we use to obtain our results fall into the special class of fixed assignment
policies. That means that, already at time zero, each job is immediately and irrevocably assigned to a machine.
In particular, these policies ignore the additional information that evolves over time in the form of the actual
realizations of processing times. Not surprisingly, this ignorance comes at a price. In §6 we prove a lower bound
of ã/2 on the performance guarantee of any fixed assignment policy. Moreover, we can also show that the LP
relaxation that we use can have an optimality gap in the same order of magnitude.

To keep the presentation as simple as possible, we ignore release dates and restrict to the prob-
lem R��Ɛ6

∑

wjCj 7 throughout most of the paper. Only in §5 we show how release dates can be taken care of in
our approach.

In §7 we discuss how to execute our policy with polynomial running time and in §8 we discuss an alternative
linear programming relaxation.

Parallel to Stochastic Knapsack. There is an interesting parallel of our work with that on stochastic knapsack
problems. Indeed, stochastic knapsack problems can be reinterpreted as single machine stochastic scheduling
problems where all jobs have due date 1, and with weighted earliness objective. The first study of approximation
algorithms for stochastic knapsack problems is due to Dean et al. [6], presenting constant factor approximation
algorithms along with an analysis of the adaptivity gap. In stochastic scheduling, the adaptivity gap would
correspond to the gap between the best static list scheduling policy and an optimal adaptive scheduling policy.
Their results are based on a linear programming relaxation that is essentially the deterministic knapsack LP where
item sizes and weights are replaced by expected values. In that sense, methodology-wise their linear program
parallels that of Möhring et al. [18] in stochastic scheduling on parallel machines. Recently, Gupta et al. [9]
were able to obtain constant factor approximation algorithms for a much broader class of stochastic knapsack
problems (and other problems, too). Key to these results is a time-indexed linear programming relaxation, based
on the same type of variables as we use here. It is interesting to note that in their paper as well as in ours,
moving from “natural yet simple” LP relaxations to richer time-indexed LP relaxations is key to more general
results.
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2. Notation and preliminaries. We are given a set of jobs J of cardinality n with job weights wj ∈ �>0,
j ∈ J , and a set of unrelated parallel machines M of cardinality m. Moreover, we are given a random variable Pij

for every job j ∈ J and every machine i ∈M . Each job j needs to be executed on any one of the machines i ∈M ,
and each machine can process at most one job at a time. If job j is processed on machine i, its processing time
is random according to Pij . In some applications job j ∈ J cannot be processed on a certain machine i ∈M , i.e.,
Ɛ6Pij 7= �. For the sake of simplicity of presentation, we assume in this paper that Ɛ6Pij 7 is finite for all i ∈M
and j ∈ J . Yet all presented results also hold for the more general case where Ɛ6Pij 7= � for certain pairs 4i1 j5.
Later in §5, we consider a slightly more general model where each job j ∈ J can start on machine i ∈ M only
at time rij ∈�≥0 or later. The parameters rij are called machine dependent release dates.

In the stochastic scheduling model, the actual realization of the processing time of a job j is only known
upon j’s completion and we are looking for a nonanticipatory scheduling policy ç that minimizes the expected
total weighted completion time Ɛ6

∑

j wjCj 7, where Cj denotes the completion time of job j . We next define the
notion of a scheduling policy.

Scheduling Policies. Here, we confine ourselves with the intuitive, dynamic view on scheduling policies that
puts stochastic scheduling in the framework of stochastic dynamic optimization; see, e.g., Ross [21], and refer
to Möhring et al. [17] for the analytic definition of nonanticipatory stochastic scheduling policies as mappings
ç2 �n →�n that map processing times to completion times of jobs. A scheduling policy takes actions at points
in time t ≥ 0, starting at time t = 0. An action at a given time t consists of a set of jobs, possibly empty, to be
started on a set of idle machines, together with a tentative next decision time t∗ > t. The next action of the policy
is then due at time t∗, or the time of the next job completion, or the time when the next job is released, whatever
occurs first. Depending on the action of the policy, the next decision time as well as the state of the schedule
at the next decision time is realized according to the probability distributions of the jobs’ processing times. A
way to think about this dynamic process is as follows. There is an oracle with access to the realized processing
times of the jobs, and at any decision time t with jobs Jt in process or started, it computes t′ 2= minj∈Jt

Cj . The
next decision time is then tnext 2= min8t′1 t∗9. The information revealed to policy ç is the time tnext, along with
the set of jobs finished at tnext. If there are also release dates rij , this is taken into account in the obvious way.

