
1

Adaptive Online Control of Cascading Blackouts
Daniel Bienstock, Member, IEEE

Abstract—We study online control algorithms to be deployed
in the event of a cascading power system failure. The control
mechanism is computed after the initial event that sets off the
cascade and is applied as the cascade unfolds, with the goal of
reaching a stable state while shedding a minimum amount of
load. We focus on robust controls, using models of line outages
that explicitly account for noise. Computational experience is
presented using simulated cascading failures of the U.S. Eastern
Interconnect.

Index Terms—Mathematical Programming, Network Theory,
Optimization, Power system analysis computing, Power gener-
ation dispatch, Power system faults, Power System Security,
Robust control, Smart grids.

I. INTRODUCTION

CASCADING failures of large-scale power grids are rare
events that nevertheless pose a grave and likely growing

risk to society and national security. The August 2003 blackout
in the northeast U.S. and Canada, and other events worldwide
stress that while such events are infrequent their cost can
be significant. It is estimated that more cascading blackouts
can be expected, despite the sophistication and robustness of
modern grids.

Cascading failures are typically caused by subtle and diffi-
cult to predict combinations of individual events such as single
line outages. As a result, a significant amount of research has
tackled the problem of identifying compound contingencies
(such as the outage of a few lines) that could place a grid in an
unstable condition. This is known as the N−k problem (where
the small integer k represents the number of simultaneous
faults being considered). It is intrinsically a combinatorial
problem, which, given the large size of national grids, is quite
challenging. See [2], [6], [7], [19] and references therein. N−k
studies can help discover and correct severe contingencies, but
of course there is no guarantee that all vulnerabilities will
be successfully overcome. An (N − 3)-secure system may
be (probably will be) very robust, even beyond the 3-fold
guarantee, but vulnerabilities may remain, for example if they
are of a type outside of the scope of faults being considered.
Thus, effective control in the event of a cascade remains an
important goal.

In this paper we describe efficient algorithms that, should a
potentially significant contingency be realized, can efficiently
compute adaptive controls with the goal of averting a catas-
trophic cascade. We assume a cascade that at the onset is
slow moving; therefore a nontrivial amount of time is initially
available for significant computing (as arguably was the case

D. Bienstock is with the Departments of Industrial Engineering
and Operations Research, and Applied Physics and Applied Mathemat-
ics, Columbia University, New York, NY, 10027 USA e-mail: (see
http://www.columbia.edu/∼dano).

Partially funded by DOE award DE-SC000267

in the 2003 cascade). The fact that we compute the control
after the initiating event for the cascade implies an exponential
reduction in combinatorial complexity; however our models
simulate the evolution of the grid as the cascade progresses
and computational challenges remain.

Our controls take the form of adaptive load shedding and/or
generator redispatch. In the load shedding case, the control
laws specify, as a function of time and as a function of
current state data (such as line overloads), how much load
to shed at each load bus. Thus, the controls are both adaptive
and distributed. An additional goal in the computation of the
control is that it should be robust so as to accommodate the
expected large amount of noise that would be present during a
cascade; in particular when modeling line outages. The starting
point for our work are models for cascades due to Carreras,
Lynch, Newman and Dobson (see [9], [10], [11], [12]). The
models are modified by adding a computation step (that takes
place immediately after the initiating event for the cascade)
where the control is computed and by inserting a control step
at each stage of the cascade.

We present computational experiments with simulated cas-
cades on the U.S. Eastern Interconnect using a parallel
implementation of our control computation algorithm. The
experiments show that very significant percentages of demand
can be maintained even in the face of severe cascades.

II. MODELS

The experiments we describe in this abstract use the lin-
earized approximation to the power flow problem ([3], [4]).
This is only done so as to make it possible to carry out
very high volume of large-scale power flow computations fast
and reliably, even under conditions where a grid is somewhat
compromised. By the time of the conference we plan to report
on experiments using more comprehensive AC power flow
models. In the linearized approximation to the power flow
problem, we are given a directed graph G with n nodes and
m arcs (corresponding, respectively, to buses and lines). In
addition
• For each arc j we are given two positive quantities: its

flow limit uj and its reactance xj .
• We are given a supply-demand vector β ∈ Rn with the

following interpretation. For a node i, if βi > 0 then i is
a generator (a source node) while if βi < 0 then i is a
load (a demand node) and in that case −βi is the demand
at i. The condition

∑
i βi = 0 is assumed to hold. For

a generator node i, we indicate by the constant s̃i the
maximum supply of i. We denote by G denote the set of
generators and by D the set of demand nodes.

The linearized power flow problem specifies a variable fij

associated with each arc j (active power flow) and a variable φi

2

associated with each bus i (phase angle). The problem consists
in finding a solution to the system of equations:

Nf = β, NT φ−Xf = 0, (1)

where N denotes the node-arc incidence matrix of G [1] and
X = diag{xij}.

We model cascades using Template 2.1, which draws from
[9], [10], [11]. The template assumes that an event that sets-off
the cascade has taken place. Further, in this paper we focus on
line outages, however the template and our algorithms below
are easily modified to accommodate wider types of faults.

