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Abstract. In the incremental knapsack problem (IK), we are given a
knapsack whose capacity grows weakly as a function of time. There is
a time horizon of T periods and the capacity of the knapsack is Bt in
period t for t = 1, . . . , T . We are also given a set S of N items to be
placed in the knapsack. Item i has a value of vi and a weight of wi that
is independent of the time period. At any time period t, the sum of the
weights of the items in the knapsack cannot exceed the knapsack capac-
ity Bt. Moreover, once an item is placed in the knapsack, it cannot be
removed from the knapsack at a later time period. We seek to maximize
the sum of (discounted) knapsack values over time subject to the capac-
ity constraints. We first give a constant factor approximation algorithm
for IK, under mild restrictions on the growth rate of Bt (the constant
factor depends on the growth rate). We then give a PTAS for IIK, the
special case of IK with no discounting, when T = O(

√
logN).
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1 Introduction

Traditional optimization problems often deal with a setting where the input
parameters to the optimization problem are static. However, the static solution
that we obtain may be inadequate for a system whose parameters—the inputs
to our optimization problem—change over time. We consider one special case
of this dynamic environment in which we have a maximization problem subject
to certain capacity constraints. All of the inputs to the optimization problem
are static except the capacities, which increase weakly over time. The goal is
to find a sequence of compatible feasible solutions over time that maximizes a
certain aggregate objective function. We will call such an optimization problem
an incremental optimization problem. Unlike online and stochastic optimization
problems, there is no uncertainty in the input parameters for the optimization.

In this paper we consider the incremental knapsack problem, which is a par-
ticular case of the incremental optimization problem. In the discrete incremental
knapsack problem, we are given a knapsack whose capacity grows as a function
of time. There is a time horizon of T periods and the capacity of the knapsack
is Bt in period t for t = 1, . . . , T . We are also given a set S of N items to be
placed in the knapsack. Item i has a weight wi > 0 that is independent of the
time period, and a value at time t of the form vi∆t where vi > 0 and ∆t > 0
(this particular functional form will allow us to model discounting). At any time
period t, the sum of the weights of the items in the knapsack cannot exceed
the knapsack capacity Bt. Moreover, once an item is placed in the knapsack, it
cannot be removed from the knapsack at a later time period. We are interested
in maximizing the sum over the T time periods of the total value of the knapsack
in each time period.

To put it formally, for X ⊆ S define V (X) to be
∑
i∈X vi and W (X)

to be
∑
i∈X wi. Then we are interested in finding a feasible solution F =

{S1, S2, . . . , ST } and S1 ⊆ S2 . . . , ST ⊆ S, where St represents the subset of

items in the knapsack in period t, that maximizes the quantity
∑T
t=1 V (St)∆t

subject to the constraints W (St) ≤ Bt for t = 1, . . . , T . The special case where
∆t = 1 for all t will be called time-invariant. For brevity, in what follows we will
denote the incremental knapsack problem as IK, and its time-invariant version
as IIK.

One can also consider a continuous version of the problem. Here we assume
that we have a continuous parameter time parameter s ∈ [0, S] for some S > 0.
We are given a knapsack capacity function B(s), weakly increasing with respect
to s, and a set K of N items to be placed in the knapsack. Item i has a value
of vi and a weight of wi, both time independent. At any time s, the sum of the
weights of the items in the knapsack cannot exceed the knapsack capacity B(s).
Moreover, once an item is placed in the knapsack, it cannot be removed from
the knapsack at a later time. We are interested in finding a feasible solution

F = {K(s)}s∈[0,S] that maximizes the quantity
∫ S
s=1

V (K(s))ds, where V (K(s))
is the total value of the items found in the knapsack at time s, under F . This
problem can be approximated by partitioning [0, S] into a finite set of intervals
of length ∆t, t = 1, . . . , T . Under mild assumptions on the capacity function
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B(s), the approximation provided by this discretization can be made arbitrarily
tight.

As the single period knapsack problem is already known to be NP-hard, we
consider polynomial time approximation algorithms for IK. For a maximization
problem, a k-approximation algorithm (for some k ≤ 1) is a polynomial time
algorithm that guarantees, for all instances of the problem, a solution whose
value is within k times the value of an optimal solution. Moreover, we say that the
maximization problem has a (fully) polynomial time approximation scheme, or
a PTAS (FPTAS respectively), if for every 0 ≤ ε < 1, the algorithm guarantees,
for all instances of the problem, a solution whose value is within 1− ε times the
value of an optimal solution. Moreover, the algorithm runs in polynomial time
in the size of the inputs (and ε) for every fixed ε.

1.1 Related Work

The special case of IIK where vi = wi for all i has been examined in the liter-
ature. This problem is known as the incremental subset sum problem. Hartline
[8] gave a 1/2-approximation algorithm for the incremental subset sum problem
via dynamic programming. Sharp [9] gave a PTAS for the incremental subset
sum problem that applies when T is a constant. This algorithm uses a variant of
the dynamic programming algorithm for the standard (i.e., 1-period) knapsack
problem, and it runs in time O((V Nε )T ), where V = maxi{vi}.

Further, it can be shown that the incremental subset sum is strongly NP-hard
by a reduction from the 3-partition problem (proof provided in the Appendix).

Proposition 1. The incremental subset sum problem is strongly NP hard.

Consequently, the classic result of Garey and Johnson [6] rules out an FPTAS
for the incremental subset sum problem (and hence for IIK) both unless P =
NP .