In the class of nonanticipatory scheduling policies, the existence of a policy that minimizes the expected
performance for the model considered here follows from Theorem 4.2.6 in Möhring et al. [17], because of the
linearity of the objective function (which is in particular lower semicontinuous). Observe that such a scheduling
policy can be represented by a finite, yet generally exponential size decision tree. Finiteness is not clear a priori
unless we restrict the set of scheduling policies, for example, to being elementary, where jobs are restricted to be
started only upon completion times or release dates (or in other words, t∗ = �). But as we argue below, we can
restrict essentially w.l.o.g. to discrete processing time distributions, and then the resulting decision tree of any
reasonable policy is indeed finite. Also observe that a policy may gain information about remaining processing
times of jobs over time, but at any point in time it has only access to distributional information about remaining
processing times of unfinished jobs, conditioned on the state of the schedule at time t. That means in particular
that, for a given and fixed state at a time t, a scheduling policy cannot choose different actions dependent on the
future of t. Allowing for randomization, however, is possible, meaning that a policy runs a lottery (independent
of the future) among all feasible actions at time t.

A brief, concrete example may help: Imagine a job j , which has processing time either small (1) or large
(M), both with probability 1/2. For a scheduling policy that starts this job at time t, it can make sense to define
a tentative next decision time at t∗ = t+1, because then it knows with certainty what the actual processing time
of job j is. Using such building blocks, one can even show that an optimal scheduling policy for the setting
considered here is generally not work conserving, i.e., there exist examples where an optimal scheduling policy
must leave machines deliberately idle even though there are yet unscheduled jobs; see Uetz [36].

Discretization. Throughout this paper we assume that the random variables Pij , i ∈ M , j ∈ J , take positive
integral values only. The following lemma states that this assumption costs at most a factor 1+� in the objective
function value.

Lemma 1. For any fixed �> 0, while only losing a factor 1 +� in the objective function value, an arbitrary
instance can be modified such that the random variables Pij , i ∈M , j ∈ J , take positive integral values only.

Proof. If Ɛ6Pij 7= 0 and rij = 0 for some pair 4i1 j5, then we can ignore job j since it can be scheduled at no
further cost on machine i at time 0. We can thus assume from now on that Ɛ6Pij 7 > 0 or rij > 0 for all pairs 4i1 j5.
By scaling processing times and release dates appropriately, we can make sure that Ɛ6Pij 7≥ n/� or rij ≥ n/� for
each pair 4i1 j5. As a result of this scaling step we know that, for any scheduling policy, Ɛ6Cj 7 ≥ n/� for each
job j ∈ J . Rounding up all processing times to the nearest positive integer therefore increases the (expected)
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completion time of any job j by at most n ≤ �Ɛ6Cj 7. The overall increase in the objective function is thus
bounded by a factor 1 + �. To be a bit more precise, for the rounded instance, we can simulate any given
policy ç for the original instance, yielding a new scheduling policy that achieves expected completion times
of any job j that exceed those of ç by at most n ≤ �Ɛ6Cj 7. This is because the rounding will not yield any
“new” states that ç would not know how to handle. Moreover, any scheduling policy for the rounded instance
can be translated back to a scheduling policy for the original instance with the same objective value by adding
deliberate idle time where necessary. This shows that the rounding is indeed no loss of generality, except for
the additional multiplicative factor 41 + �5. �

Input size and further preliminaries. Given that all processing times are integral, we can obviously assume
with no further loss of generality that jobs can only be started at integral points in time t ∈�≥0. To write down
an LP relaxation in time-indexed variables, we require a fair amount of information about the exact probability
distributions of random variables Pij . More precisely, besides the expectations Ɛ6Pij 7, we also need the values

qijr 2= Pr6Pij ≥ r + 17 for i ∈M1 j ∈ J 1 and r ∈�≥00

This, of course, raises questions about the input size of the problem. Here, we make the following assumption.
In the input we are given the expected processing time Ɛ6Pij 7 for each job j ∈ J and each machine i ∈ M .
Moreover, we have access to an oracle, which for any triple 4i1 j1 r5 returns qijr . We emphasize that, in order for
our approach to work, it suffices to get these values within some finite precision at the expense of an additional
factor 1 + � in the performance guarantee of our algorithms. More precisely, it suffices to get the values qijr
rounded to multiples of �/n, which, in particular, can be encoded polynomially in the input size. Notice that such
an oracle can be simulated by a polynomial-time Monte Carlo algorithm that can sample from the distribution
of the random variables Pij . Having said that, in order to keep the presentation simple, we neglect these aspects
throughout the paper and assume that we have access to the exact values qijr .

