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Abstract

We give the first O(1)-speed O(1)-approximation
polynomial-time algorithms for several nonpreemptive min-
sum scheduling problems where jobs arrive over time and
must be processed on one machine. More precisely, we
give the first O(1)-speed O(1)-approximations for the non-
preemptive scheduling problems

• 1 | rj |∑wjFj (weighted flow time),

• 1 | rj |∑Tj (total tardiness),

• the broadcast version of 1 | rj |∑wjFj ,

an O(1)-speed, 1-approximation for

• 1 | rj |∑U j (throughput maximization),

and an O(1)-machine, O(1)-speed O(1)-approximation for

• 1 | rj |∑wjTj (weighted tardiness).

Our main contribution is an integer programming for-
mulation whose relaxation is sufficiently close to the integer
optimum, and which can be transformed to a schedule on a
faster machine.

1 Introduction

In this paper, we give the first polynomial-time O(1)-
speed O(1)-approximation algorithms for nonpreemptive
min-sum scheduling problems where jobs arrive over time
and must be processed on one machine. In the problems
we consider, each job j has a release time rj and a size pj .
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A feasible schedule assigns each job j to run during a time
interval [xj , Cj ] of length pj such that rj ≤ xj and at any
time at most one job is running.

We consider various min-sum objective functions. The
flow or response time of a job is Fj = Cj − rj , the time
that job j is in the system before completing. If a job has
a deadline dj , the tardiness Tj of a job j is the amount by
which the completion of j exceeds its deadline, i.e., Tj =
max{Cj − dj , 0}. For each of these objectives we can take
a weighted sum over all jobs, and thus obtain total weighted
flow time

∑
wjFj and total weighted tardiness

∑
wjTj .

We also consider weighted flow in a broadcast scheduling
(or batching) environment, where requests from clients for
variable sized pages arrive over time, and a request for a
page is satisfied by the first broadcast of this page that starts
after this request arrives [10].

All the problems that we consider are NP-hard [7]. Fur-
ther, there are no polynomial-time approximation algo-
rithms for these problems with reasonable approximation
ratios. The problem of minimizing total (unweighted) flow
cannot be approximated to within a factor of n1/2−ε for any
ε > 0 on an n-job instance, unless P=NP [11]. This hard-
ness result also applies to broadcast scheduling. The prob-
lems in which jobs have deadlines, cannot be approximated
in polynomial-time to within any finite factor because the
problem of determining whether the objective function is 0
(all jobs complete by their deadlines) is itself NP-hard [7].

For each of these problems, we contend that worst-case
approximation ratios do not yield the appropriate insights,
as they essentially tell us to give up because no algorithm
will be good. However, we need to solve these (and more
complicated variants of these) problems, need ways to an-
alyze and compare algorithms, and explanations for why
algorithms typically do much better than their worst-case
bounds.

With this motivation, Kalyanasundaram and Pruhs [9] in-
troduced the following method of analysis: compare the
candidate algorithm, equipped with a faster machine, to
OPT, the optimal objective with a unit speed machine.
Phillips et al. [12] named this methodology resource aug-
mentation analysis, and defined a s-speed ρ-approximation
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algorithm to be one which, using a machine of speed-s, can
achieve an objective function value no more than ρ · OPT.
They also defined the analogous notion of using extra ma-
chines instead of/in addition to extra speed: an m-machine
s-speed ρ-approximation algorithm is one which, using m
speed-s machines can achieve an objective function value
no more than ρ · OPT where OPT is the optimal objective
function value on a single unit speed machine.

In the last decade, resource augmentation has gained
wide acceptance (for a survey of the many resource aug-
mentation results in scheduling see [14]). Often, resource
augmentation analysis tends to identify scheduling algo-
rithms that perform well in practice. Several intuitive expla-
nations for this phenomenon have been proposed. Here we
give a “sensitivity” explanation. For concreteness, we use
the problem 1 | rj |∑Fj , although this motivation applies
to all problems we consider. The proof that it is NP -hard
to approximate 1 | rj | ∑Fj to within a factor of

√
n,

uses a reduction from 3-partition. In the created instances
for 1 | rj | ∑Fj , many very small jobs are released every
roughly B time units, where B is the size of each set in the
3-partition problem. To create an optimal schedule, the in-
tervening time periods must each be packed with 3 jobs that
sum to exactly B. In fact, one actually gets a

√
n gap in the

objective between the optimal schedule and any other fea-
sible schedule. Inspecting the proof, one sees that the job
sizes are very carefully tuned. Informally, if the job sizes
are perturbed even slightly, the hardness proof falls apart.
Perturbing the job sizes is essentially equivalent to perturb-
ing the speed of the machine. If by changing the speed by
a small amount, we can approximate the objective function
well, this is evidence that the hard instances must be tuned
to the particular speed of the machine. So intuitively, the
existence of an s-speed O(1)-approximation algorithm in-
dicates that hard instances need to be carefully tuned and
thus are rare in practice.

For the problem 1 | rj |∑Fj , Phillips et al. [12] give an
O(log n)-machine (1 + ε)-approximation polynomial time
algorithm. While this result might reasonably be viewed as
positive, it is somewhat unsatisfying for two reasons: the
resource augmentation is not constant, and the algorithm is
quite naive as it merely uses one machine for all jobs of
about the same size.

The obvious open question is then whether there is an
O(1)-speed O(1)-approximation algorithm for 1 | rj |∑

Fj . The main reason why this question remained
open for the last decade is that the obvious polynomial-
time computable lower bounds are too weak. For non-
preemptive scheduling problems, the most natural lower
bounds come from preemptive schedules and from linear
relaxations of exact integer programming formulations. It
is known that preemptive schedules on slower processors
can be much better than nonpreemptive schedules on faster

processors, thus making the preemptive schedule an unac-
ceptable choice for a lower bound in any analysis. More
precisely, Phillips et al. [12] show that there exists an input
instance I such that the optimal nonpreemptive flow given
one speed-s machine, where s ≤ n1/4−ε and ε > 0, is poly-
nomially larger than the optimal preemptive flow given one
unit speed machine.