A well-studied problem related to IIK is the generalized assignment problem
(GAP). In the generalized assignment problem, we are given a set of m knapsacks
and N items, with knapsack j having a capacity bj . Further, placing item i
in knapsack j consumes wij units of capacity of knapsack j, and generates a
value of vij . Notice that a variant of IIK where one is only allowed to pack, at
each time t, an additional Bt+1 − Bt units, is a special case of the generalized
assignment problem: Here, we would set bt = Bt+1 − Bt and wit = wi for
all i and vit = (T − t + 1)vi for all i and t. However, IIK is not a special
case of GAP because in IIK we are allowed to pack more than Bt+1 − Bt
units at time t, assuming the knapsack has spare capacity from earlier time
periods. Approximation algorithms for the generalized assignment problem have
been studied by [5],[10]. The best known constant factor algorithm is due to
Fleischer et. al. [5] with an approximation ratio of (1 − 1/e − ε). They also
showed that no approximation algorithm can beat the lower bound of (1− 1/e)
unlessNP ⊆ DTIME(nO(log log(n)). Unfortunately, these results are not directly
applicable to IIK, because the knapsack capacities cannot be decomposed over
time.
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A special case of the generalized assignment problem where the items’ weight
and value are identical across knapsacks is known as the multiple knapsack
problem (MKP); for this problem, Chekuri and Khanna [4] developed a PTAS.
Moreover, they also showed that two mild generalization of the MKP— wij ∈
{wi1, wi2} and vij = vi or vij ∈ {vi1, vi2} and wij = wi— are APX hard, thus
ruling out a PTAS for these generalizations, assuming P 6= NP . Again, neither
the PTAS nor their hardness results are directly applicable to the IIK.

1.2 Our Contributions

Our first result is a constant-factor approximation algorithm for IK under some
mild assumptions on the growth rate of Bt. This algorithm rounds the solution
to a polynomial-size linear programming relaxation to the problem, specifically,
a disjunctive formulation (background and details, below). It is worth noting
that, as is shown in Section 2, a standard formulation for the time-invariant
incremental knapsack problem has an unbounded integrality gap—this is unlike
the case for the standard knapsack problem. To the best of our knowledge,
no constant factor approximation algorithm is known for IK before this work.
The previous best algorithm is a general purpose approximation algorithm for
incremental optimization problems due to Hartline and Sharp [7], which yield a
O(1/ log T ) approximation ratio.

Our second result provides a PTAS for IIK and when T = O(
√

logN).
This approximation scheme involves a different disjunctive formulation that can
be rounded to obtain the desired approximation. Specifically, we construct a
disjunction over O(N((1/ε+ T )O(log(T/ε)/ε2))) LPs, each with NT variables and
O(NT ) constraints. This improves on the result of Sharp [9]. Moreover, the
analysis of the approach extends for certain ∆t such as when ∆t = e−rt for
some r > 0. This allows us to incorporate discounting. This PTAS also extends
the earlier work of Bienstock and McClosky [2], [3] on the disjunctive approach
for the single period knapsack problem.

Both of our algorithms rely on the classical approach of disjunctive program-
ming [1]. Suppose we want to find an approximate solution to max{wTx : x ∈
P} (P ⊆ Rn, possibly non-convex), with approximation factor k. Moreover, the
difficulty of the problem lies in that no good convex relaxation of P is known.
In this case, we may still be able to leverage the idea of disjunctive program-
ming to give us a good approximation guarantee. The idea is to find a set of
polyhedra Q1, Q2, . . . QL in Rn such that P ⊆ ∪Li=1Q

i and for each i we can
compute, in polynomial time, xi ∈ P with wTxi ≥ kmax{wTx : x ∈ Qi}.
Taking x? = argmaxi{wTxi} yields a factor k approximate solution to the orig-
inal optimization problem. As stated, this approach simply constitutes a case
of enumeration (polynomially-bounded if L is polynomial). Further, wTx? ≥
kmax{wTx : x ∈ conv(∪iQi)}, and this last maximization problem can be for-
mulated as a single linear program (polynomial-sized if L is), and, as will be the
case below, we obtain an an approximation algorithm based on rounding.

The rest of the paper is organized as follows. In section 2, we show that
the natural IP formulation of the time-invariant incremental knapsack problem
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has an unbounded integrality gap. In section 3, we give the constant factor
approximation algorithm for IK. In section 4, we show a PTAS for IIK. In
section 5, we summarize our results and give suggestions for future directions.

2 LP Relaxation and Integrality Gap

To motivate the disjunctive approach, we will first show that the LP relaxation of
a natural IP formulation for IIK has an unbounded integrality gap. This result
implies that any constant factor approximation algorithm must do something
more clever than simply solving the LP relaxation and rounding the fractional
solutions to a feasible integral solution.

Let xi,t = 1 if item i is placed in the knapsack at time t and 0 otherwise. We
can formulate IK as the following binary integer program, whose feasible region
will be denoted by P .

IP = max

T∑
t=1

N∑
i=1

vi∆txi,t (1)

s.t.

N∑
i=1

wixi,t ≤ Bt ∀t

xi,t−1 ≤ xi,t ∀i, and t = 2, 3, . . . , T

xi,t−1 ∈ {0, 1} ∀i, t.

Consider the case where Bt = t for all t, N = 1 and v1 = w1 = T . Further
assume ∆t = 1 for all t, i.e. we are consider the time-invariant case. Clearly (1)

has value T in this instance, whereas the LP relaxation gives a value of T (T+1)
2 ,

which implies that the integrality gap of O(T ) which is unbounded as T →∞.
A natural idea is to strengthen the LP relaxation by setting xit = 0 if item i

does not fit into the knapsack at time t. This strengthened LP relaxation, shown
below, still has an unbounded integrality gap (as shown in the Appendix).

Theorem 2. The following LP relaxation to IIK has an integrality gap that
cannot be bounded by any constant.

max

T∑
t=1

N∑
i=1

vixi,t

s.t.

N∑
i=1

wixi,t ≤ Bt ∀t

xi,t−1 ≤ xi,t ∀i, and t = 2, 3, . . . , T

xi,t = 0 for any i, t such that wi > Bt

xi,t−1 ∈ [0, 1] ∀i, t.
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3 Constant Factor Algorithm

In this section we provide a constant-factor approximation algorithm for IK
when the capacity function Bt is upper bounded by a polynomial function of t.
To motivate our approach we introduce two definitions.