In the analysis of our algorithm, we need the following standard property of the moments of random vari-
able Pij , the proof of which is based on standard results for the nth moment of a random variable; see, e.g.,
Feller [7, V.6, Lemma 1]. For the sake of completeness, we present the simple proof here.

Lemma 2. Let j ∈ J and i ∈M . Then,

∑

r∈�≥0

qijr = Ɛ6Pij 7 and
∑

r∈�≥0

4r +
1
2 5qijr =

1 +��6Pij 7
2

2
Ɛ6Pij 7

21

where ��6Pij 7
2 2= 4Ɛ6P 2

ij 7−E6Pij 7
25/Ɛ6Pij 7

2 is the squared coefficient of variation of Pij .

Proof. First,
∑

r≥0

qijr =
∑

r≥0

∑

q≥r

Pr6Pij = q + 17=
∑

r≥0

4r + 15Pr6Pij = r + 17= Ɛ6Pij 70

For the second claim,
∑

r≥0

4r +
1
2 5qijr =

∑

r≥0

∑

q≥r

4r +
1
2 5Pr6Pij = q + 17=

∑

r≥0

1
2 4r + 152 Pr6Pij = r + 17= 1

2 Ɛ6P
2
ij 70

The claim now follows by definition of the coefficient of variation. �

3. Time-indexed LP relaxation. In the following, we derive an LP relaxation of the stochastic scheduling
problem under consideration. For a given nonanticipatory scheduling policy ç, let xijt be the probability that ç
starts job j ∈ J on machine i ∈ M at time t ∈ �≥0. Notice that this random decision may depend on the actual
processing times of other jobs started by ç before time t. On the other hand, because of the nonanticipatory
nature of policy ç, the random variable Pij is independent of ç’s random decision to start job j on machine i
at time t.

As the xijt’s are going to be the variables of our LP relaxation, we derive crucial properties that are going to
be the constraints of the LP relaxation. If job j ∈ J is started on machine i ∈M at time t ∈�≥0, because of the
nonanticipative nature of policy ç, j’s expected completion time is t+Ɛ6Pij 7. Thus, by linearity of expectation,
the expected completion time of j is

Ɛ6Cj 7=
∑

i∈M

∑

t∈�≥0

xijt4t + Ɛ6Pij 750
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A more careful look at j’s behavior reveals the following property. Conditioning on j being started on machine i
at time t, the probability that j is still occupying machine i within the later time interval 6s1 s + 17, s ∈ �≥t , is
equal to qijs−t by definition. Unconditioning yields

Pr6i processes j in 6s1 s + 177=
s
∑

t=0

xijtqijs−t0 (1)

As machine i can process at most one job at a time, also the expected number of jobs being processed by i in
6s1 s + 17 is bounded by 1. That is, by linearity of expectation,

∑

j∈J

s
∑

t=0

xijtqijs−t ≤ 10

Finally, since policy ç has to process all jobs, we get
∑

i∈M

∑

t∈�≥0
xijt = 11 for every job j . Thus, the probabili-

ties xijt corresponding to policy ç form a feasible solution to the following LP relaxation, and the value of this
LP solution x is equal to the expected value of the schedule produced by policy ç:

min
∑

j∈J

wjC
LP
j

s.t.
∑

i∈M

∑

t∈�≥0

xijt = 1 for all j ∈ J , (2)

∑

j∈J

s
∑

t=0

xijtqij s−t ≤ 1 for all i ∈M1 s ∈�≥0, (3)

CLP
j =

∑

i∈M

∑

t∈�≥0

xijt 4t + Ɛ6Pij 75 for all j ∈ J , (4)

xijt ≥ 0 for all j ∈ J 1 i ∈M1 t ∈�≥0.

Notice that the LP variables CLP
j are uniquely determined by the x-variables and could as well be omitted by

replacing them in the objective function with the right-hand side of (4).
Also notice that this LP is not a formulation but only relaxation of the scheduling problem. This can be seen

by realizing that the LP allows to greedily “pack” fractions of jobs in a way that cannot be translated back into
any feasible scheduling policy. This is exactly what is exploited in the example that we give in the proof of
Theorem 6, where we show that the LP has a large optimality gap even on a single machine. Intuitively, the LP
is allowed to neglect implicit temporal dependencies that upper bound the probabilities for jobs being started.
For instance, in the example where we have two jobs with exponentially distributed processing times that must
be scheduled on a single machine, we can define LP solutions where both jobs are started with probability one
at some finite point in time. However in any schedule, for any time t ≥ 0 there is nonzero probability for one
job to be started at time t or later.