Template 2.1: GENERIC CASCADE TEMPLATE
Input: a power grid with graph G (post-initiating event).
Set G1 = G.
For r = 1, 2, . . . do

(comment: round r of the cascade)
1. Set fr = vector of power flows in Gr.
2. Set Or = set of lines of Gr that become outaged

in round r.
3. Set Gr+1 = Gr −Or. Adjust loads and

generation in Gr.

The discretization of time in the template implicitly represents
time scale which is appropriate for the application of control.
We will discuss this point at greater length below. Gr is the
grid at the start of round r and fr indicates the power flow
vector at the start of round r.

In order to make the template precise we need to provide
a mechanism for the outage of lines (Step 2) and for the
adjustment in Step 3, especially in the event of “islanding”.

In terms of Step 2, let 0 ≤ α ≤ 1 be a fixed parameter, and
for each line j and each round r define f̃r

j by

f̃r
j = αj |fr

j | + (1− αj)f̃r−1
j , (2)

with f̃0
j set to the absolute value of the flow on j prior to

the incident that initiates the cascade. The quantities f̃r
j are

moving averages of the (absolute value) of the flow on line j;
the parameter αj serves to encode “memory” (for example, so
as to model thermal effects). Using a value of αj close to 1
yields a system with little memory or, equivalently, one where
each round represents a “long” period of time, and conversely
αj close to 0 yields more memory, corresponding to shorter
rounds.

A simple deterministic outage rule is to declare that

line j becomes outaged if f̃r
j > uj . (3)

From a computational perspective, such a rule can prove
numerically unstable and can lead to non-robust models. It
is worth stressing this point from two different perspectives:
first, in applying (3) we compare two numerical quantities,
one of which was obtained by a floating-point algorithm.
Thus, the potential for round-off is certain. This problem can
be somewhat be lessened by either “padding” (increasing)
or “tightening” (reducing) the parameter uj . In any case,
the second problem with (3) is more severe: in cases where
f̃r

j (or fr
j) is near uj , the outcome (outage or not) should

be treated as ambiguous, because our cascade model does

not incorporate all possible sources of “noise” or poorly
understood phenomena, which in the course of the cascade
could effectively reduce uj (or increase the flow). That is
to say, a control algorithm based on direct application of (3)
would not be robust.

To overcome these difficulties, we introduce a stochastic
modification of the deterministic rule, as follows.

Rule 2.2: STOCHASTIC LINE OUTAGE
Parameters: 0 ≤ εr ≤ 1 for each round r.
Notation: refer to Template 2.1 and equation (2).
Application: For a line j in Gr:

if uj < f̃r
j , then j ∈ Or, (4)

if (1− εr)uj < f̃r
j ≤ uj ,

then j ∈ Or with probability 1
2 , (5)

if f̃r
j ≤ (1− εr)uj , then j /∈ Or. (6)

The random choice in (5) is an indirect way to incorporate
some of the (poorly defined) “noise” mentioned above; addi-
tionally, from a mathematical perspective, it serves to smooth
the cascade process. Typically we would have ε1 ≤ ε2 ≤ . . .,
indicating increasing uncertainty as the cascade progresses. If
εr = 0 for all r we obtain the pure deterministic rule.

The adjustment in Step 3 is necessary in the case of
islanding i.e. the creation of several connected components.
Any imbalance between supply and demand in an island of
Gr+1 must be corrected. Several mechanisms for effecting
such balancing are plausible; for the sake of conciseness in
this paper we assume that if in an island capacity generation
exceeds demand, then the output of all generators in that island
will be proportionally decreased so as to match demand (and
viceversa) .

III. ADAPTIVE CONTROL

Template 3.1: CASCADE CONTROL

Input: a power grid with graph G. Set G1 = G.

Step 0. Compute control algorithm.

For r = 1, 2, . . . , R− 1, do
(comment: controlled round r of the cascade)
1. Set fr = vector of power flows in Gr.
2. Observe state of grid (from state estimation).
3. Apply control.
4. Set gr = vector of resulting power flows in Gr.
5. Set Or = set of lines of Gr that become outaged

in round r.
6. Set Gr+1 = Gr−Or. Adjust loads and generation

in Gr.

Termination (round R). If any island of GR has line
overloads, proportionally shed demand in that island
until all line overloads are eliminated.a

aThe criterion of “stability” inherent in the termination step may
obviously be incomplete when using a more complete model of power
flows than the linearized model.

3

There are many ways to state an optimization problem that
operates in the framework of Template 2.1 so as to compute
some optimal behavior in the face of a cascade. Our focus is
on adaptive controls that can be computed in real-time (at the
start of the cascade) and applied during the cascade.

We modify Template 2.1 so as to incorporate the computa-
tion and application of control. Additionally, we will force
the cascade to terminate in a fixed number R of rounds.
This is necessary for computational purposes; additionally this
rule embodies the (arguably desirable) outcome of controlling
the cascade “quickly” with an agnostic termination criterion.
When using the linearized power flow model, at round R we
terminate the cascade by shedding demand so as to eliminate
all line overloads (if necessary).

In Template 3.1 fr indicates the power flow vector at
the start of round r, and gr is the power flow vector after
application of control in round r. To make the template precise
we will next describe an explicit control mechanism. The
control will first be stated in its general form; later we will
discuss special versions.