Definition 3. Let S > 0 and 0 < κ ≤ 1. We say that a (S, κ)-split takes place
at time tκ if the following conditions happen:

(i)
∑tκ−1
t=1 ∆t ≤ S

∑T
t=tκ

∆t.
(ii) BT −Btκ ≤ κBT .

Remark 1. Consider the time-invariant case, i.e. ∆t = 1 for all t. When an
(S, κ)-split takes place at tκ, we have tκ < ST , but the knapsack capacity at
time tκ is already (at least) a fraction 1− κ of the final knapsack capacity, BT .

Definition 4. Let 0 < κ ≤ 1. Define S(κ) to be the smallest value S ≥ 0, such
that there is a period tκ where an (S, κ) split takes place.

Remark 2. Note that S(κ) decreases with κ. Also, suppose ∆t = 1 for all t and

Bt = Θ(tp) for some p > 0. Then we have that S(κ) ≈ (1−κ)1/p

1−(1−κ)1/p
. Even though

this quantity converges to +∞ as p→ +∞, for fixed p it is bounded. This means
that (by Definition 3) during the last T

S(κ) time periods the knapsack only gains

a fraction ≤ κ of the final capacity BT .

Given κ > 0, there is an algorithm with approximation factor min{Ω( 1−κ
κ ), 1

S(κ)}.
Thus, roughly speaking, the quality of the approximation improves if both κ and
S(κ) are “small”. Or, to put it differently, if the capacity function Bt is such that
S(κ) remains very large for κ ≈ 1, then the quality of the approximation bound
will suffer. As remark 2 shows, when Bt is polynomially bounded as a function
of t, S(κ) is bounded above, and so the ratio 1−κ

κS(κ) remains bounded away from

0, i.e. we indeed obtain a constant-factor approximation algorithm. The class
of cases where we do not attain a constant-factor approximation algorithms are
those where limκ→1 S(κ) = +∞. In such cases, the capacity function is attaining
essentially all of its growth in an arbitrarily small final set of time periods.

In this paper, for brevity, we focus on the case κ = 1/2, and prove the
following.

Theorem 5. There is a polynomial-time algorithm for IK with approximation

ratio min
{

1
9 ,

1
6 max{1,S(1/2)}

}
.

In the Appendix we outline how to extend our approach to general 0 < κ < 1.

Simplification. For simplicity, we assume, by perturbing the vi if necessary
that vi/wi 6= vj/wj for all i 6= j. The perturbation changes the value of IK by
an arbitrarily small amount.
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3.1 The approximation algorithm

Our algorithm is based on running (up to) two polynomially bounded procedures
given below, for each time period 1 ≤ t̄ ≤ T : a “replicated knapsack” procedure,
and an LP-rounding algorithm. Each run will produce a feasible (integral) solu-
tion to IK; the algorithm will select a solution that attains the highest objective
value. We will use the same notation as above, i.e. the variable xi,t is used to
indicate whether item i is in the knapsack at time t.

To introduce the first procedure we need a definition.

Definition 6. Let 1 ≤ t̄ ≤ T . A 0-1 vector x̄ is a replicated-knapsack solu-
tion at t̄ for IK if the following conditions hold:

x̄i,t = 0 for all i and t < t̄, and x̄i,t = x̄i,t̄ for all i and t ≥ t̄.

Recall that the capacity function Bt is monotonely nondecreasing. Thus the
replicated-knapsack solution at t̄ is feasible for IK iff

∑
i wixi,t̄ ≤ Bt̄, i.e. the

solution replicates a feasible solution to the (single-period) knapsack with weights

wi and capacityBt̄. Further, the objective value of x̄ equals
(∑T

t=t̄∆t

)∑N
i=1 vix̄i,t̄.

This quantity can be approximated (arbitrarily closely) in polynomial time using
several well-known methods.

In order to describe the second procedure, consider formulation (2)-(8), for
which the time period 1 < t̄ < T , the item index h, and a second time period
t̆ ≤ t̄ are inputs. Here, h is the most valuable item in the knapsack at time t̄ and
h was first placed in the knapsack at time t̆.

D(t̄, t̆, h) : max

T∑
t=1

N∑
i=1

vi∆txi,t (2)

s.t.

N∑
i=1

wixi,t ≤ Bt ∀t (3)

xi,t−1 ≤ xi,t ∀i, and t = 2, 3, . . . , T (4)

xi,t ∈ {0, 1} ∀i, t (5)

xh,t̆ = 1, xh,t̆−1 = 0 (if t̆ > 0) and

xi,t̄ = 0, ∀ i with vi > vh (6)

1

3

∑
i,t

vi∆txi,t ≤
T∑
t=t̄

N∑
i=1

vi∆txi,t (7)

1

3

∑
i,t

vi∆txi,t ≤
t̄−1∑
t=1

N∑
i=1

vi∆txi,t. (8)

Other than constraints (6)-(8) this is the same formulation as in Section 2.
Constraints (7) and (8) indicate that, in the time interval [t̄, T ] (resp. [1, t̄− 1])
at least one-third of the total value is accrued. Using (4) and t̆ ≤ t̄, constraint
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(6) implies that xh,t̄ = 1. Thus, (6) states that item h is placed in the knapsack

at time t̆, and that at time t̄, item h is a highest-value item in the knapsack. We
will now prove a number of results on this formulation.

Definition 7. Let DR(t̄, t̆, h) denote the continuous relaxation of D(t̄, t̆, h), i.e.
that obtained by replacing (5) with 0 ≤ xi,t ≤ 1 for all i, t. Further, let V ∗ =
V ∗(t̄, t̆, h) denote the value of DR(t̄, t̆, h).

