
IEOR 8100: Randomized algortihms homwork solutions

Problem set 1

1. (Exercise 1.2) The intuitive reason why the “node-picking” approach fails is that it does not take the
edge structure of the graph into account. Consider the graph G = (U ∪ V,E) where U and V are
cliques (i.e., for all u, u′ ∈ U, (u, u′) ∈ E and the same is true for V) and there is a single edge (u, v)
between the the cliques for a particular u ∈ U, v ∈ V . Suppose |U | = |V | = n. The minimum cut of
this graph is [U, V] with value 1. Every other cut has value greater or equal to n. Thus, in order for
the modified algorithm to find the minimum cut, at every iteration, only nodes from the same clique
can be contracted, i.e., the algorithm must contract two nodes where both are elements of U or both
are elements of V . Furthermore, if the algorithm is successful, the last two nodes remaining will be
such that one is the contraction of the nodes in U and the other the contraction of the nodes in V . Let
A represent this event. Let B denote the event that the algorithm terminates with each of the final
two nodes containing the contraction of n nodes (from either set). Then,

Pr[success] = Pr[A]

= Pr[A|B] Pr[B]

≤ Pr[A|B]

=
2

(

2n
n

)

(*)

≤
(

1
2

)n−1
by Prop. B.2, 4.

To see that (*) is true, consider the algorithm as a random distribution on the partitions of the nodes
into two sets. Denote the set which contains the first element the algorithm chooses the “marked”
set. Given that this distribution partitioned the nodes into two sets of equal size (i.e, event B), the
probability of a node ending up in the marked or unmarked set is equally likely by the symmetry of the

problem. Thus, each partition occurs with an equal probability of

(

2n
n

)−1

, which is the probability

of choosing a particular set of n balls from an urn of 2n balls. Since there are two partitions which
result in success (U is the marked set or V is the marked set), (*) follows.

2. (Problem 1-8)

(a) Consider the following multigraph, G = (V,E). Let V = {s, t, v1, . . . , vn} and E = ES ∪ ET

where ES = {(s, vi) : i = 1, . . . , n} and ET = {(vi, t) : i = 1, . . . , n} and the arcs in ET occur
twice. The minimum s-t cut consists of the node s and has value n. So there is one arc from s
to each node vi for all i, and two arcs from vi to t for each i. Then, in order for the algorithm to
terminate successfully, only arcs from ET can be contracted. If an arc from Es is contracted, the
cut value returned will be at least n + 1, as neither of the two arcs from the contracted node can
be chosen (as the contracted node is now the s-vertex). By this same argument, every time an
edge is contracted, three arcs (including the one contracted) are no longer possible choices as they
are either contracted or arcs connecting the s-vertex to the t vertex. Thus, at every iteration the
probability of choosing a contraction preserving the possibility of success is 2/3, and there are a
total of n iterations. Then the probability of success is (2/3)n.

(b) The number of s-t minimum cuts can be exponential in the number of nodes of the graph. Consider
the graph G from part (a) with the modfication that every edge in ET occurs once. Then every
subset including s and not including t defines a minimum cut with value n. There are 2n such
sets.

1

3. (implementation of Min-Cut Algorithm) Here is the “simple” method suggested in Karger and Stein
(1996), which is available from Cliff’s website. For the minimum cardinality minimum cut problem,
it runs in O(n2 + m log m) time and uses O(n2 + m) space. For the general weighted case the run-
time becomes O(n2 + m log W) where W is the total sum of the weights. This bound is not strongly
polynomial. Karger and Stein describe an improved, although more complicated, algorithm with a
strongly polynomial runtime.

In order to implement the algorithm, there are two tasks that must be completed:

• Randomly choosing an (multi-)edge;

• Contracting an edge.

To perform these tasks, the following two data structures will be maintained:

• W = (w(u.v)), a node-node adjacency matrix where w(u,v) represents the number of edges between
the nodes u, and v ;

• d = (du) where du denotes the degree of node u.

Note that W is symmetric, i.e., w(u,v) = w(v,u), as the graph is undirected.

The algorithm requires a subroutine that, given an integral vector x = (xi), returns the number i with
probability xi. To do this, use the black box to generate a random integer, r, distributed uniformly
between 1 and m. Then binary search the vector y = (yi), i = 0, . . . , n, where yi =

∑i

j=1 xj(y0 = 0)
to find an indice k such that yk−1 < r ≤ yk. The output of the subroutine will be the indice k. Label
this subroutine Random-Bin-Select and note that it requires log(

∑

i xi) time.

Then, to choose a random edge, call Random-Bin-Select on the vector d to obtain a node u. Then
call Random-Bin-Select on the vector (wu,v), v ∈ V . Label this subroutine Random-Edge and
note that it requires O(log m) time, as

∑

i di = 2m ≥ sumv∈V w(u,v),∀u.

Lemma 1 Random-Edge chooses an edge (u, v) with probability w(u,v)/m.

Proof: Suppose the the black box generates the integer r ∈ {1, . . . ,m}. Then

Pr[(u, v) chosen] = Pr[u chosen] Pr[(u, v) chosen — u chosen] + Pr[v chosen] Pr[(u, v) chosen — v chosen],

=
du

2m

w(u,v)

du

+
dv

2m

w(v,u)

dv

,

=
w(u,v)

m
.

To contract an edge (u, v), the d and W matrix must be updated so that (WLOG) the u vertex attains
all the edges of the v vertex, excluding any (u, v) edges. This can be accomplished via the following
equations

(1) du ← du + dv − 2w(u,v)

(2) w(u, v)← w(v, u)← dv ← 0

- For all vertex w ∈ V \ {u, v}

(3) w(w,u) ← w(u,w) ← w(u,w) + w(v,w)

(4) w(w,v) ← w(v,w) ← 0

2

Equations (1), (3) and (4) change the degree of u and update W to reflect the additional (if any)
edges from v and the removal of all (u, v) edges. Equation (2) removes all (u, v) edges from the W

matrix and reduces the degree of v to zero. The total addition operations required for these equations
is 2+n−2 = n and the total memory operations required is 1+3+2(n−2)+2(n−2) = 4n−4. Thus,
the total number of operations required to contract an edge is O(n). Thus, the total time required to
implement the algorithm is O(n2) and the total space, if a full matrix is used, is O(n2).

4. (Bound on the number of minimum cuts in a graph with n nodes) Note that the min-cut algorithm
can be seen as a probability distribution on cuts in a particular graph. Suppose, for the sake of
contradiction, that there were k > n(n − 1)/2 minimum cuts in the graph. Since, for each of these
cuts, the min-cut algorithm is guaranteed to generate it with probability at least 2

n(n−1) , the total

probability of generating any of these cuts is greater than one, a contradiction.

3