Our control takes the form of an affine law, described by a
triple of values (cr

v, br
v, sr

v) (computed in Step 0 of Template
3.1) for each round r and load bus v. At round r, let dr

v

denote the current demand at v, and let κr
v be the maximum

line overload in the island currently containing v. Then, in
Step 3, bus v resets its demand to:

min{1, [br
v + sr

v(cr
v − κr

v)]+} dr
v, if κr

v > cr
v (7)

dr
v, otherwise. (8)

(In equation (7), [x]+ denotes max{x, 0}.) We can provide
some intuition for this rule. First, the scaling rule (7) can be
roughly approximated by

new demand = (br
v + sr

v(cr
v − κr

v)) dr
v. (9)

(the purpose of the “min” and the “+” in (7) is to ensure
that we do not increase demand or set it to a negative value).
(9) is an affine control law that sheds load in proportion to
κr

v . Note that if we choose br
v = cr

v = 1, and sr
v = 0, then

no control is applied. Other candidates for κr
v (other than

maximum line overload) are plausible, such as average line
overload, or a measure of mismatch between current power
flows and (historically) stable values, however the maximum
overload version is the only one we report on in this paper.
In forthcoming work involving AC power flows, we plan to
report on versions of κr

v that account for voltage “sag” and
phase angle drift.

The goal of the control is to maximize the amount of
demand being delivered by the grid after the termination step
(round R). This is a nonsmooth, multistage optimization prob-
lem (see Section V). Additionally, national or regional grids
can be quite large. Below we will discuss methodologies we
use to address this problem in a computationally practicable
way. First we will present experimental results using special
cases of the control.

IV. FIRST SET OF EXPERIMENTS

For our experiments we used a snapshot of the U.S. Eastern
Interconnect, with approximately 15000 buses, 23000 lines,

2000 generators and 6000 load buses. The snapshot includes
generator output levels, demands, (most) line flow limits, and
other physical parameters for the lines.

In all the experiments the same approach was employed:
first, we interdicted the grid according to a synthetic contin-
gency, then we computed our affine control, and finally we
studied the behavior of this control.

To obtain contingencies we used the following methodology,
which removes a a set of K random, high power flow lines
from the grid, while preserving connectivity. Here K is a
given, small integer, and as before m is the number of lines.
(1) A spanning tree T is computed.
(2) Let f̂ denote the power flow vector corresponding to the

given demands and generator outputs. Renumber so that
|f̂1| ≥ |f̂1| . . . ≥ |f̂m|.

(3) Let 0 < π < 1. Run steps (a) and (b), initialized with
S = ∅, until stopping in (b):
For j = 1, . . . ,m,

(a) If line j /∈ T , then
with probability π reset S ← S ∪ j.

(b) If |S| = K, stop.
(4) The set S of lines is removed from the network, produc-

ing network G in our cascade template.
We used values of K ranging from 1 to 50, and for π we
used values ranging from .1 to .5.

The purpose of the experiments that we report on below is
to show the structure of a simple (though suboptimal) control
of the form (7)-(8), and how the application of control affects
the evolution of the cascade, as compared to the no-control
situation.

We considered a case with K = 2 (two lines removed) and
R = 20 rounds. In the computation of the moving averages
of line overloads (eq. (2)) we used α = 0.9.

First we consider the pure deterministic case of line outages,
that is to say we use line outage rule (2.2) with εr = 0 for
all r. If no control is applied, then at the end of round of
round 20 the yield (percentage of demand still being served)
is 2.47%.The cascade is characterized by extremely high line
overloads; see Table I (we will discuss implications of this
below). At the start of round 1, in fact, the maximum line
overload is 40.96, indicating that, likely, several lines with
low flow limits are overloaded.

We searched for the best control of the form (7)-(8) where
(i) cr

v = br
v = 1 for all v and r.

(ii) sr
v = 0 for all v and 10 < r. Thus, no control is applied

after round 10.
(iii) For each 1 ≤ r ≤ 10, either sr

v = 0.005 for all v, or
sr

v = 0 for all v.
Thus we simply want to decide when to apply a control of a
very simple form. Further, we are restricted to applying control
in the first half of the cascade; this is done as protection against
uncertainty in the later rounds of the cascade The rationale for
the numerical values in (iii) is that 1+0.005∗(1−40) ≈ 0.80,
that is to say, the application of this control in round 1 will
“only” shed 20% of the demand.

We want to stress that the experiments in this section do
not amount to a rigorous attempt at optimizing control. In

4

fact, the control obtained through (i)-(iii) is only near-optimal.
Instead we are trying to provide an example of the difference
between an adequate control and the no-control option, and
the questions that arise from the comparison. In particular,
the amount 0.005 was arrived at through a simple grid-search
process. See Section V for optimization methodologies.

In any case, the optimal control that satisfies conditions (i)-
(iii) (and which we shall refer to as c20 for future reference)
attains a termination yield of 75.2%, picks rounds 2 and 7 to
apply control. Note that since the maximum line overload is
high in round 1, c20 allows some lines to become outaged in
round 1.

This point is further elaborated in Table 1, where “r”
indicates round and for each round, “κ” indicates maximum
line overload at the start of the round, “O” is the number of
lines outaged during the round, “I” is the number of islands at
the end of the round and “Y” is the (rounded) percentage of
demand being delivered end of the round. We stress that we
count all islands, even those that consist of a single bus with
no demand, and when computing the maximum line overload
we consider all lines, no matter how minor.