Lemma 8. Suppose x̃ = x̃(t̄, t̆, h) ∈ RN×T be an optimal solution to the linear
program where:

(i) The objective function is (2).
(ii) The constraints are (3)-(6), together with

1

3
V ∗ ≤

T∑
t=t̄

N∑
i=1

vi∆tx̃i,t and
1

3
V ∗ ≤

t̄−1∑
t=1

N∑
i=1

vi∆tx̃i,t. (9)

i.e. we replace constraints (7) and (8) of DR(t̄, t̆, h) with (9). Then for any time
period t there is at most one item i with 0 < x̃i,t < 1.

Remark. It can be shown that x̃ can be obtained by solving a single, polynomial-
size linear program, rather than the two-LP procedure implied by Lemma 8.

Lemma 9. Let x̃ = x̃(t̄, t̆, h) be as in Lemma 8 and let x̆ be obtained by rounding
down x̃. Then x̆ is feasible for D(t̄, t̆, h), and

∑
i,t

vi∆t x̆i,t ≥
1

6
min

{
1,

∑T
t=t̄∆t∑t̄−1
t=1 ∆t

}∑
i,t

vi∆t x̃i,t. (10)

Lemma 9, together with the replicated-knapsack construction given above,
constitute the two cases that our algorithm will enumerate for each t. We will
next show that the best solution of the replicated-knapsacks and the roundown
constructions attain a factor 1

6S where S = max{1, S(1/2)} (recall Definition 3).

3.2 Existence of approximation

In the remainder of this section, we assume that xZ is an optimal solution
to a given instance of IK. We V Z denote the value of the instance, i.e. V Z

.
=∑

i vi∆tx
Z
it.

Lemma 10. Either there is a period 1 < t[3] < T such that

(a) 1
3V

Z ≤
∑T
t=t[3]

∑
i vi∆tx

Z
it

(b) 1
3V

Z ≤
∑t[3]−1
t=1

∑
i vi∆tx

Z
it

or there is a replicated-knapsack solution with value at least V Z

3 .
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Using Lemma 10 we can assume that none of the T replicated-knapsack solu-
tions (which we can approximate, in polynomial time, to any desirable constant
factor) is within a factor of 1/3 of V Z , and thus, that a time period 1 < t[3] < T
satisfying (a) and (b) does exist. Using this fact, we will next consider the for-
mulations D(t̄, t̆, h) discussed in the previous section, and prove that the bound
obtained in Lemma 9 will yield a large enough constant factor for at least one
choice of t̄ and h.

Recall Definition 3. Let S = S(1/2) and t1/2 be a time period so that

t1/2−1∑
t=1

∆t ≤ S
T∑

t=t1/2

∆t and BT −Bt1/2 ≤
BT
2
. (11)

Lemma 11. Suppose that t[3] ≤ t1/2. Let h∗ be the most valuable item in the

knapsack, under solution xZ , at time t[3], and let t̆ ≤ t[3] be the time it was
placed in the knapsack. Then rounding down the solution to DR(t[3], t̆, h∗) yields
a feasible solution to problem IK, of value at least

1

6 max{1, S}
∑
i,t

vi∆tx
Z
i,t.

Proof. By Lemma 9 applied to formulation D(t[3], t̆, h∗), we will obtain a feasible
solution to IK with value at least

1

6
min

{
1,

∑T
t=t[3] ∆t∑t[3]−1
t=1 ∆t

}∑
i,t

vi∆tx
Z
i,t. (12)

But we are assuming that t[3] ≤ t1/2. This implies the desired bound. ut

We can now assume that t1/2 < t[3]. We can show that in this case a
replicated-knapsack solution has value at least V ∗/9.

Lemma 12. Suppose t1/2 < t[3]. Then a replicated-knapsack solution has value
at least V ∗/9.

4 A PTAS for IIK when T = O(
√
logN)

Now we are ready to present the PTAS for the time-invariant incremental knap-
sack problem when T = O(

√
logN). This algorithm is easily extended to the

case of IK with fixed T and monotonically nonincreasing ∆t quantities. Con-
sider an instance of IIK and let ε ∈ (0, 1). Without loss of generality, we can
assume that the vi’s are integral. Fixing an optimal solution OPT , and let h be
a the maximum valued item that is ever placed in the knapsack by OPT . Then
it suffices to optimize over the set of items Sh = {i ∈ S|vi ≤ vh}. We partition
Sh into K + 1 subsets X = {S1,h, S2,h, . . . , SK,h, Th}, where

Sk,h = {j ∈ S, j 6= h : (1− ε)k−1vh ≥ vj > (1− ε)kvh} for k = 1, . . . ,K,
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and

Th = {j ∈ S : (1− ε)Kvh ≥ vj}.

In order to attain the approximation ratio, we will choose K large enough so

that (1− ε)K < ε/T or equivalently, K > log(T/ε)
ε .

Consider a modified instance of the problem where items have identical
weights as the original instance and item i has a modified value of v′i = (1 −
ε)k−1V if i ∈ Sk and v′i = vi otherwise. Let OPTm denote an optimal solution
to the modified instance of the problem. Let V (SOL) and Vm(SOL) be the ob-
jective value with respect to a solution SOL of the original instance and the
modified instance respectively. As we did not change the item weights, OPTm is
a feasible solution to the original instance. Moreover,

V (OPTm) ≥ (1− ε)Vm(OPTm) ≥ (1− ε)Vm(OPT ) ≥ (1− ε)V (OPT ),

where the first inequality follows from the fact that vi ≥ (1−ε)v′i for every item i,
the second inequality follows from the fact that OPTm is an optimal solution to
the modified instance, and the third inequality follows from the fact that vi ≤ v′i
for every item i.