That said, it becomes clear that the linear program generally suffers from infinitely many variables and
constraints. Indeed, it is true that infinitely many variables may be needed in order to map an optimal scheduling
policy ç to a corresponding LP solution. Consider again the same two jobs with exponentially distributed
processing times that must be scheduled on a single machine, and consider the policy that schedules the jobs
one after another. Then the start time of the second job cannot be bounded, i.e., for any t ≥ 0, the second job is
started with positive probability at time t or later. Despite this peculiarity, we can show that an optimal solution
to the LP relaxation does get along with finite support. More precisely, we give a pseudopolynomial upper
bound on the largest time index t such that xijt > 0 in an optimal LP solution for any j ∈ J and i ∈M . Thereby,
the problem can be overcome at the expense of an additional factor 1 + � in the performance guarantee of our
algorithms.

Theorem 1. The above infinite time-indexed LP relaxation can be solved in pseudopolynomial time in the
input size. Moreover, a 41 + �5-approximate LP solution can be found in time polynomial in the input size
and 1/�.

Proof. Any reasonable scheduling policy produces a schedule where the expected completion time of every
job is at most

D 2= max
i∈M

∑

j∈J

Ɛ6Pij 70
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In particular, the expected value of the schedule is at most U 2=D
∑

j∈J wj , which is thus also an upper bound
on the optimal LP solution. Moreover, let

R 2= 2n max
j∈J 1 i∈M

Ɛ6Pij 70

Lemma 3. Let T 2= 2U +R. There is an optimal solution x to the LP relaxation such that xijt = 0 for i ∈M ,
j ∈ J , and t > T .

Proof. Consider an optimal LP solution x and an arbitrary machine i ∈ M . Since U is an upper bound on
the value corresponding to x and since wj ≥ 1 for each job j ∈ J , it follows from Markov’s inequality that

∑

j∈J

∑

t≥2U

xijt ≤
1
2
0 (5)

Using Markov’s inequality once again, we derive that for each job j ∈ J and r ≥R

qijr = Pr6Pij ≥ r + 17≤ Pr6Pij ≥ 2nƐ6Pij 77≤
1

2n
0 (6)

We now define a new LP solution x′ by letting

x′

ijt 2=



























xijt for t < T ,

∑

t′≥T

xijt′ for t = T ,

0 for t > T .

By definition, x′ has the desired property stated in the lemma and its objective function value is bounded
from above by the value of x. It remains to prove that x′ is a feasible LP solution. It is clear that x′ fulfills
LP constraints (2) since x fulfills these constraints. It is, however, less obvious that x′ also fulfills all LP
constraints (3). For s < T

∑

j∈J

s
∑

t=0

x′

ijtqijs−t =
∑

j∈J

s
∑

t=0

xijtqijs−t ≤ 1

since x is a feasible LP solution and thus satisfies (3). Finally, for s ≥ T ,

∑

j∈J

s
∑

t=0

x′

ijtqijs−t =
∑

j∈J

2U−1
∑

t=0

xijtqijs−t +
∑

j∈J

s
∑

t=2U

x′

ijtqijs−t

≤
1

2n

∑

j∈J

2U−1
∑

t=0

xijt +
∑

j∈J

∑

t≥2U

xijt ≤
1
2

+
1
2

= 11

where the first inequality follows from (6) and the definition of x′, and the last inequality follows from (2)
and (5). This concludes the proof of Lemma 3. �

It can be easily derived from the proof that the property claimed in Lemma 3 indeed holds for any optimal
LP solution x. It is important to notice that, for such a solution x, constraints (3) for s > T are implied by
the constraint for s = T since qijr is nonincreasing in r . We have thus reduced the problem of finding an
optimal LP solution to solving a truncated time-indexed LP of pseudopolynomial size. It is well known that
such time-indexed LPs can be solved approximately in polynomial time at the expense of losing a factor 1 + �
in the objective function. The underlying idea is to replace the discretization of time into unit size intervals by
a slightly rougher discretization using intervals of geometrically increasing lengths. We refer to Skutella [29,
Chapter 2.13] for a more thorough discussion of this point. This concludes the proof of Theorem 1. �

We finally mention that Theorem 1 can be easily generalized to the more general problem with release dates
studied in §5.
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4. Turning an LP solution into a scheduling policy. For a feasible LP solution x, let Xij 2=
∑

t∈�≥0
xijt for

i ∈M , j ∈ J . LP constraints (2) imply that
∑

i∈M Xij = 1 for every job j ∈ J .
Given the values Xij corresponding to a feasible LP solution x, scheduling policy Assign4X5 assigns each

job j ∈ J independently at random to one machine i ∈M with probability Xij . Then, on each machine i ∈M , it
sequences jobs assigned to i according to the WSEPT rule. To formulate our main theorem, remember that ã
upper bounds the squared coefficient of variation ��6Pij 7

2 for all Pij .