There are several natural integer linear programming for-
mulations for scheduling problems. (See e.g. [15, 8, 2].)
All of the standard formulations have the shortcoming that
the linear relaxation with a slower processor can have much
better objectives than the optimal integer objective with a
faster processor, once again making them useless for a re-
source augmentation analysis. For intuition, consider the
standard strong-time-indexed formulation of 1 | rj |∑Fj .
In this formulation, a variable xjt indicates whether job j
starts running at time t. A straightforward exact integer
linear program would minimize the objective

∑
j∈J wjFj ,

where the flow for job j is Fj =
∑

t(t + pj − rj)xjt. One
would then need to add obvious constraints to ensure that
only one job is run at each time, and that every job is run.
Now consider an instance where big jobs of size L arrive
every 2L time units, and small jobs of size 1 arrive every
other time unit. The optimal integer objective, even with a
Θ(1) speed processor, is Θ(LT ), where T is the duration
of the instance. However, by scheduling a big job to extent
1/2 every L time units and a small job to extent 1/2 dur-
ing each time step leads to a solution to the relaxed linear
program with objective value Θ(T ).

1.1 Our Results

In this paper we give the first O(1)-speed O(1)-
approximations for the non-preemptive scheduling prob-
lems

• 1 | rj |∑wjFj (weighted flow time),

• 1 | rj |∑Tj (total tardiness),

• the broadcast version of 1 | rj |∑wjFj ,

An O(1)-speed, 1 approximation for

• 1 | rj |∑U j (throughput maximization),

and an O(1)-machine, O(1)-speed O(1)-approximation for

• 1 | rj |∑wjTj (weighted tardiness).

In Section 2, we explain our techniques in some detail
for the problem of 1 | rj |∑wjFj , where we finally obtain
a 12-speed 2-approximation algorithm. In Section 3, we
sketch how to extend these techniques to work for the other
problems. In section 4 we show that our approach cannot
give a (2 − ε)-speed, no(1)-approximation for flow time. In
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contrast, we do show that an (1 + ε)-speed, O(1)-machine,
O(1)-approximation algorithm exits. In these results, we
do not try to make the constants as small as possible, rather
our aim is to explain a general technique applicable to many
problems.

All our algorithms round the relaxation of a novel integer
programming formulation that incorporates an additional
lower bound on Fj , which is the main technical contribu-
tion of this paper. The intuition for this additional lower
bound is simple. Consider the case of a job k that the LP
decides to schedule in the interval [t, t + pk). Then, any job
j which is released in the interval [t, t + pk) must start no
earlier than time t + pk, and thus must have a flow Fk of
at least pj + (t + pk − rj). We then add such constraints
to our linear programming formulation. To see the benefit
of this, consider the case when j is a large job and k is a
small job. Suppose that we need to move k to run after j. In
the original time indexed LP, we have nothing to “charge”
this move to, as k has not incurred any flow in the linear
program. But, with the addition of the new lower bound on
Fk, we can now charge the move against this lower bound.
Observe that the resulting integer program is no longer ex-
act, in fact even if we solved the integer program exactly,
we would only have a 2-approximation.

1.2 Related Results

The only min-sum objective which has O(1)-
approximation algorithms in the non-preemptive
case with release dates is weighted completion time
1 | rj | ∑wjCj [13, 1]. The fact that the total com-
pletion time objective

∑
wjCj doesn’t take into account

the release dates is the reason that good approximation
algorithms are possible, and is also the reason that the
objective is of limited practical use.

There has been a long line of work on O(1)-
approximation algorithms for throughput maximization,
and more generally for scheduling with job interval con-
straints [16, 4, 3, 6]. However, these do not imply a 1-
approximation using O(1)-machine with O(1) speed, as
the “natural” LP cannot give such a result. Chuzhoy et
al. [5] consider the problem of minimizing the number of
machines needed to find a feasible schedule for jobs with
release time and deadline constraints. This result can be
viewed as a resource augmentation since it gives an O(m2)-
machine polynomial time algorithm for scheduling a fea-
sible instance of an m-machine problem. Chuzhoy et al.
achieve the result by a clever LP formulation that forbids
certain intervals for some jobs. Our throughput maximiza-
tion algorithm uses a similar idea (in fact the constraints in
our LP are identical to that of [5] for the single machine
case1).

1Chuzhoy et al. [5] do not consider the throughput maximization ver-

At a high level, incorporating the second contribution
term in the LP is related to the idea of “forbidden inter-
vals” used by Chuzhoy et al. However, the problem settings
and metrics are very different. For instance, for flow time
minimization there are no deadlines; a job can be scheduled
anywhere after its release time and hence forbidden inter-
vals cannot be defined.

2 The Algorithm for 1 | rj |
∑

wjFj

In this section, we prove our main theorem.

Theorem 1 There exists a 12-speed (2+ε)-approximate de-
terministic polynomial-time algorithm for 1 | rj | ∑Fj ,
and a 12-speed 4-approximate deterministic polynomial-
time algorithm for 1 | rj |∑wjFj .

We first give a randomized pseudo-polynomial-time 12-
speed 2-approximation algorithm. Then we explain how to
derandomize the algorithm, and create a polynomial-time
algorithm. In converting to a polynomial-time algorithm we
lose the additional approximation factors. We use OPT(I) to
denote the optimal flow time for an instance I . The steps in
our algorithm are:

1. The original instance J is modified to create a new in-
stance Ĵ . In Ĵ the job sizes are rounded down so that
the possible job sizes form a geometric sequence.

2. From Ĵ , a linear program LP is created. An integer so-
lution to LP can be interpreted as an aligned schedule.
An aligned schedule is one in which each job with size
p is started at a time that is an integer multiple of p.
The optimal solution to LP will be a lower bound to
OPT(J).