Now, since all items within each Sk,h have equal value in the modified in-
stance, it is clear that conditioning on the number of items chosen by OPT
within each Sk,h, OPT would tend to choose the items within the same value
class in the order of non-decreasing weight (breaking ties arbitrarily). Thus, it
suffices to enumerate feasible solutions that can be described by a collection of
K T -vectors {σ1, . . . , σK}, where σkt ∈ {0, 1, . . . , |Sk,h|} denotes the number of
items chosen from Sk,h in time period t, in order to find an optimal solution.
Nonetheless, the number of potential solutions that we have to enumerate would
be exponential in N if we attempt to enumerate all possible configurations of
{σ1, . . . , σK}. Consequently, we will only explicitly enumerate σkt taking values
from {0, 1, . . . , min(d1/εe, |Sk,h|)}. For σkt taking values larger than J = d1/εe,
we will instead let the feasible region of an LP capture these feasible points and
try to let the LP choose an optimal solution for us and subsequently round this
optimal solution. Lastly, since we don’t know the most valuable item h taken by
OPT in the original instance of the problem, we will have to guess such an item
by enumeration.

Our disjunctive procedure is as follows. First, we guess the most valuable item
h ∈ S packed by an optimal solution. Subsequently, we only consider choosing
items from Sh and round the values of the items in Sh to obtain the modified
instance of the problem. We will then focus on solving the modified instance of
the problem. Let ki, i = 1, 2, . . . , |Sk,h|, be the i-th lightest weight item in Sk,h

(break ties arbitrarily). Let xki,t be the variable indicating whether item ki is
placed in the knapsack in time period t. Let σ = {σ1, . . . , σK} ∈ {0, . . . , J}TK
and define the following polyhedron:
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Qσ,h = {x ∈ [0, 1]T |S
h| : xh,T = 1

xk1,t = xk2,t = . . . = xk|Sk,h|,t
= 0 ∀(k, t) s.t. σkt = 0

xk1,t = xk2,t = . . . = xk
σkt
,t = 1, xk

σkt +1
,t = . . . = xk|Sk,h|,t

= 0

∀(k, t) s.t. 1 ≤ σkt < J and σkt < |Sk,h|

xk1,t = xk2,t = . . . = xk
σkt
,t = 1,

|Sk,h|∑
i=1

xki,t ≥ σkt

∀(k, t) s.t. σkt = J and σkt < |Sk,h|
xk1,t = xk2,t = . . . = xk|Sk,h|,t

= 1 ∀(k, t) s.t. σkt ≥ |Sk,h|

K∑
k=1

|Sk,h|∑
i=1

wkixki,t +
∑
i∈Th

wixi,t ≤ Bt ∀t

xki,t−1 ≤ xki,t ∀(k, i), and t = 2, 3, . . . , T

xi,t−1 ≤ xi,t ∀i ∈ Th, and t = 2, 3, . . . , T}.

Lemma 13. For each fixed h, there are O((1/ε+T )O(log(T/ε)/ε2)) polyhedra Qσ,h

in our disjunctive procedure.

Since we have to enumerate our guess for the most valuable item h, we get the
following corollary.

Corollary 14. There are a total of O(N(1/ε+T )O(log(T/ε)/ε2)) LPs in our dis-
junctive procedure.

Notice that when T = O(
√

log T ), then the number of LPs is polynomial in N
for a fixed ε.

The following is our main result.

Theorem 15. For every non-empty polyhedron Qσ,h, there exists a polynomially
computable point xσ,h feasible for IIK, such that

T∑
t=1

∑
i∈Sh

v′ix
σ,h
i,t ≥ (1− ε) max{

T∑
t=1

∑
i∈Sh

v′ixi,t : x ∈ Qσ,h}.

Theorem 16. Let x? = arg max Qσ,h 6=∅
∑T
t=1

∑
i∈Sh v

′
ix
σ,h
i,t , where xσ,h is de-

fined in the previous theorem, then we have that

T∑
t=1

∑
i∈Sh

v′ix
?
i,t ≥ (1− ε)Vm(OPTm) ≥ (1− ε)2V (OPT ).
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Proof. This is a direct consequence of the fact that OPTm ∈ ∪Qσ,h 6=∅Qσ,h as
∪Qσ,h 6=∅Qσ,h covers P , and that

T∑
t=1

∑
i∈Sh

v′ix
?
i,t ≥ (1− ε) max{

T∑
t=1

∑
i∈Sh

v′ixi,t : x ∈ ∪Qσ,h 6=∅Qσ,h}.

5 Conclusion

In this work, we give a constant factor approximation algorithm for IK when
the capacity function Bt is upper bounded by a polynomial function of t. We
also give a PTAS for IIK when the time horizon T = O(

√
logN), where N is

the number of items. Our results generalize and improve on some of the earlier
results of Hartline and Sharp for this problem. Our work leaves to the follow-
ing open questions. First, is there a polynomial time algorithm for IK with a
constant factor approximation ratio that makes no assumption on the growth
rate of Bt? Second, is there a PTAS for IIK for an arbitrary time horizon T?
It is also interesting to consider an incremental version of other combinatorial
optimization problems.

Acknowledgment. D. Bienstock was partly supported by ONR award N00014-
13-1-0042.
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6 Appendix

Proof of Proposition 1

Proof. In the 3 partition problem, we’re given a set S of 3m integers a1, . . . a3m,
and we want to decide whether S can be partitioned into m triples that all have
the same sum B, where B = (1/m)

∑3m
i=1 ai. It has been shown that 3-partition

is strongly NP-hard even if all the integers are between B/4 and B/2. We will
reduce any instance of the 3-partition problem to a corresponding instance of
the incremental subset problem. Given a set S of 3m integers a1, . . . , a3m. Let ai
be the weight/value of item i. And we have a knapsack whose capacity is Bt in
period t for t = 1, . . . ,m. Notice that the partition can be done if and only if in
every period the knapsack reaches its capacity, i.e. the incremental amount that
we pack is B. Moreover, it can be shown inductively that since the value of the
items are strictly in between B/4 and B/2, we would pack exactly 3 additional
items in every period.

Proof of Theorem 2

Proof. Fix a k ≥ 2 and let T be a power of k. Consider a set of N items, where
vi = wi = ki for i = 1, . . . , logk(T ) = N . The knapsack capacities follow the
following pattern:

Bt = ki if T (1− 1

ki−1
)+1 ≤ t ≤ T (1− 1

ki
) for i = 1, . . . , logk(T ) and BT = BT−1.