TABLE I
Cascade evolutions

No control c20
r κ O I Y κ O I Y

1 40.96 86 1 100 40.96 86 1 100
2 8.60 187 8 99 8.60 165 8 96
3 55.51 365 20 98 61.74 303 17 96
4 67.14 481 70 95 66.63 408 44 94
5 94.61 692 149 93 131.08 492 94 93
6 115.53 403 220 91 112.58 416 146 90
7 66.12 336 333 89 99.62 326 191 78
8 47.83 247 414 87 60.95 227 248 77
9 7.16 160 457 85 32.50 72 279 76
10 7.06 245 542 84 9.50 43 292 76
11 37.55 195 606 83 45.28 35 303 76
12 13.04 98 646 82 11.60 10 306 76
13 22.61 128 688 82 3.88 6 310 75
14 10.64 107 715 81 1.46 4 312 75
15 5.03 64 721 81 1.34 1 312 75
16 84.67 72 743 80 1.13 1 312 75
17 32.15 52 756 80 1.38 2 312 75
18 6.50 43 763 80 1.26 1 312 75
19 9.97 85 812 80 0.99 0 312 75
20 32.34 39 812 2 0.99 0 312 75

Discussion. We see that initially both cascades have very
high line overloads, many line outages and large amounts of
islanding. However, under c20 after line 11 the overages are
significantly smaller, and rapidly decreasing, and after round
8 the number of new outages and islands is also much smaller
(and decreasing); both in spite of the fact that control is last
applied in round 7. Thus, effectively, the cascade has been
“stabilized” under c20, long before the end of the time horizon.

The reader might wonder about the rapid decrease of yield
from 80% to 2% in the no-control case. This is due to
the termination feature in our cascades that requires all line
overloads to be eliminated by the end of the last round;
since the no-control cascade has very high maximum overload
(32.34), at the start of round 20, the termination rule forces a
drastic reduction in yield.

Nevertheless, in the no-control case, the combination of
comparatively high yield (up to round 4), high number of line
outages, large line overloads and large amount of islanding

suggest the possibility that many of the outages involve
unimportant lines, and likewise with many of the islands
(though of course a 20% yield loss should indicate a severe
contingency). One wonders if somehow the no-control option
might be attractive if enough time (i.e., rounds) were available.

TABLE II
Further evolution of no-control cascade from Table I

r 25 28 29 30 31 32 33 34
O 21.63 2.00 5.70 2.50 2.38 1.35 1.07 0.99
Y 79 78 78 78 78 78 78 78

To investigate these possibilities, we extended the no-control
cascade. Table II shows the results for selected rounds. We see
that the no-control approach finally yields stability by round
34, attaining yield 78%. This is slightly better (but very close)
to what c20 obtained in 20 rounds (and, furthermore, control
action under c20 was restricted to rounds 1-10). Nevertheless,
the no-control approach experiences significant line overloads
as late as round 32.

By maintaining high overloads into very late rounds, the
no-control strategy becomes more exposed to the unavoidable
uncertainty that should be taken into account when modeling
cascades, and which we have up to now ignored. We model
noise by means of fault outage rule (2.2). In the following set
of tests we assume that

εr = 0.01 + 0.05 ∗ br/10c. (10)

Possibly, noise should be increasing at a faster rate than the
above formula stipulates (perhaps exponentially). However,
the control considered in Table I as well as the no-control
approach are both exposed to significant amounts of noise
after round 10; more so in the no-control case. We would
thus expect that under rule (10) the no-control approach will
perform much more poorly.

To test these hypothesis, we ran 1000 simulations of cas-
cades under rule (10) for the no-control case and for control
using c20. The results are summarized as follows: using c20,
the average yield is 42.90 and the standard deviation of yield
is 27.47, whereas using no control the average yield is 7.96
and the standard deviation is 9.33. In other words, c20 proves
much more robust than the no-control strategy, which is not
surprising given the structure of rule (10). A question that
arises as a result is whether c20 is in some sense optimally
robust.

One way to investigate this question is to investigate con-
trols that are less exposed to uncertainty by restricting them to
a shorter timeline, i.e. by enforcing termination before round
20. For T = 10, 15, 25, we compute an optimal control
required to terminate by round T , and otherwise subject to
rules (i)-(iii), that is cr

v = br
v = 1 for all v and r, sr

v = 0 for
all v and 10 < r, and for each 1 ≤ r ≤ 10, either sr

v = 0.005
for all v, or sr

v = 0 for all v. We name these controls c10,
c15 and c25, respectively.

Table III presents the comparisons between all the options
we have considered. In this table, “DetY” is the yield in the
deterministic case (εr = 0 for all r), “MaxY” and “MinY”
are the maximum and minimum yields in all the simulations

5

(resp.), “AveY” is the average yield and “StddY” is the
standard deviation of yield.