3. The linear program LP is then solved. An arbitrary
solution is then converted into a canonical solution that
essentially favors jobs that are released earlier.

4. The solution of LP is randomly rounded into a pseudo-
schedule. In a pseudo-schedule each job is run exactly
once, but more than one job may be running at each
time.

5. Using some additional speed, this pseudo-schedule is
converted into a feasible schedule for Ĵ .

6. Finally, again using some additional speed, a feasible
schedule for J is produced.

The correctness should be apparent as we now describe
the steps in greater detail.

sion, but for the single machine case their rounding algorithm can also
be seen to imply an O(1)-machine, 1-approximation, and an O(1)-speed,
1-approximation.
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min
X
j∈J

wjFj

s.t. X
t

xjt = 1 ∀j ∈ J

X
j∈J

X
τ :τ∈(t−pj ,t]

xjτ ≤ 1 ∀t ∈ Z

∀j ∈ J : Fj =
1

2

0
B@

X
t

(t + pj − rj)xjt + pj +
X

k:C−1
k

>C−1
j

X
t∈[rj−pk+1,rj ]

(t + pk − rj)xkt

1
CA

xjt, Fj ≥ 0 ∀j ∈ J, t ∈ Z

(1)

2.1 Rounding Job Sizes

Let β > 1 be an integer to be determined later. In the
instance Ĵ , the size of job j is p̂j = 1

2β�logβ pj�, that is, the
new job size is half the largest power of β not greater than
pj .

Lemma 2 There is an aligned schedule for Ĵ with∑
wjFj ≤ OPT(J).

Proof: Given the optimal weighted flow schedule OPT(J)
on J , we construct an aligned schedule on Ĵ . Consider a
job j scheduled to start at time t in OPT(J). Since p̂j ≤
pj/2, there exists a time s ∈ [t, t + pj/2] that is integer
multiple of p̂j . Job j starts at time s in our aligned schedule.
Since p̂j ≤ pj/2, j completes in this aligned schedule for Ĵ
before j completes in OPT(J).

To simplify the notation from here on, we use pj to de-
note p̂j . We scale the time axis by a factor of 2 and as-
sume that the sizes of jobs pj are integer powers of β, i.e.,
pj ∈ {1, β, β2, . . . , βκ} for some integer κ. Let Ci = {j ∈
J | pj = βi} and call jobs in Ci as class-i jobs. Let C−1

j be
the class of job j. We call an interval [t, t + �), where t is
an integer multiple of �, as an aligned �-interval.

2.2 The Linear Programming Formulation

We consider strong-time-indexed formulations where
there is a variable xjt for each job j and for each time t,
which indicates whether job j starts at time t. Since we
are seeking aligned schedules, there will only exist vari-
ables xjt for times t that are an integer multiple of pj . Re-
call the additional lower bound on the flow time implied by
the observation that if a job k is running at time rj , then
job j must wait until job k completes before job j can be-
gin. That is, the flow time is at least pj plus the time be-
tween rj and when job k finishes, which in our notation is
pj +

∑
k∈J\{j}

∑
t∈[rj−pk+1,rj ]

(t + pk − rj)xkt .
For technical reasons, we will apply this lower bound

only when job j is in a smaller class than job k. We are

now ready to give the linear program (1) that we will use.
We recall that even the integer program does not solve the
scheduling problem exactly.

The assignment constraints in the first two lines guaran-
tee that every job is scheduled, and that at most one job is
run at each time. Let LP ∗ = {x∗

jt, F
∗
j } be the (fractional)

optimum solution to (1).

Lemma 3 The optimal LP objective
∑

j∈J wjF
∗
j ≤

OPT(J) .

Proof: As both
∑

t(t + pj − rj)xjt and pj +∑
k:C−1

k >C−1
j

∑
t∈[rj−pk+1,rj ]

(t+pk−rj)xkt lower bound

the flow time for job j, the average of these two terms lower
bounds the flow time for job j.

We now show that LP ∗ defines a laminar schedule for
each class Ci that favors high weighted jobs. We also can
convert LP ∗ to a canonical schedule that breaks ties in fa-
vor of earlier arriving jobs. This property will be crucial
in producing the pseudo-schedule. We say a job j runs at
time t if x∗

jt is positive. A job starts at the earliest time
that it runs, and completes at the last time that it runs. The
lifetime of a job is the interval between when it starts and
when it completes. Let X(t, j) =

∑
s≤t xjs be the extent

to which LP ∗ has processed job j up until time t. A sched-
ule is canonical if for any two jobs i and j, with pi = pj ,
wi = wj and ri < rj (or ri = rj and i < j), job j does not
run in LP ∗ earlier than the completion time for job i. By
making local exchanges, it is very easy to modify LP ∗ to
be canonical in polynomial time, without altering the value
of the objective. We introduce a new relation �i on jobs in
class Ci, defined as follows: j �i k if and only if

(1) wj < wk, or (2) (wk = wj) ∧ (rk < rj), or

(3) (wk = wj) ∧ (rk = rj) ∧ (k ≤ j) .

It is easily seen that �i is a total order. The next two easy
lemmas (proofs omitted) describe structure in the ordering
of the jobs. Let � denote the union of the orders �i for all
job classes.
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Lemma 4 In LP ∗, for any two jobs j, k ∈ Ci that are in
the same class, if j � k, then there can not exist a time τ
such that 0 < X(τ, k) < 1 and j runs at time τ .

This implies that

Lemma 5 (Laminar schedule) In LP ∗, consider two dis-
tinct jobs j, k ∈ Ci in the same class. Assume there exists a
time τ1 such that 0 < X(τ1, j) < 1 and job k runs at time
τ1. Then the earliest time τ2 ≥ τ1 that job j can be run next
is the completion time for job k.