Since the LP can fractional pack the items, the knapsack attains its capacity
in every time period. Moreover, since all items have weight equaling value, we
have that the optimal value of the LP solution is (by evaluating the sum of the
knapsack values over all time periods):

T+T

logk(T )∑
i=1

kiT ((1−1/ki)−(1−1/ki−1) = T (k−1) logk(T )+T = O(Tk logk(T )).

Let ti = T (1 − 1/ki−1) + 1 denote the first time when the knapsack capacity
increases to ki. Notice that any integer optimal solution would only pack addi-
tional items in time those periods, which means that we just need to figure out
what to pack at those time periods in order to find an integer optimal solution.
The only items that fit in the knapsack at time ti are items 0 through i. If we
decide to pack item i in period ti, then the total revenue we get for packing i
over times ti ≤ t ≤ ti+1−1 is T (1/ki−1/ki+1)ki+1 = T (k−1). Since we cannot
pack any item before time ti, the total revenue we get up to time ti+1 − 1 if
we pack item i in time ti would be T (k − 1). For every i > 1, this is clearly
suboptimal since we would get more revenue up to time ti+1 − 1 had we just
packed item 1 in period 1 (since kT (1 − 1/ki+1) > kT (1 − 1/k) = T (k − 1) for
i > 1). Hence, no integer optimal solution would pack item i at time ti for every
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i > 1.

If we do not pack item i at time ti, then we can pack the first i − 1 items
at time ti for every i > 1 since k ≥ 2. Hence, this is an optimal packing for
time ti for every i > 1 (and it is optimal to pack item 1 starting from period 1).
Moreover, this solution respects the precedence constraints, which means that we
have found an integer optimal solution. We evaluate the integer optimal solution
by looking at how long each item has been placed in the knapsack:

kT +

N−1∑
i=2

ki(T − ti+1 + 1) = kT +

N−1∑
i=2

ki(T − T (1− 1/ki)) ' kT + T (logk T − 1)

= O(T max(k, logk(T ))).

Hence, the integrality gap is at least min(logk(T ), k). For every k, we can
choose T appropriately so that min(logk(T ), k) = k. Letting k go to infinity and
we have the desired result.

Proof of of Lemma 8

Proof. Let t̂ be a time period such that there exist items i, j with x̃i,t̂ and
x̃j,t̂ both fractional. Without loss of generality assume that vi/wi > vj/wj . Let

t1 = min{t : x̃j,t > 0}, and ε = x̃j,t1 . Let t2 = max{t : x̃i,t = x̃i,t̂}, and

when t2 < T set δ = x̃i,t2+1 − x̃i,t̂ and otherwise set δ = 1− x̃i,t̂. Finally, write

θ = min
{
wi
wj
δ, ε
}

. Consider the vector y created by the following rule:

yj,t = x̃j,t − θ, for t1 ≤ t ≤ t2,

yi,t = x̃i,t +
wj
wi
θ, for t1 ≤ t ≤ t2,

yk,t = x̃k,t, for all remaining k and t.

Note that i, j 6= h because constraint (6) of the formulation guarantees that
x̃h,t is integral for all t. Thus, y is a feasible solution to DR(t̄, t̆, h). But since
vi/wi > vj/wj (because we have perturbed data so that all values/weight ratios
are distinct) the objective value attained by y is strictly larger than that of x̃, a
contradiction.

Proof of of Lemma 9

Proof. For any period t, let F (t)
.
= {i : 0 < x̃i,t < 1}. Suppose first that

t̄−1∑
t=1

∑
i∈F (t)

vi∆tx̃it <
1

6
V ∗.
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By constraint (8) we therefore have

t̄−1∑
t=1

∑
i/∈F (t)

vi∆tx̆it >
1

6
V ∗

and

∑
i,t

vi∆t x̆i,t ≥ min
1

6

{
1,

∑T
t=t̄∆t∑t̄−1
t=1 ∆t

}∑
i,t

vi∆t x̃i,t. (13)

(i.e. (10)) follows, which is the desired result. Thus, we instead assume that

t̄−1∑
t=1

∑
i∈F (t)

vi∆tx̃it ≥
1

6
V ∗.

In particular this means that F (t) 6= ∅ for at least one 1 ≤ t ≤ t̄ − 1. But, for
such t, if i ∈ F (t) then x̃i,t̄ > 0 and by (6) and (6),

vi ≤ vh.

So, using Lemma 8,

1

6
V ∗ <

t̄−1∑
t=1

∑
i∈F (t)

vi∆tx̃it ≤
t̄−1∑
t=1

vh∆t ≤
∑t̄−1
t=1 ∆t∑T
t=t̄∆t

T∑
t=t̄

∑
i

vi∆t x̆i,t. (14)

From this relationship (13) follows.

Proof of of Lemma 10

Proof. Define t[3] to be the largest period so that (a) holds. If t[3] = T then

the replicated-knapsack solution at T has value at least V Z

3 . So we can assume

t[3] < T (and similarly, that 1 < t[3]) and therefore

t[3]−1∑
t=1

∑
i

vi∆tx
Z
it <

1

3
V Z .

Hence if (b) does not hold, then∑
i

vi∆tx
Z
it[3] >

1

3
V Z ,

and so the replicated-knapsack solution at t[3] has value at least V Z

3 .
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Proof of of Lemma 12

Proof. We observe that if, under xZ , some item i is added to the knapsack at
time t, then, since xZ is optimal and vi > 0, it must be the case that it could
not have been added any earlier (while keeping the remaining schedule fixed,
otherwise). Under this assumption, the schedule is “pushed to the left” as much
as possible.

Suppose first that no items are added to the knapsack, under xZ , in the pe-
riods t[3], . . . , T . Then by condition (a) of Lemma 10 we have that by replicating
the knapsack solution at time t[3] we will have total value is at least V ∗/3, as
desired.