Theorem 2. The expected value of the schedule constructed by policy Assign4X5 is at most 3/2 + ã/2
times the value of the underlying LP solution x. Thus, by Theorem 1, for any given instance of the stochastic
scheduling problem and for any � > 0, a 43/2 + ã/2 + �5-approximate scheduling policy can be found in
polynomial time.

It is not difficult to see that, instead of the random assignment of jobs to machines, we can use a deterministic
assignment obtained via the method of conditional probabilities and still get the same performance guarantee.
A similar approach for deterministic scheduling was used by Schulz and Skutella [26].

The proof of Theorem 2 is based on a refined, somewhat more complicated policy, that takes the entire
LP solution x into account and yields a worse schedule in expectation. It is therefore sufficient to prove the
bound stated in Theorem 2 for this alternative policy, which we refer to as Assign&Sequence4x5.

Assign&Sequence4x5
1. For every job j ∈ J , choose a pair 4i1 t5 independently at random with probability xijt and some r ∈ �≥0

independently at random with probability qijr/Ɛ6Pij 7; assign job j to machine i and set its tentative start time s

to s 2= t + r (we write “j → 4i1 s5” for short).
2. On each machine i ∈M , sequence all jobs assigned to i in order of increasing tentative start times; ties are

broken randomly.
Notice that, as in the simpler policy Assign4X5, job j is assigned to machine i with probability

∑

t∈�≥0
xijt =

Xij . Since Assign4X5 sequences the jobs on every machine in an optimal way, it is superior to policy
Assign&Sequence4x5. By construction of policy Assign&Sequence4x5, the probability of assigning job j ∈ J

to machine i ∈M and setting its tentative start time to s ∈�≥0 is

Pr6j → 4i1 s57=
s
∑

t=0

xijt
qijs−t

Ɛ6Pij 7
0 (7)

We prove the following job-by-job performance guarantee for Assign&Sequence4x5.

Theorem 3. For every job j ∈ J , the expected value of j’s completion time in the schedule constructed by
policy Assign&Sequence4x5 is at most 43/2 +ãj/25CLP

j , where ãj 2= maxi∈M ��6Pij 7
2.

By linearity of expectation, Theorem 3 immediately implies Theorem 2. In the proof of Theorem 3 we make
use of the following lemma.

Lemma 4. Let j ∈ J , i ∈ M , and s ∈ �≥0. If j → 4i1 s5, then the expected total processing time of jobs that
policy Assign&Sequence4x5 schedules on machine i before job j is at most s +

1
2 .

Proof. We first bound the expected total processing time of jobs k 6= j with k → 4i1 s′5 for some fixed
s′ ∈�≥0:

∑

k 6=j

Ɛ6Pik7Pr6k → 4i1 s′57
(7)
=
∑

k 6=j

s′
∑

t′=0

xikt′qiks′−t′ ≤ 1 by (3).

Thus, the expected total processing times of jobs processed before job j on machine i is at most

∑

k 6=j

Ɛ6Pik7

( s−1
∑

s′=0

Pr6k → 4i1 s′57+ 1
2 Pr6k → 4i1 s57

)

≤ s +
1
2 1

where the expectation is taken with respect to both the random decisions of policy Assign&Sequence4x5 as
well as the random processing times of jobs k 6= j . This concludes the proof of Lemma 4. �
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Proof of Theorem 3. By Lemma 4 we get

Ɛ6Cj � j → 4i1 s57≤ s + 1
2 + Ɛ6Pij 7 (8)

for every job j ∈ J , machine i ∈M , and tentative start time s ∈�≥0. Unconditioning the expectation yields

Ɛ6Cj 7=
∑

i∈M

∑

s∈�≥0

Ɛ6Cj � j → 4i1 s57Pr6j → 4i1 s570

Applying inequality (8) and equation (7) we get

Ɛ6Cj 7≤
m
∑

i=1

∑

s∈�≥0

4s +
1
2 + Ɛ6Pij 75

s
∑

t=0

xijt
qijs−t

Ɛ6Pij 7
0

Exchanging the order of summation of s and t, and setting r 2= s − t yields

Ɛ6Cj 7 ≤

m
∑

i=1

∑

t∈�≥0

xijt

(

t + Ɛ6Pij 7+
∑

r∈�≥0

4r +
1
2 5

qijr

Ɛ6Pij 7

)