2.3 Creating the Pseudo-Schedule

We construct the pseudo-schedule by applying α-
rounding to each class separately. In α-rounding we pick
an offset α ∈ [0, 1) uniformly at random, then starting from
time 0, we schedule a job in each class whenever the LP
has first scheduled a cumulative α, 1 + α, 2 + α, . . . units
of jobs. Formally, to obtain the schedule for class Ci, let
X(t) =

∑
j∈Ci

∑
s≤t xjs be the extent to which LP ∗ has

processed jobs in Ci up until time t. For each non-negative
integer h, let th be the time when X(t) first exceeds h + α.
We schedule a class-i job j at time th. The job j is chosen
as follows: Let γ = h+α−X(th−1). Consider all the jobs
j′ ∈ Ci such that xj′th

> 0 and order them as j1, j2, . . . , jq

in the order determined by the laminar schedule condition
at time th (which is descending � order). The job j is the
job jk in this order such that xj1th

+. . .+xjkth
first exceeds

γ. In our procedure above, we use the same α for each class
(note that α is still uniformly distributed in [0, 1) for each
class). The next two lemmas state useful properties of this
pseudo-schedule.

Lemma 6 The pseudo-schedule output by the above round-
ing procedure satisfies the following properties:

1. Each job j ∈ J is scheduled exactly once (obviously it
is scheduled in an aligned pj-interval).

2. No two jobs from the same class Ci are scheduled in
the same aligned βi-interval.

3. Consider any aligned βi-interval for 0 ≤ i ≤ κ. The
total size of all the jobs in classes C0, . . . , Ci scheduled

in this interval is at most βi + βi+1−1
β−1 < βi(2+ 1

β−1 ).

Proof: The first property follows directly from the laminar
property of the schedule of jobs within a class and the nature
of α-rounding. Assume to reach a contradiction that some
job j ∈ Ci was scheduled at distinct times t1 and t2 with
t1 < t2, and consider the time interval I between when j
is run by LP ∗ at time t1 and at time t2. Then by Lemma
4 and Lemma 5, any job k ∈ Ci run by LP ∗ during the
time interval I must satisfy j � k, and k’s lifetime must

be contained in the interval I . Thus the extent to which
LP ∗ runs jobs in Ci − {j} during I is an integer. Since
the extent to which LP ∗ runs job in j during I is fractional,
this contradicts the assumption that LP ∗ has processed jobs
to an extent of some integer plus α during both the period
when j was running at time t1 and the period when j was
running at time t2.

The second property follows from the “volume” con-
straint that states that the sum of the fractions of all jobs
running at any time t is upper bounded by 1.

For the third property, consider any aligned βi-interval
I . Let δi′ be the fractional extent to which jobs in Ci′ are
scheduled in I for 0 ≤ i′ ≤ i. Summing the volume con-
straints for all these jobs, we get that

∑i
i′=0 βi′δi′ ≤ βi.

Furthermore at most �δi′� < δi′ + 1 jobs from Ci′ can be
scheduled in I in the pseudo-schedule. Thus the total vol-
ume of jobs in C0, . . . , Ci that can be scheduled in I is at
most

∑i
i′=0 βi′�δi′� ≤ ∑i

i′=0 βi′(δi′ + 1) ≤ βi + (β0 +
β1 + · · · + βi) = βi + βi+1−1

β−1 .

The flow time of jobs in the pseudo-schedule can be eas-
ily related to their LP contribution.

Lemma 7 For job j ∈ J , the expected flow time of j in the
pseudo-schedule is

∑
t(t + pj − rj)x∗

jt.

Proof: Consider a job j and time t. As α varies from 0 to
1, there are exactly x∗

jt fraction of choices of α for which
job j is scheduled at time t in the pseudo-schedule. Since α
is chosen uniformly at random, the expected flow time of j
is thus

∑
t(t + pj − rj)x∗

jt.

2.4 Converting the Pseudo-Schedule into
a Feasible Schedule

We use a factor (2+ 1
β−1 ) speedup to convert the pseudo-

schedule into a feasible schedule that schedules at most one
job at any single time. Furthermore, we argue that the
weighted flow time of the final schedule for J is at most
twice the value of the LP relaxation, and hence, at most
2 · LP ∗. Notice that Lemma 7 only uses the first lower
bound on flow time. This conversion is precisely where we
use our second lower bound on flow time in the LP formu-
lation.

Consider the pseudo-schedule produced above. Call a
job maximal if it does not overlap with any other job of
larger size. In Figure 1, for example, the job in class-4 is
maximal. We associate a natural β-ary tree with any max-
imal job and the jobs overlapping with it. Recall that the
pseudo-schedule schedules any class-i job in an aligned βi-
interval. Thus, the tree-nodes in level i correspond to the
aligned βi-intervals overlapping with the maximal job.

We give a procedure that uses a speed up factor of
(2 + 1/(β − 1)), and given a tree corresponding to a max-
imal job, it feasibly schedules all the jobs in that tree in the
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3

4

2

1

0

Figure 1. Example of a pseudo-schedule output by the rounding procedure for β = 2 and its corre-
sponding β-ary tree. The numbers indicate the classes and shaded boxes/tree-nodes correspond to
jobs j scheduled in aligned pj-intervals. The total size of shaded nodes in any sub-tree (containing
a node and all its descendants) is at most (2 + 1

β−1 ) times the size of the root of the sub-tree (see
Lemma 6-3).

late jobsearly jobs

3

4

2

1

0

p1

p2 p3 = k p3 = k

p1

p2

Figure 2. Partition of jobs into early and late jobs.

βi-interval corresponding to the root. The schedule is fea-
sible in the sense that each job is scheduled after its release
time, and moreover, the flow time of each job can be re-
lated to its LP contribution. Since all the maximal jobs are
non-overlapping, applying the above procedure to each tree
produces a schedule for entire instance.