TABLE III
Robustness comparison - 1000 runs using stochastic outage rule (2.2)

with noise as in (10)

Option DetY MaxY MinY AveY StddY
c10 37.49 39.05 0.00 11.81 11.84
c15 72.44 71.85 0.00 33.94 22.51
c20 75.19 76.30 1.17 41.90 27.47
c25 77.23 42.34 1.38 11.99 10.97

no control 77.75 36.04 0.00 7.96 9.33

Control c20 emerges as superior over c15 and c10. This
can be explained as follows. Even though c15 and c10 are
significantly less exposed to risk than c20, they are also
restricted to operating, and terminating, during a stage of
the cascade characterized by extremely high line overloads.
Control c20, by being able to operate over 20 rounds, has
“more time” while also avoiding the large uncertainty rounds
20 and higher. For this reason, c20 is also superior to c25 (their
averages are separated by more than one standard deviation).
One common feature that emerges in controls c10, c15, c20
and c25 (not shown in the table) is that no control is taken in
round 1, and control is taken in round 2 (and in the cases of
c10, c15 and c20, rounds 5 or 7).

We stress that (10) is one categorization of noise. Using
a different formula the outcome could be different, say c15
could prove best. However, the outlook we are taking here is
that by computing a robust control with respect to some rule
such as (10) we obtain a control that remains robust (though
possibly not optimally so) even if the model for uncertainty
were to be somewhat changed. And, in any case, computing
a control which is is somewhat robust should be better than
completely ignoring uncertainty.

To explore these issues, we study the following model

εr = 0.01 + 0.005 ∗ r, (11)

which can be considered a smoothed version of (10). Under
this model both c15 and c20 are exposed to more noise than
c10, and more noise than under rule (10). Consider Table IV.
We see that c20 still appears superior to the other controls,

TABLE IV
Robustness comparison - 1000 runs using stochastic outage rule (2.2)

with noise as in (11)

Option DetY MaxY MinY AveY StddY
c10 37.49 38.93 0.00 7.54 9.55
c15 72.44 63.94 3.41 28.02 17.94
c20 75.19 73.04 0.00 32.24 21.30
c25 77.23 54.62 0.25 16.84 12.66

no control 77.75 18.86 0.00 5.11 5.28

though c15 is almost as good.

The above experiments do not amount to a full optimal
robust control computation. Methodologies for computing
robust controls are discussed in the next section.

V. OPTIMIZATION METHODS

Given a control vector (c, b, s), denote by Θ̃R(c, b, s) the
final demand at termination of the R-round cascade controlled

by (c, b, s). Our goal is to maximize Θ̃R(c, b, s) over all
controls. This is a nonconcave, in fact very combinatorial,
maximization problem [8], [18]; it is very large (e.g. if R = 10
the (c, b, s) vector has more than 180000 variables in the case
of the Eastern Interconnect). It is also important to incorporate
stochastics.

In principle, the deterministic case of our problem could
be tackled using mixed-integer programming techniques, and
the stochastic version, using stochastic programming [16]. Of
course, one could choose a different formulation of the cascade
control problem than the one we chose (using a different kind
of control, for example). But any formulation will have to
deal with the combination of combinatorics in the network
dynamics, multistage behavior, stochastics and very large size.
In our opinion, this combination places the problem outside
the capabilities of current optimization methodology, even in
the deterministic case. We remind the reader that we envision
our control as being computed in real time and we might only
have one hour, or less, to do so.

Another point to stress is that nonconcavity in a maximiza-
tion problem leads to non-monotone behavior: in our case, just
because a small change in control leads to an improvement
does not imply that a larger change will result in greater
improvement.

In our approach, a basic method we rely on is outlined in
Procedure 5.1.

Procedure 5.1: FIRST-ORDER ALGORITHM
Input: a control vector (c, b, s).
For k = 1, 2, . . . do

1. Estimate g = ∇Θ̃R(c, b, s).
2. Choose “step-size” µ ≥ 0 and update control to

(c, b, s) + µ ∗ (gc, gb, gs).
3. If µ is small enough, stop.

This is a common first-order (steepest-ascent) method. In
the deterministic case, Step 1 should be interpreted as a an
approximate rule since Θ̃R is not differentiable (our stochastic
outage rule 2.2 does smooth out the expectation). The vices
of procedure 5.1 are well known: even if Θ̃R were smooth, its
nonconcavity implies that the steepest-ascent method may not
converge to a global optimum. And even if Θ̃R were smooth
and concave, steepest ascent may zigzag or stall. See [18].

In summary, Procedure 5.1 should be viewed as a local
search method with which to explore the neighborhood of
a solution. Finally, in our setting the procedure could prove
expensive, since each evaluation of Θ̃R (including in the
estimation of ∇Θ̃R through finite differences) requires a
cascade simulation, each round of which requires two power
flow computations in our setup.

On the positive side, however, the procedure is flexible
enough to handle (at increased computational cost) important
features, such as more realistic AC power flow models, or
more complete renditions of low-level controls in the operation
of a power grid. Essentially, Procedure 5.1 is an example
of simulation-based optimization, i.e. it only needs to have
a “black-box” that computes the function Θ̃R.

An active research field that considers optimization under

6

such assumptions is that of derivative-free optimization (see
[13]) and related methods that incorporate second-order infor-
mation [22]. In our estimation, these methodologies may not
scale well to problems of the size we consider. In forthcoming
work we will experiment on adaptations of these methodolo-
gies to our problem.