=

m
∑

i=1

∑

t∈�≥0

xijt

(

t +

(

3
2

+
��6Pij 7

2

2

)

Ɛ6Pij 7

)

≤

(

3
2

+
ãj

2

)

CLP
j

by Lemma 2 and (4). This concludes the proof. �

We note that the same results can in fact be obtained by considering a weaker LP relaxation in variables yijs ,
corresponding to the probability that job j is being processed on machine i in time interval 6s1 s + 17; see §8.

5. Adding release dates. In this section we show how to adapt our analysis for a more general problem
where each job j ∈ J comes with a machine dependent deterministic release date rij ∈ �≥0 before which job j
must not be scheduled on machine i. To handle release dates, we add one additional family of constraints to our
time-indexed LP relaxation:

xijt = 0 for all i ∈M1 j ∈ J 1 t < rij .

These constraints are obviously fulfilled by the probabilities xijt corresponding to an arbitrary schedul-
ing policy ç as no job may be started before it is released. We consider the same LP-based policy
Assign&Sequence4x5 for this more general problem.

Theorem 4. In the presence of release dates, for every job j ∈ J , the expected value of j’s completion time in
the schedule constructed by policy Assign&Sequence4x5 is at most 42+ãj5C

LP
j , where ãj 2= maxi∈M ��6Pij 7

2.

The proof of Theorem 4 is almost identical to the proof of Theorem 3; for the sake of completeness we
nevertheless present it here.

Proof of Theorem 4. Note that the release dates of all jobs that have tentative start times less than s is at
most s. Thus, by Lemma 4, we get

Ɛ6Cj � j → 4i1 s57≤ s + s +
1
2 + Ɛ6Pij 7 (9)

for every job j ∈ J , machine i ∈M , and tentative start time s ∈�≥0. Unconditioning the expectation yields

Ɛ6Cj 7=
∑

i∈M

∑

s∈�≥0

Ɛ6Cj � j → 4i1 s57Pr6j → 4i1 s570

Applying inequality (9) and Equation (7) we get

Ɛ6Cj 7≤
m
∑

i=1

∑

s∈�≥0

42s +
1
2 + Ɛ6Pij 75

s
∑

t=0

xijt
qijs−t

Ɛ6Pij 7
0
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Exchanging the order of summation of s and t, and setting r 2= s − t yields

Ɛ6Cj 7 ≤

m
∑

i=1

∑

t∈�≥0

xijt

(

2t + Ɛ6Pij 7+ 2
∑

r∈�≥0

4r +
1
2 5

qijr

Ɛ6Pij 7

)

=

m
∑

i=1

∑

t∈�≥0

xijt42t + 42 +��6Pij 7
25Ɛ6Pij 75≤ 42 +ãj5C

LP
j

by Lemma 2 and (4). This concludes the proof of Theorem 4. �
We conclude this section with the following result for the model with release dates.

Theorem 5. In the presence of release dates, the expected value of the schedule constructed by policy
Assign&Sequence4x5 is at most 2 +ã times the value of the underlying LP solution x. Thus, for any given
instance of the stochastic scheduling problem and for any � > 0, a 42 +ã+ �5-approximate scheduling policy
can be found in polynomial time.

6. Tightness of performance bounds. We argue that our results cannot be easily improved, because both
LP relaxation as well as our scheduling policies have an optimality gap of ä4ã5. The following theorem is
somewhat surprising since the corresponding time-indexed linear program for the deterministic single machine
scheduling problem has the same optimal value as an optimal schedule.

Theorem 6. Even for the special case of a single machine, the multiplicative gap between the expected
value of an optimal policy and the value of an optimal LP solution can be as large as ã/2.

Proof of Theorem 6. Consider the following single machine instance. We are given a set of n identical
jobs J = 801 : : : 1 n− 19 with unit weight wj = 1 and stochastic processing times

Pj =

{

1 with probability 1 − 1/4n+ 15,

n4 + n3 − n with probability 1/4n+ 15,
for all j ∈ J .

In particular, Ɛ6Pj 7= n3, Ɛ6P 2
j 7= n7 + n6 − 2n4 + n, and ��6Pj 7

2 = n− 2/n2 + 1/n5. Also notice that

qjr =











1 for r = 0,

1/4n+ 15 for r = 11 : : : 1 n4 + n3 − n− 1,

0 otherwise,

for all j ∈ J .