Consider a maximal job j in class-i scheduled in an
aligned βi-interval I = [τ, τ + βi). Let JI denote the set
of jobs scheduled in the interval I , and let TI denote the
β-ary tree associated with the pseudo-schedule in I . We
partition the jobs JI \ {j} into two sets early and late. The
early jobs are the jobs {k ∈ JI \ {j} | rk < τ} that are
released before time τ . These jobs can be scheduled any-
where in I . Note that even though an early job k is sched-
uled during the interval I , it does not “pay” the “penalty
term” (τ + pj − rk)x∗

jτ in its flow F ∗
k . The late jobs are the

jobs {k ∈ JI \ {j} | τ ≤ rk < τ + βi} that are released in
I . A late job k can be scheduled no earlier than its release
time rk. Note that a late job k “pays” the “penalty term”
(τ + pj − rk)x∗

jτ in its flow F ∗
k .

We now describe our procedure FIT, to convert the

pseudo-schedule into a feasible schedule:

Algorithm FIT: We first shrink all jobs in JI by a factor
of (2 + 1

β−1 ). We then compute the POSTORDER2 traver-
sal of the β-ary tree TI . We schedule all early jobs in the
order they appear in POSTORDER(TI). The maximal job
j is scheduled after the early jobs. We then compute the
PREORDER3 traversal of TI . We schedule all late jobs in the
order they appear in PREORDER(TI). The late jobs are then
“right-justified”, or shifted as far right as possible so that
the last late job completes at the end-point of interval I .

The following lemma shows that the schedule computed
by the FIT procedure is feasible.

2Recall that the POSTORDER traversal of a single-node tree v is defined
as POSTORDER(v) := v and that of a β-ary tree T with root r and left-to-
right sub-trees T1, . . . , Tβ is recursively defined as POSTORDER(T ) :=
POSTORDER(T1), . . . , POSTORDER(Tβ), r.

3Recall that the PREORDER traversal of a single-node tree v is defined
as PREORDER(v) := v and that of a β-ary tree T with root r and left-
to-right sub-trees T1, . . . , Tβ is recursively defined as PREORDER(T ) :=
r, PREORDER(T1), . . . , PREORDER(Tβ).
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Lemma 8 The schedule output by the FIT procedure satis-
fies the following properties.

1. The jobs in JI are scheduled in the interval I such that
no two jobs overlap.

2. Each early job in JI completes no later than its com-
pletion time in the pseudo-schedule.

3. Each late job in JI starts no earlier than its start time
in the pseudo-schedule, and it completes within I .

Proof: The first property follows from the observations that
the total size of all the jobs in JI is at most βi(2 + 1

β−1 ),
the length of the interval I is βi, and we shrink all the jobs
by a factor of (2 + 1

β−1 ).
We now prove the second property. Consider an early job

k ∈ JI . Let its completion time in the pseudo-schedule be
τ +τk. It is sufficient to argue that the total size of early jobs
(including k) that come no later than k in POSTORDER(TI)
is at most τk(2 + 1

β−1 ) before shrinking. To this end, con-
sider the prefix of POSTORDER(TI) up to node k. (See Fig-
ure 2 for an example, here k is the second early job in class
1). Let T1, . . . , Tq be the disjoint subtrees of TI that are
traversed in POSTORDER(TI) up to node k. Note that the
root of Tq is k. Now let p1, . . . , pq be the (disjoint) inter-
vals occupied by the roots of T1, . . . , Tq. (Again see Figure
2 which shows the intervals p1, p2 and p3, and the corre-
sponding subtrees on the right). Note that the total size of
p1, . . . , pq is precisely τk. Furthermore, from Lemma 6-3,
the total size of jobs in JI that are contained in intervals
p1, . . . , pq is at most (2 + 1

β−1 ) times the total size of these
intervals. Thus, in particular, the total size of early jobs in
these intervals is at most τk(2 + 1

β−1 ) and the property fol-
lows.

The proof of the third property follows from the same
argument, now applied to PREORDER(TI).

The next lemma shows an upper bound on the expected
flow time of the final schedule.

Lemma 9 The expected weighted flow time of the final
schedule for Ĵ output by the FIT procedure is at most
2 ·∑j∈Ĵ wjF

∗
j ≤ 2 · OPT(Ĵ).

Proof: It is sufficient to argue that the expected flow time
of a job j is at most

2 · F ∗
j =

(∑
t

(t + pj − rj)x∗
jt

)

+


pj +

∑
k:C−1

k >C−1
j

∑
t∈[rj−pk+1,rj ]

(t + pk − rj)x∗
kt


 .

Let Fj denote the random variable whose value is the
flow time of j in the final schedule for Ĵ . Let F ′

j denote

the random variable whose value is the flow time of j in the
pseudo-schedule. Let Ej be the event that the job j is a late
job in the pseudo-schedule. We now observe that

E[Fj ] = E[F ′
j ] + E[Fj − F ′

j ]

=
X

t

(t + pj − rj)x
∗
jt + E[Fj − F ′

j ]

=
X

t

(t + pj − rj)x
∗
jt + Pr[Ej ] · E[Fj − F ′

j | Ej ]

+Pr[Ej ] · E[Fj − F ′
j | Ej ]

≤
X

t

(t + pj − rj)x
∗
jt + Pr[Ej ] · E[Fj − F ′

j | Ej ].

The first equality follows from Lemma 7, and the in-
equality follows from the fact that E[Fj − F ′

j | Ej ] ≤ 0
which in turn follows from Lemma 8 parts 1 and 2. To
complete the proof, we now argue that

Pr[Ej ] · E[Fj − F ′
j | Ej ] ≤ Pr[Ej ] · E[Fj | Ej ]

≤ pj +
∑

k:C−1
k >C−1

j

∑
t∈[rj−pk+1,rj ]

(t + pk − rj)x∗
kt.