When we consider a model that includes stochastics, the
first-order method can be viewed as a stochastic gradients
algorithm (see [20], [17] – an alternative methodology is
provided by bundle methods). In the stochastic gradients
approach, a fixed sample path of the appropriate random
variables is chosen in advance of each gradient and step-length
computation. Care must be taken to ensure that this idea is
properly implemented. In our implementation, we simulate
one cascade Ω under the current control vector (c, b, s) and
then compute the change in yield resulting from infinitesimally
small deviations away from (c, b, s) on cascades with precisely
the same sequence of line outages as Ω. It is outside of the
scope of this writeup to describe this idea in complete detail.

Whether we use the stochastic setting or not, we cannot
completely rely on Procedure 5.1 as the sole optimization
engine – to repeat the above, the resulting algorithm would
both be too slow and likely to get trapped in local maxima.
We employ two ideas to avoid these difficulties.

I. The optimal scaling problem. Consider the following
variation of the optimal control problem, assuming determin-
istic outages (εr = 0 for all r). At round r, for each island K of
Gr, all loads in K are scaled by a common value 0 ≤ λr

K ≤ 1.
That is to say, in Step 3 of Template 3.1 we reset

new demand at v = λr
Kdr

v (12)

for each load bus v in K. The objective is to choose all the
λ parameters so as to maximize demand being delivered at
termination of the cascade.

At first glance, this problem might seem to be ill-posed,
since potentially there are an exponential number of islands
K that could be realized in different rounds, and in principle
we need to specify λ parameters for each of these islands.
However, a given control need only specify at most R n
nonzero values λr

K (here n = number of buses). This is seen
as follows. At round r = 1 we only need to choose λ1

K

for those islands K that are actually in existence at the start
of the cascade. Having chosen the λ1

K , and since we use a
deterministic outage rule, there will be a unique realization
of islands at round 2, and consequently only the values λ2

K

corresponding to those islands need to be specified. This
process continues inductively so that at any round, at most
n multipliers need to be specified.

It is possible to show that rule (12) is a special case of the
affine control law (7). Further, we have:

Theorem. In the memory-free version of outages (α = 1 in
eq. (2)), an optimal scaling control can be computed in time
O(mR/R!).

We will skip the proof of this theorem for economy of space.
As a result of the theorem, there is a theoretically efficient

algorithm to solve the optimal scaling problem, and in fact,
initial testing of the algorithm shows it to be far more efficient
than the worst-case bound in the theorem. This is significant
because it allows us to solve, exactly, a problem of the general
type that we are interested in. Of course, the conditions under
which the theorem applies are restrictive; even so however
we expect that the application of the theorem should discover
useful “structure” of the optimal controls that would carry
across models.

Moreover, the theorem extends to other cases (such as
imposing ranges on the allowable scale values, restricting
control to a subset of the rounds, and other restrictions) and we
estimate that the memory-free condition can be circumvented.
A focus of forthcoming work will be to appropriately extend
the theorem so as to obtain robust scaling controls.

Our initial experiments solving the scaling problem appear
promising. By the time of the conference we hope to report
on more substantial tests.

II. Segmented search. Consider a fixed partition
(Σ1,Σ2, . . . ,ΣH) of the load buses, and consider triples
(ĉr

i , b̂
r
i , ŝ

r
i) for each 1 ≤ r < R and 1 ≤ i ≤ H .

We can use these triples to define an affine control (7):
for each 1 ≤ r < R, and each demand bus v, we set
(cr

v, br
v, sr

v) = (ĉr
i , b̂

r
i , ŝ

r
i) if v ∈ Σi.

An example (which we use in our implementation) is that
where the Σi are demand quantiles. That is to say, if L is the
number of demand buses, then Σ1 contains the bH/Lc buses
with largest demand, Σ2 contains the next bH/Lc buses with
largest demand, and so on.

The first-order algorithmic template 5.1 is easily adapted
to a (segmented) first-order search. The advantage of this
approach is that it considerably reduces the dimensionality
of the problem, even if H is chosen relatively large, such as
H = 100. Further, a segmented control is arguably ’fair’ in
that it specifies, to some degree, that similar buses are bound
by similar control laws, though we stress that when applying
our control the actual demand reduction can be very different
for two buses in the same segment but in different islands.

VI. SECOND SET OF EXPERIMENTS

We report on a parallel implementation of the first-order
method using the familiar master-worker paradigm. Each
worker process performs computations of the yield function
Θ̃R(c, b, s) for controls (c, b, s) whereas the master carries out
the gradient search algorithm. In the experiments we report
on here, we use the linear power flow model; the resulting
Laplacian systems are solved as (nominal) linear programs
using Cplex 12.0 [14] and Gurobi 3.0 [15]. Interprocess
communication uses Unix sockets. The computations below
were performed on three eight-core i7 machines with 48GB
of RAM each, for a total of 24 worker processes.

Our testing procedure is the same as in Section IV: we
interdict the grid by removing K random lines, we then
compute a control and finally we report on the behavior of the
control. Table V reports on experiments using R = 4 rounds;
when applying the memory rule (2) we used α = .55, and

7

we used the deterministic outage rule. The segmented first-
order search was performed using H = 50 segments, and
fixing br

i = 1 for all rounds r and segments i. In addition,
each iteration of the first-order procedure Procedure 5.1 was
broken up into two sub-iterations; in the first we fix the c
values and perform a step restricted to the s-coordinates, and
in the second the reverse. The step-size computation Step 2 in
was carried out by first rescaling the gradient (to norm 1) and
then evaluating 100 steps in multiples of 0.01.