Moreover, the expected value of the schedule found by the optimal WSEPT policy is equal to

n−1
∑

j=0

4j + 15n3
=

1
2n

44n+ 150

Consider the LP solution given by

xj1 t =

{

1/n for t = jn1 : : : 1 4j + 15n− 1,

0 otherwise,
for all j ∈ J .

It is not difficult to check that x is a feasible LP solution: notice that LP constraints (2) are fulfilled by definition
of x. Moreover, the left-hand side of LP constraints (3) is maximal for s = n2 − 1, where it takes the value

n−1
∑

j=0

n2−1
∑

t=0

xj1 tqj1 n2−1−t =

n−2
∑

j=0

1
n+ 1

+

n2−2
∑

t=0

xn−11 t

n+ 1
+ xn−11 n2−1 =

n− 1
n+ 1

+
n− 1

n4n+ 15
+

1
n

= 10

The value of the LP solution x is
n−1
∑

j=0

4j+15n−1
∑

t=jn

1
n
4t + n35=

1
n

n2−1
∑

t=0

4t + n35=
n24n2 − 15

2n
+ n4

= n4
+

1
2n

3
−

1
2n0

Thus, the multiplicative gap between the expected value of the optimal WSEPT policy and the value of an
optimal LP solution is at least

n44n+ 15
2n4 + n3 − n

=
n

2
+ä415=

ã

2
+ä4151

where ã=��6Pj 7
2 = n− 2/n2 + 1/n5. �
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Next we show that the dependence of our performance guarantee on the squared coefficients of variation ã=

maxij ��6Pij 7
2 has the right order of magnitude for all algorithms that use fixed job assignments to machines,

i.e., for all policies where the assignment of all jobs to machines is fixed right in the beginning and not changed
after learning about the processing time realizations of already completed jobs. This even holds for the case of
identical parallel machines, where, for each job j ∈ J , there is one random variable Pj such that Pij = Pj for all
machines i ∈ M . The following theorem shows that our approximation result cannot be significantly improved
without considering adaptive policies.

Theorem 7. Even for the special case of identical parallel machines, the performance ratio of any fixed-
assignment policy can be as large as 41 − �5ã/2 for any �> 0, for large enough number of machines m.

Proof of Theorem 7. Let � > 0 be a fixed small constant. Consider an instance consisting of m identical
parallel machines and m2 jobs with unit weights wj = 1 and stochastic processing times Pj with

Pj =















1 with probability
1 − �

m
,

0 with probability 1 −
1 − �

m
.

The expected processing time of each job is Ɛ6Pj 7 = Pr6Pj = 17 = 41 − �5/m and the total expected processing
time of all jobs is

Ɛ

[

∑

j∈J

Pj

]

= 41 − �5m0

The squared coefficient of variation of random variable Pj is

ã=��6Pj 7
2
=

m

1 − �
− 10

The probability that our instance has at least 41/41 − �55Ɛ6
∑

j∈J Pj 7 = m jobs with processing times equal to
one is upper bounded by e−41/45m�2/41−�5 by the Chernoff bounds for the sum of independent Boolean random
variables (see, e.g., Motwani and Raghavan [19, Theorems 4.1 and 4.3]). Note also that, under any realization
of processing times, the value of the schedule computed by the optimal policy is upper bounded by m3.

To derive an upper bound on the value of an optimal policy, consider the following adaptive (but nonantici-
patory) policy. Initially all machines are available. Start one job on each available machine. If some of the jobs
are immediately finished (i.e., they have processing time 0), then start one job per available machine again.
Once we have a job that has not been finished immediately, we declare the machine where this job is processed
unavailable and continue to assign jobs to available machines. The expected value of the schedule produced by
the optimal policy can thus be bounded from above by

Pr
[

∑

j∈J

Pj <m

]

Ɛ

[

∑

j∈J

Pj

∣

∣

∣

∣

∑

j∈J

Pj <m

]

+ Pr
[

∑

j∈J

Pj ≥m

]

m3

≤ Ɛ

[

∑

j∈J

Pj

]

+ Pr
[

∑

j∈J

Pj ≥m

]

m3

≤ 41 − �5m+ e−41/45m�2/41−�5m3 <m1

where the last inequality holds for large enough m.
Consider now any fixed-assignment policy that assigns ki jobs to be processed on machine i ∈ M with