If j is a late job, let k be the random variable denot-
ing the maximal job that overlaps with j in the pseudo-
schedule and let τ denote the random variable whose value
is the start time of k in the pseudo-schedule. Since j is
late for k, it must have been released during [τ, τ + pk]
and also scheduled at some time t during [rj , τ + pk] by
the pseudo-schedule. Thus the probability that j is late for
some job k is at most

∑
τ :τ∈[rj−pk+1,rj ]

x∗
kτ . Moreover,

as j is scheduled at some t ∈ [rj , τ + pk] by the pseudo-
schedule, and it must be scheduled no later than τ + pkby
FIT, its flow time is at most τ + pk − rj . Thus the expected
flow time of j due to k being the maximal job is at most∑

τ :τ∈[rj−pk+1,rj ]
(τ + pk − rj)x∗

jτ , which is exactly twice
the contribution (corresponding to the second term) of job
k to the flow time of j in the LP formulation.

The aligned schedule that we constructed for Ĵ is a fea-
sible schedule for J with a 2β faster processor. The FIT

procedure required a speed-up of (2+ 1
β−1 ). Thus the over-

all speedup factor is 2β(2 + 1
β−1 ) that takes its minimum

value 12 when β = 2. Combining the results of Sections 2.1
through 2.4, and as the optimum flow time for J is at least
as large as the flow time for the optimum aligned schedule
for Ĵ , we obtain the following result.

Lemma 10 There is a randomized pseudo-polynomial-time
12-speed 2-approximation algorithm for 1 | rj |∑wjFj .

In the remaining subsections, we show how to derandomize
the algorithm and then make it polynomial time.
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2.5 Derandomization

Consider a particular aligned βi-interval I . As we vary
α from 0 to 1, there will be at most n changes in the
class-i jobs scheduled during I . Further it is easy to effi-
ciently compute the α’s where the class-i job scheduled at
I changes. Let m be the number of variables in our linear
program. Thus we can compute at most nm values where
the pseudo-schedule produced by our α rounding changes.
By exhaustively trying one α from each of the resulting in-
tervals, we can obtain a deterministic algorithm.

2.6 Making the Algorithm Polynomial
Time

The linear program LP , as given, is not polynomial-
sized. We give two conversions into a polynomial time
algorithm, one for the unweighted case, and one for the
weighted case.

We first show that, for the unweighted case, we can solve
a polynomial-size linear program, while only increasing the
total flow by a 1 + o(1) factor. Let pmax = maxj pj .
Then each job j clearly runs somewhere in the interval
Lj = [rj , rj + npmax]. Let L = ∪jLj be the set of all
times a job might possibly run in any optimal schedule.
Clearly the length of L is at most |L| ≤ n2pmax. Now de-
fine psmall = pmax/n3 and round all jobs processing times
up to be integer multiples of psmall. Consider what this does
to the optimal schedule. Each job’s completion time is in-
creased by at most npsmall and hence the total flow is in-
creased by n2psmall ≤ pmax/n ≤ FOPT/n. Similarly, we
can round up each release date to be a multiple of psmall,
with the same increase in total flow. The resulting instance
now has polynomial size, since the range of processing time
is polynomial, as is the total set of times in the set L, and
the flow has increased by a 1 + o(1) factor.

We now sketch how to obtain a polynomial-time algo-
rithm for the problem 1 | rj | ∑wjFj , by approximating
our pseudo-polynomial sized LP by an LP of polynomial
size.

We begin by replacing sequences of variables of the form
xjs, xj(s+1), xj(s+2), . . . xjt by one variable of the form
xjs(t+pj) if nothing “interesting” happens during the time
interval [s, t]. Intuitively, since nothing interesting happens
during [s, t], we will only lose a factor of 2 in the objective
by assuming that each variable xju, for u ∈ [s, t − pj ], is
equal to xjst · pj/(t − s), that is the start time of job j is
spread evenly throughout the aligned pj-intervals in [s, t].

We now define what the interesting times are inductively
from the shortest possible job sizes to the longest possible
job sizes. In our LP there will be one variable of the form
xjst for each job j ∈ Ci for each aligned βi-interval that
contains an interesting time, and for each maximal sequence

of aligned βi-intervals that do not contain any interesting
time. Assume that we are currently considering class-i jobs
(and have already finished handling the jobs of class < i).
Let r̂j be the smallest integer multiple of pj that is at least
rj . An aligned βi-interval I of the form [r̂j +xpj , r̂j +(x+
1)pj ] for some job j contains an interesting time if one of
the following holds:

• x is an integer power of 2, or

• I contains the release time of a job, or

• there is a variable of the form xkab for a job k ∈ Cl for
l < i where either a or b is properly contained in I .

Call a variable of the form xjst where [s, t] is an aligned pj-
interval a regular variable, otherwise call xjst a smeared
variable. Similarly define the time intervals [s, t] to be reg-
ular or smeared. Finally if there is a smeared variable of the
form xjst for a job in class Ci where [s, t] is properly con-
tained in a smeared interval [s′, t′] for in a class i′ < i, then
break the smeared interval [s′, t′] into three smeared inter-
vals by cutting at s and t. As a result of this construction,
smeared intervals are either identical or disjoint. Further, it
is easy to verify that changing where a job j is run within
a smeared interval [s, t] for a smeared variable xjst only
changes the flow for that job by at most a factor of 2.

We claim that this leaves only a polynomial number
of variables of the form xjst. The objective is

∑
wjFj .

We now need to add constraints that each job is run. Let
u1, . . . , um be a collection of times such that there is ex-
actly one uk for each maximal time interval where no in-
terval [s, t] for a variable xjst starts or finishes. We now
add a constraint for each uk that expresses that the sum of
the (pj/(t − s))xjst, for [s, t] that contain uk, is at most 1.
Finally we add the constraint

Fj ≥ 1
2


∑

rj≤s

∑
s+pj≤t

xjst(t − rj) + pj+

∑
k:C−1

k >C−1
j

∑
s∈[rj−pk+1,rj ]

(s + pk − rj)xks(s+pk)




Note that no smeared interval can contain the time rj , by
the definition of a regular interval.