Thus, let t1 be the first period ≥ t[3] such that xZ adds an item is added to
the knapsack at that period. By the “pushed to the left” analysis, we have that
either t1 = t[3], or

t1 > t[3], and∑
i

wixi,t1 > Bt[3] . (15)

Let t2 be the first time period after t1 where xZ adds an item knapsack. If
no such period exists, let t2 = T . Finally let A(1) be the set of items added by
xZ to the knapsack in period t1, and A(2) the set of items added in periods t2
through T . Now the sum

T∑
t=t[3]

∑
i

vi∆tx
Z
it

which by condition (a) of Lemma 10 is at least V ∗/3, can be split into three
terms, some of which may be empty:

(a) (
∑T
t=t[3] ∆t)(

∑
i vixi,t[3])

(b) (
∑T
t=t1

∆t)(
∑
i∈A(1) vi)

(c)
∑T
t=t2

∆t
∑
i∈A(2) vixi,t.

So the largest of these three terms has value at least V ∗/9. If it is (a) or (b) then
we have that a replicated-knapsack solution of value at least V ∗/9 and we are
done. If it is (c), then note that by (15) (and the pushed to the left condition)∑

i∈A(2)

wi ≤ BT −Bt[3] ≤ BT −Bt1/2 ≤ Bt1/2 , (16)

where the inequalities follow because t1/2 < t[3] and Bt is nondecreasing. It
follows that we obtain a feasible solution to IK by placing in the knapsack the
set A(2), at time t1/2 (and no items added at any other time). This solution
is feasible by (16), and its value is at least the quantity in (c) and so at least
V ∗/9. This is the same as saying that the replicated-knapsack solution at t1/2
has value at least V ∗/9.
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Extension of Lemma 5 to general 0 < κ < 1

Here we outline how to extend Lemma 5 to obtain, for general 0 < κ < 1, an
approximation algorithm with ratio min{Ω( 1−κ

κ ), 1
S(κ)}. The second case in the

“min” corresponds to the case where t[3] < tκ, and it follows by an analysis very
similar to that of Lemma 11 (the reader will notice that in that proof, the fact
that κ = 1/2 was not actually used).

Now we consider the case t[3] ≥ tκ. First, we note that if κ < 1/2 is such
that an (S, κ)-split takes place at time t, then an (S, 1/2)-split takes place at t,
as well (from (ii)) in Definition 3. So we will assume 1/2 < κ < 1.

Now suppose an (S, κ)-split takes place at time tκ. The idea is to split the
time interval [tκ, T ] into intervals [t0, t1], [t1, t2], . . . [tm−1, tm], where tκ = t0 ≤
t1 ≤ . . . tm = T , m = O(κ/(1 − κ)), and the capacity increase experienced in
each interval [ti, ti+1] is O(BT /(1−κ). Then, at the boundary between successive
intervals we apply an analysis similar to that used to prove Lemma 12 to consider
(1) two possible replicated-knapsacks (as in cases (a), (b) of the proof of Lemma
12), or (2) a solution similar to that in case (c) of Lemma 12, which in this case
will use (by time T ) total capacity at most (1− κ)BT , and thus can be used to
lower bound the replicated-knapsack solution at time tκ. Altogether, therefore,
we obtain O(3κ/(1−κ)) replicated-knapsack solutions, and thus the best attains
an approximation factor

Proof of Lemma 13

Proof. For a fixed k ∈ {1, . . . ,K}, we have that σk1 ≤ σk2 ≤ . . . ≤ σkT . If
σkT = m, then since the σki s are integers, there are at most

(
m+T−1

m

)
feasi-

ble T -tuples (σk1 , σ
k
2 , . . . , σ

k
T ). Since 0 ≤ m ≤ J , we have that

(
m+T−1

m

)
≤

(J +T )J . Consequently, there are at most
∑J
m=1

(
m+T−1

m

)
≤ J(J +T )J feasible

T -tuples (σk1 , σ
k
2 , . . . , σ

k
T ). Thus, there are at most (J(J + T )J)K = O((1/ε +

T )O(log(T/ε)/ε2)) in the disjunctive procedure. ut

Proof of Theorem 15

Proof. Let x̄ be an optimal solution of max{
∑T
t=1

∑
i∈Sh v

′
ixi,t : x ∈ Qσ,h}.

In order to prove the theorem, we will show the validity of the inequality (see
Lemma 18)

T∑
t=1

|Sk,h|∑
i=1

v′ix
σ,h
ki,t
≥ (1− ε)

T∑
t=1

|Sk,h|∑
i=1

v′ix̄ki,t, (17)

for every Sk,h and that of (see Lemma 19)

T∑
t=1

∑
i∈Th

v′ix
σ,h
i,t ≥

T∑
t=1

∑
i∈Th

v′ix̄i,t − εvh. (18)



18

The two inequalities imply:

T∑
t=1

∑
i∈Sh

v′ix
σ,h
i,t = vh +

T∑
t=1

K∑
k=1

|Sk,h|∑
i=1

v′ix
σ,h
ki,t

+

T∑
t=1

∑
i∈Th

v′ix
σ,h
i,t

≥ vh + (1− ε)
T∑
t=1

K∑
k=1

|Sk,h|∑
i=1

v′ix̄ki,t +

T∑
t=1

∑
i∈Th

v′ix̄i,t − εvh

≥
T∑
t=1

∑
i∈Sh

v′ix̄i,t.