∑

i∈M ki = m2. Since all jobs have identical distributions and weights, the optimal single machine policy is to
process jobs according to an arbitrary permutation. The expected value of such a schedule on machine i ∈M is

ki
∑

q=1

q
1 − �

m
= 41 − �5

ki4ki + 15
2m

0

Thus, because of convexity, the value of the fixed assignment policy is

41 − �5
∑

i∈M

ki4ki + 15
2m

≥ 41 − �5
m4m+ 15

2
0

Therefore, the worst-case ratio between an optimal fixed assignment policy and an optimal policy is at least 41−

�544m+ 15/25. Since we can choose � > 0 to be arbitrarily small and m arbitrarily large, we derive that this
ratio is at least 41 − �5ã/2 for any �> 0 and large enough parameter m. �
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7. Execution of scheduling policies. We have argued that the policy we propose can be computed in
polynomial time, but so far did not discuss the computation time to actually execute the scheduling policy,
or more generally, any stochastic scheduling policy. The major issue is how, and with which computational
effort, the scheduler learns about the next job completion when executing a set of jobs. Probabilistically, this
event is described by the minimum of a set of random variables, of which we just sample while executing the
policy. In general, and already if there is just one single job to be processed, there might of course be nonzero
probability for a job to be exponentially longer than expected. But due to Markov’s inequality, the probability
for exceeding the expected processing time by an exponential factor is exponentially small, too. Therefore, with
high probability the sampled processing times of jobs can be encoded polynomially in the input size of the
problem. Apart from this minor issue inherent in all stochastic scheduling problems, we note that the policy
Assign4X5 is in particular elementary (Möhring et al. [17]), meaning that jobs are only started upon release
times or completion times of other jobs. Hence, there is only a linear number of decision times.

8. A weaker time-indexed LP relaxation. In this section we discuss a weaker time-indexed LP relaxation
of the stochastic scheduling problem. Instead of using variables xijt corresponding to the probability that job j
is started on machine i at time t as in §3, we use variables yijs corresponding to the probability that job j is
being processed on machine i within time interval 6s1 s + 17. Then, by (1), we get

yijs =

s
∑

t=0

xijtqijs−t0 (10)

Thus, the machine capacity constraints (3) can now simply be written as
∑

j∈J

yijs ≤ 1 for all i ∈M1 s ∈�≥0. (11)

Moreover, making use of the first part of Lemma 2, constraints (2) translate to

∑

i∈M

∑

s∈�≥0

yijs

Ɛ6Pij 7
= 1 for all j ∈ J . (12)

Finally, with the help of the second part of Lemma 2, the expected completion time (4) of job j can be
rewritten as

CLP
j =

∑

i∈M

∑

s∈�≥0

(

yijs

Ɛ6Pij 7
4s + 1

2 5+
1 −��6Pij 7

2

2
yijs

)

for all j ∈ J . (13)

Thus, we get the following new LP relaxation:

min
∑

j∈J

wjC
LP
j

s.t. (11), (12), (13)

yijs ≥ 0 for all j ∈ J 1 i ∈M1 s ∈�≥0.

As any feasible solution x to the LP relaxation from §3 can be mapped to a feasible solution y of the same value
via (10), the new relaxation is not stronger than the old one. Moreover, there exist deterministic instances (ã= 0)
on identical parallel machines for which the gap between the optimal solution values of the two relaxations
is arbitrarily close to 2. For example, consider one job j with weight wj = 1, processing time pj = m, and m
identical parallel machines. The optimal LP solution of the linear program in x-variables has value m, which
is also the value of an optimal schedule. The optimal value of the linear program in y-variables, however,
is 4m+ 15/2. The new LP can, however, be strengthened by adding the following constraints:

CLP
j ≥

∑

i∈M

∑

s∈�≥0

yijs for all j ∈ J . (14)

The algorithms presented in §§4 and 5 can be easily reinterpreted with respect to a solution y to the new
LP relaxation and yield the same performance bounds.

We finally also remark that because of our insights about the LP relaxation in y-variables, the work of
Skutella [30] on approximation algorithms based on convex quadratic programming relaxations can be general-
ized to the setting of stochastic unrelated machine scheduling.
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CORRECTION

In this article, “Unrelated Machine Scheduling with Stochastic Processing Times” by Martin Skutella, Maxim
Sviridenko, and Marc Uetz (first published in Articles in Advance, February 16, 2016, Mathematics of Operations
Research, DOI:10.1287/moor.2015.0757), an additional Section 9 was left in the text by mistake. It has been removed
from the article.
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