We need to argue that for every aligned schedule S on Ĵ
that there is a feasible solution for this LP where the value
of the objective is at most a constant factor worse than the
weighted flow for S. If S schedules job j to start at time u
and xju(u+pj) is a regular variable, then we set xju(u+pj) to
1. Otherwise say u is part of a smeared interval [s, t] corre-
sponding to the variable xjst. Then we increment xjst by 1.
Feasibility follows from the fact that smeared intervals are
identical or disjoint. The fact that the objective for the LP
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is not more than a constant factor higher than the weighted
flow for S follows from the fact that we cut at times where
the flow for some job crossed an integer power of 2.

We then solve this polynomially sized LP. Then by local
exchanges we can modify our LP solution so that it gives a
laminar schedule for each class (say by always giving pref-
erence to heavier jobs, breaking ties in favor of earlier re-
leased jobs). We then use an α rounding to get a pseudo-
schedule and proceed as before.

This completes the proof of Theorem 1.

3 Extensions to Other Metrics

In this section, we explain how to extend the techniques
of the previous section to other objective functions. As
many of the details are similar to those for flow time, we
only sketch the results, emphasizing the differences be-
tween the new metric and flow time.

3.1 Weighted Tardiness

We can extend our results to the problem of min-
imizing weighted tardiness. Recall that the tardiness
of job j is defined by Tj = max (Cj − dj , 0) =
max (Fj − (dj − rj), 0). Thus, to extend our results, we
need to overcome two technical difficulties. First, we must
deal with the fact that we are subtracting (dj − rj) from the
objective, and second we must deal with taking the maxi-
mum with zero. We now sketch how to modify the results
of Section 2.

The linear programming formulation will still have vari-
ables xjt with the same first two assignment constraints.
Instead of the constraint on Fj , we will have the following
constraints. Let ujt be the tardiness that job j will incur if
started at time t and let yj be the tardiness that j must nec-
essarily incur because of other higher class jobs k whose
execution overlaps with the release time rj of j, i.e., jobs
k with start times t such that t ≤ rj ≤ t + pk and such
that pk > pj . So yj =

∑
k∈J:pk>pj

∑
t∈(rj−pk,rj ]

max(t+
pk + pj − dj , 0)xkt. We then have the objective function∑

j wj(yj+
∑

t ujtxjt). This objective is now at most twice
the optimal total weighted tardiness.

We now give two different approaches, depending on
whether we are considering weighted tardiness, or the un-
weighted case when all weights are one.

For unweighted tardiness, the schedule still has a struc-
tural property, since within a class, the jobs will run in ear-
liest deadline first (EDF) order. The pseudo-schedule satis-
fies the properties of Lemma 6, and expected total tardiness
of job j is at most

∑
t ujtx

∗
jt. We then perform the same

conversion to a schedule, the salient point being that each
job either completes earlier than its completion time in the
pseudoschedule, or the increase in its completion time can

be charged against the new lower bound that we added to
the linear program. We then prove the analog of Lemma 9,
and see that we have 12-speed 2-approximation algorithm.

For weighted tardiness, we do not have the EDF order-
ing property. Thus, we must divide the jobs of each class
into two sets, an on-time set and a late set. A job is put
into the on-time set if more than half of its fractional weight
is scheduled before its deadline and into the late set other-
wise. We will then use two machines, one for the late jobs
and one for the on-time jobs. For the late jobs in a class,
you should always run the highest weighted job first, there-
fore we establish a “laminar” property. The on-time jobs do
not contribute to the objective function, thus we can estab-
lish the laminar property by swapping jobs. We then con-
tinue as in the unweighted case, converting to a scheduling,
again observing that each job either completes earlier than
its completion time in the pseudoschedule, or the increase
in its completion time can be charged against the new lower
bound that we added to the linear program. We then prove
the analog of Lemma 9 and see that we have a 2-machine
24-speed 4-approximation algorithm.

3.2 Unweighted Throughput Maximiza-
tion

In the unweighted throughput maximization problem,
each job has a release time and a deadline and the goal is to
maximize the number of jobs completed by their deadlines.
We add a penalty constraint to the LP formulation that if
placing a job j at time t completely subsumes the interval
[rj′ , dj′ ] of some job j′ then xjt = 0. It is easily seen that
restricted to jobs in a single class, the LP solution forms a
laminar schedule. However we cannot apply the α rounding
as previously. The problem is that jobs may not necessarily
be scheduled to an extent of 1 by the LP. Hence it could be
that some job j of class i is scheduled to a non-zero extent
at times t and t′, but the cumulative amount of class-i jobs
(other than j) scheduled between t and t′ is non-integral.
This may cause the α rounding to schedule the same job
many times.

We use the following observation to get around this prob-
lem. Suppose j and j′ are jobs in the same class such that j′

lies in the subtree of j in the laminar tree (i.e., j is executed
both before and after j′), then j can be executed wherever
j′ is. Thus, we can arbitrarily replace j′ by j in the LP so-
lution as long as the total amount of j scheduled does not
exceed 1. Applying this idea repeatedly, the solution can
be reduced to the form such that ignoring the leaves of the
laminar tree, the cumulative amount of jobs in each subtree
is integral. We then apply α rounding to these jobs. Since
the jobs corresponding to leaves are scheduled at exactly
one location by the LP, we can use a separate α rounding
for these jobs. Jobs of the same class may now be placed
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at the same location, however this can be handled using an-
other speed up factor of two. Thus we obtain a 24-speed
1-approximation algorithm for maximizing throughput.