TABLE V
Performance of algorithm on 4-round cascades

K yield, yield, wallclock
no control control (sec)

1 90.04 95.03 268
2 1.25 50.13 174
5 32.94 81.05 214
10 2.02 36.97 194
20 1.64 27.84 220
50 0.83 16.96 477

In Table V, ’wallclock’ is the observed parallel running time
of the first-order method, which dominates.

Note that in the case K = 1 the interdiction has limited
effect, but even so the control is able to recover additional
demand. In the case K = 5 the demand loss in the no-control
case is substantial, but so is the benefit of the control. Finally,
in the cases K = 2, 10, 20, 50 the network collapses but the
control sill recovers a significant amount of demand. More
experiments of this type will be forthcoming.

In the next set of experiments we use the case K = 50
in Table V to investigate in more detail the behavior of the
algorithm as R increases. We used α = 0.5 for all these
experiments. Note that keeping α constant but increasing R
effectively considers cascades that take longer from a ’real
time’ perspective, thereby giving more power to an agent
applying control. If, instead, we were to increase R while also
decreasing α, thus giving more weight to ’history’, we would
be able to model cascades that last for a fixed period of time,
but where the individual rounds encompass shorter spans of
time.

Table VI reports on the experiments. The column labeled
’grad steps’ reports the number of gradient steps.

TABLE VI
Impact of increasing number of rounds

R yield yield wallclock grad
no control gradient (secs) steps

5 4.13 31.86 1340 7
6 2.02 25.86 657 6
7 2.25 25.98 434 3
8 0.78 37.72 3151 10

Comments on Table VI:
Computational workload. Consider the case R = 8. Since
we are using H = 50 segments, we have altogether 100
control variables cr

i and sr
i per round r. Since there are 7

rounds during which we will apply control, we have a total
of 700 individual variables. Each partial derivative estimation

requires two simulations; thus in total each gradient estimation
entails 1400 cascade simulations. Per iteration, the step-size
computations require 200 additional cascade simulations;
for a total of 1600 simulations per iteration of Procedure
5.1. The case R = 8 required 10 gradient iterations, and
thus in total 16000 simulations. Each 8-round simulation
(of the 15000-bus Eastern Interconnect, and using one core
of the i7 CPU) requires, on average, 4.5 CPU seconds.
This is primarily due to the two power flow computations
per round, and linear solver data structure cleanup at the
end of the simulation (and to a much lesser degree, to
graph algorithms used to identify islands). Thus in total the
computation of the R = 8 case required approximately 72000
CPU seconds. Since we have 24 worker cores, this translates
to approximately 3000 wallclock seconds. The balance of
time with respect to the actual wallclock time in Table VI
(i.e., 151 seconds) is due to inter-process communication and
networking delays, and logging of statistics to disc by the
master. On a per-simulation, per-core basis, this amounts to
151 ∗ 24/16000 ≈ 0.22 seconds, or roughly 5% as compared
to 4.5 seconds total per simulation.

Qualitative issues. A comparison of the entry in Table VI for
R = 5 and those for R = 6, 7 might appear to indicate that
the controls computed for R = 6 and 7 are locally optimal,
because the control that achieves yield 31.86% for R = 5
“should be” feasible for all R ≥ 5.

While it is true that the controls in Table VI can all be
improved upon, the argument in the above paragraph is not
quite correct. Refer to our Cascade Control template 3.1. The
termination step constitutes a last-recourse form of control –
if there are line overloads at the start of the last round, loads
are scaled so as to remove the overloads, and in that case the
cascade is considered terminated, regardless of history (and
of particular, of rule (2). We model termination this way on
purpose, so as to provide an agnostic termination criterion
that does not depend on numerical parameters of our model,
in particular, α. Consider Table VII.

TABLE VII
Maximum line overload at end of each round on case K = 50 case from

Table VI

C5 C6 C7 C8 None
1 6.47 1.83 2.22 3.79 177.83
2 14.12 1.83 1.57 33.49 122.06
3 36.79 1.23 1.30 6.90 114.45
4 1.72 1.14 2.26 6.70 22.47
5 0.99 1.18 59.33 45.43
6 1.08 1.98 40.33
7 1.18 114.90

In this table, the columns labeled “Ck”, for k = 5, . . . , 8
represent the controls in Table VI, whereas “None” means no
control. The table shows, for each round, the maximum line
overload at the end of that round, for each control option. We
see that C5 reaches the start of the termination round, round 5,
with maximum overload 1.7232; the current yield at the start
of round 5 is 54.90% (not shown in the Table) and most of the
demand is in one island. Hence the termination step will scale
demands by 1/1.7232 and yield will drop to 54.90/1.7232 ≈

8

31.86, as Table VI shows. As per our rules, this terminates
the cascade, although since α = 0.5, and because the end-
or-round 3 maximum overload is very large, the maximum
history-dependent line overload will be much larger than 1.732
(it should be at least 0.5 ∗ 36.79 = 18.40. Hence control C5,
if implemented in a cascade with 6 or more rounds, will not
result in a stable state by the end of round 5.