Next, we give proofs for equations (17) and (18). For every nonempty poly-
hedron Qσ,h, we begin by showing (17) holds for every Sk,h with the help of the
following auxiliary LP.

max

T∑
t=1

|Sk,h|∑
i=1

v′kixki,t

s.t.

|Sk,h|∑
i∈Th

wkixki,t ≤
|Sk,h|∑
i=1

wki x̄ki,t ∀t

xk1,t = xk2,t = . . . = xk|Sk,h|,t
= 0 ∀(k, t) s.t. σkt = 0

xk1,t = xk2,t = . . . = xk
σkt
,t = 1,

xk
σkt

+1,t = . . . = xk|Sk,h|,t
= 0 ∀(k, t) s.t. 1 ≤ σkt < J and σkt < |Sk,h|

xk1,t = xk2,t = . . . = xk
σkt
,t = 1,

|Sk,h|∑
i=1

xki,t ≥ σkt ∀(k, t) s.t. σkt = J and σkt < |Sk,h|

xk1,t = xk2,t = . . . = xk|Sk,h|,t
= 1 ∀(k, t) s.t. σkt ≥ |Sk,h|

xki,t−1 ≤ xki,t ∀ki, and t = 2, 3, . . . , T

xki,t−1 ∈ [0, 1] ∀ki, t.

Lemma 17. For every Sk,h, there exists an optimal solution to the auxiliary
LP that contains at most one fractional variable xki,t in each time period t.

Proof. The claim is true when σkt < J and σkt < |Sk,h| or when σkt ≥ |Sk,h| as
there are no fractional variables in both cases. Hence, the only case left is when
σkt = J and σkt ≥ |Sk,h|.

Let t? be the first (smallest) period in which we are in the case σkt =
J and σkt ≥ |Sk,h|. Ignoring the precedence constraints for a moment, then
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the auxiliary LP can be broken up into T − t? + 1 single period LPs of the
following form, one for each t ≥ t?.

LPt = max

|Sk,h|∑
i=1

v′ixki,t

s.t.

|Sk,h|∑
i=1

wixki,t ≤
|Sk,h|∑
i=1

wix̄ki,t (19)

xk1,t = xk2,t = . . . = xk
σkt
,t = 1,

|Sk,h|∑
i=1

xki,t ≥ σkt ∀(k, t) s.t. σkt = J and σkt < |Sk,h|

(20)

xki,t−1 ∈ [0, 1] ∀ki.

Notice that in the modified instance of the problem, all items have the same
value within a value class Sk,h. Hence, an optimal solution to LPt is simply to
pack the items in the order of their weight, starting from the smallest weight item
first. Moreover, notice that this set of optimal solutions satisfy the precedence
constraints.

Lemma 18. Let x̄ be an optimal solution to the optimization problem over a
non-empty Qσ,h for some σ ∈ {0, . . . , J}TK and h ∈ S, then there exists an
integer feasible solution xσ,h to the auxiliary LP such that

T∑
t=1

|Sk,h|∑
i=1

v′ix
σ,h
ki,t
≥ (1− ε)

T∑
t=1

|Sk,h|∑
i=1

v′ix̄ki,t.

Proof. Without lost of generality, let x̂ be the optimal solution to the auxiliary
LP found using lemma 17. For time periods t where σkt < J and σkt < |Sk,h|
or when σkt ≥ |Sk,h|, we don’t need to round the variables x̂ki,t since they are

already integral. Hence, we set xσ,hki,t = x̂ki,t for all the variables in this period,
which implies that

|Sk,h|∑
i=1

v′ix
σ,h
ki,t

=

|Sk,h|∑
i=1

v′ix̂ki,t ≥
|Sk,h|∑
i=1

v′ix̄ki,t

for such a period t.

For time periods t where σkt = J and σkt ≥ |Sk,h|, by lemma 17, there is at
most one fractional x̂ki,t in such a time period. Consequently, we round down
this fractional variable while keeping others the same (or equivalently, setting

xσ,hki,t = 0 for this variable and setting xσ,hki,t = x̂ki,t). Since all the variables have

the same value within a value class Sk,h, we have that
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∑|Sk,h|
i=1 v′ix̂ki,t −

∑|Sk,h|
i=1 v′ix

σ,h
ki,t∑|Sk,h|

i=1 v′ix̂ki,t
≤ 1

J
< ε,

which implies that

|Sk,h|∑
i=1

v′ix
σ,h
ki,t
≥ (1− ε)

|Sk,h|∑
i=1

v′ix̂ki,t ≥ (1− ε)
|Sk,h|∑
i=1

v′ix̄ki,t.

Summing up the above inequalities over all time periods gives us the desired
result.

Lemma 19. Let x̄ be an optimal solution to the optimization problem over a
non-empty Qσ,h for some σ ∈ {0, . . . , J}TK and h ∈ S, then there exists an
integer feasible solution xσ,h to the auxiliary LP such that

T∑
t=1

∑
i∈Th

v′ix
σ,h
i,t ≥

T∑
t=1

∑
i∈Th

v′ix̄i,t − εvh.

Proof. Consider the following auxiliary LP:

max

T∑
t=1

∑
i∈Th

v′ixi,t

s.t.
∑
i∈Th

wixi,t ≤
∑
i∈Th

wix̄i,t ∀t

xi,t−1 ≤ xi,t ∀i ∈ Th, and t = 2, 3, . . . , T

xi,t−1 ∈ [0, 1] ∀i, t.

An optimal solution of the LP above would be to greedily pack items in the
order of non-increasing value to weight ratio. Let x̂ be such an optimal solution,
then it is clear that x̂ has at most one fractional variable in each time period.
We round down such a fractional variable in each time period to 0 to obtain an
integer solution xσ,h. Consequently, we have that

T∑
t=1

∑
i∈Th

v′ix̂i,t −
T∑
t=1

∑
i∈Th

v′ix
σ
i,t ≤

εvh
T

T∑
t=1

1 = εvh,

where the first inequality follows from the fact that every item in Th has value
weakly less than εvh/T . Rearrange the terms gives us that:

T∑
t=1

∑
i∈Th

v′ix
σ
i,t ≥

T∑
t=1

∑
i∈Th

v′ix̂i,t − εvh ≥
T∑
t=1

∑
i∈Th

v′ix̄i,t − εvh.
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