3.3 Broadcast Scheduling

We now explain how to extend our technique to broad-
cast scheduling. The setting for broadcast scheduling is a
collection of pages with sizes. Requests from clients for
these pages arrive over time. A request for a page is satisfied
by the first broadcast of this page that starts after this request
arrives. One can express broadcast scheduling as a strong-
time-indexed integer linear program as in [10]. There will
be a variable xjst that indicates that broadcasts for page j
start at time s, and at time t, but at no time in between. We
augment this linear program with the same additional lower
bound for the flow as we did previously, and then proceed
as before. The only issue that arises is in the FIT procedure.
The issue is that some jobs may be both early and late, and
thus might have to be scheduled at both the start and the
end of the interval. By doubling the speed, thus getting a
24-speed algorithm, we can still obtain a feasible schedule.

4 Other Flow Time Results and Lower
Bounds

In this section, we show limits on rounding our linear
program, and also show that if we allow multiple machines,
we can get a stronger result.

A natural open question raised by our results so far
is whether (1 + ε)-speed O(1)-approximation polynomial-
time algorithms exist for these problems. We show that such
a result can not be obtained from our linear programming
formulation, and at least 2-speed is needed for rounding the
fractional solution. In particular, even for the unweighted
case, we show that

Theorem 11 There are job sequences for which the total
flow time of any non-preemptive schedule on a (2−ε)-speed
machine is polynomially larger (in the number of jobs) than
the value of the optimal fractional solution LP ∗ (on a speed
1 machine).

Proof: Without loss of generality we assume that ε is small
enough that k = 1/ε is an even integer. Consider a job
sequence where all jobs have weight 1. Let x be the integer
�2(ln 2)/ε�, and let L = kx+1. There is one big job of
size L released at time 0. There are x batches of medium
jobs, each job of size 1. The i-th batch, for i = 1, . . . , x,
consists of L(1− ε(1− ε/2)i) jobs that are released during
[(i − 1)L2, (i − 1)L2 + L] at equally spaced time units.
Finally, there are x batches of tiny jobs, each job of size
1/L5. For i = 1, . . . , x−1, the i-th batch is released during

[(i−1)L2+L, iL2] such that one job is released every 1/L3

units of time. The last batch of tiny jobs is released during
[(x−1)L2, L3], each job released every 1/L3 units of time.

Note that for each interval [(i − 1)L2, (i − 1)L2 + L],
the amount of work of medium jobs released in the inter-
val is (1 − ε(1 − ε/2)i)L. For each such interval, the LP
solution places a ε(1 − ε/2)i fraction of the big job at the
beginning of this interval, and places 1 − ε(1 − ε/2)i units
of medium jobs in first come first served order every 1 time
unit. Finally each tiny job is scheduled to an extent of 1 im-
mediately upon release. It can be easily verified that each
job is scheduled to an extent of at least 1 and hence this
is a feasible LP solution. A simple calculation shows that
the value of LP ∗ is at most O(L2) (the total flow time of
big job is

∑
i ε(1 − ε/2)i((i − 1)L2 + L) = O(L2), sim-

ilarly the penalty terms in the i-th batch contribute about
ε(1− ε/2)iL2/2 and hence the total contribution is O(L2),
the flow time of medium jobs is O(L2) and the tiny jobs
is O(L)). We now claim that any non-preemptive schedule
on a (2 − ε)-speed machine has flow time at least Ω(L3).
Clearly this is true if the big job is placed after L3, and
hence we assume that it is placed earlier. Another observa-
tion is that even if a single medium job (or even one time
unit of big job) is placed during the intervals where tiny
jobs arrive, then at least Ω(L3) tiny jobs incur a flow time
of at least 1/2. This implies that the big job must be placed
entirely in the interval where medium jobs arrive. However,
since the speed is only (2−ε), even if the large job is placed
during the x-th batch (where the fewest number of medium
jobs arrive), at least L + L(1 − ε(1 − ε/2)x) − L(2 − ε) ≈
(ε/2)L = Ω(L) work cannot be completed within this batch
and hence this will displace Ω(L) medium jobs, all of which
need to move a distance of at least Ω(L2) to avoid overlap
with tiny jobs. Hence the total flow time of any schedule is
Ω(L3). As the number of jobs in the instance is n = O(L6),
this implies an integrality gap of Ω(n1/6).

In contrast to the previous result, it is possible to obtain
a positive result with speed 1 + ε processors using resource
augmentation on the number of processors. More precisely,
it is possible to obtain an O(− log ε

ε )-machine 1+O(ε)-speed
O(1)-approximation polynomial-time algorithm. The jobs
sizes are initially rounded down to the nearest integer power
of 1 + ε. We formulate a strong-time-indexed integer lin-
ear program. This integer linear program is not restricted
to aligned schedules, but does incorporate the new lower
bound on the flow of a job. The relaxed linear program is
then solved. The classes of jobs are partitioned between
each of the m processors. Jobs in class Ci are assigned
to processor i mod m. If m ≥ (log 1

ε )/ log(1 + ε) =
Θ(−(log ε)/ε) then the possible jobs sizes assigned to any
one processor form a geometric sequence with ratio 1/ε.
The pseudo-schedule is then created as before. The to-
tal size of the shorter jobs that overlap a bigger job in the
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pseudo-schedule can not be must longer than the size of the
bigger job. So 1 + Θ(ε)-speed resource augmentation is
enough to change the pseudo-schedule into a feasible sched-
ule.

5 Conclusions and Open Problems

We have given the first O(1)-speed O(1)-approximation
algorithms for several fundamental problems. We believe
that the techniques are general and should apply to other
minsum scheduling objectives. We also believe that the con-
stants can be made smaller, as we did not try to optimize the
constants.

It would be very interesting to see if these techniques can
be applied to multiple machines settings. A first step could
be to obtain results for (the seemingly easier) throughput
maximization on multiple machines. Note that since all the
jobs need not be scheduled by the optimum, it is not clear
how to extend the ideas of Chuzhoy et al. [5].
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