Another point that emerges from Table VII is that C5 and
C8 tend to maintain higher line overloads late into the cascade
– this is a severe cascade, and having more time to apply
control pays off. But by doing so C5 and C8 are likely less
robust. Rather than performing the same robustness analysis
as in Section IV, we will next consider the stability of the
controls with respect to the α parameter in eq. (2) which in
the above tests was set to 0.5.

This is a delicate issue, because the value of α is related
to the time duration of a round, and thus the structure of an
optimal control should depend on α (in other words, how much
time we have impacts what kind of control we can apply). The
question is how stable a control remains as α is perturbed.

TABLE VIII
Stability of controls in Table VI as a function of α

α C5 C6 C7 C8

0.45 1.49 25.05 24.52 27.10
0.46 1.49 25.33 24.52 25.31
0.47 28.49 25.33 24.52 25.31
0.48 28.47 25.33 24.52 26.08
0.49 28.47 25.33 24.52 28.56
0.50 31.86 25.86 25.98 37.72
0.51 21.99 25.86 25.98 34.11
0.52 20.99 25.86 25.98 35.94
0.53 20.99 25.86 25.98 32.75
0.54 20.99 25.86 25.98 32.75
0.55 20.99 25.86 25.98 31.83

In Table VIII we show the yields obtained by running the
Ck controls from Table VI using their respective numbers of
rounds, but using different values for α. We see that in terms
of the deviation from the nominal case (i.e., α = 0.5), C6 and
C7 prove the most stable, C8 significantly less so and C6 is
very unstable. It is still the case that C8 remains best overall:
this is due to the severity of the cascade.

VII. CONCLUSION

A qualitative observation that emerges from the experiments
in Sections IV and VI is that postponing control to later rounds
can make a control strategy less robust. This is intuitively clear.
On the other hand, an opposing observation that emerges is
that in the case of a severe cascade it may not be best to
try to stop the cascade immediately, to some degree allowing
unavoidable outages to take place. A robust control takes
advantage of the two observations.

In forthcoming work we plan to experiment with a robust
version of the optimal scaling problem in Section V. We expect
that this will provide an excellent start for the (stochastic
gradients) algorithm 5.1. A second focus will be in adapting
our machinery to AC power flows.

ACKNOWLEDGMENT

We would like to thank Ian Dobson and Ian Hiskens for
fruitful discussions, and for making the Eastern Interconnect
data available to us.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, NJ (1993).

[2] R. Alvarez, Interdicting Electric Power Grids, Masters’ Thesis, U.S. Naval
Postgraduate School, 2004.

[3] G. Andersson, Modelling and Analysis of Electric Power Systems. Lecture
227-0526-00, Power Systems Laboratory, ETH Zürich, March 2004.

[4] A. Bergen and V. Vittal, Power Systems Analysis, Prentice-Hall (1999).
[5] D. Bienstock and S. Mattia, “Using mixed-integer programming to solve

power grid blackout problems,” Discrete Optimization Vol. 4 (2007), 115–
141.

[6] D. Bienstock and A. Verma, “The N − k Problem in Power Grids: New
Models, Formulations, and Numerical Experiments,” SIAM J. Opt. Vol
20 (2010), 2352–2380.

[7] V.M. Bier, E.R. Gratz, N.J. Haphuriwat, W. Magua, K.R. Wierzbickiby,
“Methodology for identifying near-optimal interdiction strategies for a
power transmission system, “ Reliability Engineering and System Safety
Vol 92 (2007), 1155–1161.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press.

[9] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, “Critical points and
transitions in an electric power transmission model for cascading failure
blackouts,” Chaos, vol. 12, no. 4, 2002, 985-994.

[10] B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson, “Blackout miti-
gation assessment in power transmission systems, “ 36th Hawaii Interna-
tional Conference on System Sciences, Hawaii, 2003.

[11] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, “Complex dynam-
ics of blackouts in power transmission systems,” Chaos, vol. 14, no. 3,
September 2004, 643-652.

[12] B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole, “Evidence for
self organized criticality in electric power system blackouts,” IEEE
Transactions on Circuits and Systems I, vol. 51, no. 9, Sept. 2004, 1733-
1740.

[13] A.R. Conn, K. Scheinberg and L.N. Vicente, Introduction to derivative-
free optimization, MPS-SIAM Series on Optimization, Philadephia (2009)

[14] IBM ILOG, Incline Village NV.
[15] Gurobi Optimization, Houston TX.
[16] J.T. Linderoth and S. J. Wright, “Decomposition Algorithms for Stochas-

tic Programming on a Computational Grid, “ Computational Optimization
and Applications Vol 24 (2003) 207–250.

[17] H.J. Kushner and D.S. Clark, Stochastic approximation methods for
constrained and unconstrained systems. Springer-Verlag Berlin, (1978).

[18] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley
(1984).

[19] A. Pinar, J. Meza, V. Donde, and B. Lesieutre, “Optimization Strategies
for the Vulnerability Analysis of the Electric Power Grid,” SIAM Journal
on Optimization Vol 20 (2009), 1786–1810.

[20] H. Robbins and S. Monro, “On a stochastic approximation method,”
Annals of Mathematical Statistics Vol 22 (1951), 400 - 407.

[21] Final Report on the August 14, 2003 Blackout in the United States and
Canada: Causes and Recommendations, U.S.-Canada Power System Out-
age Task Force, April 5, 2004. Download from: https://reports.energy.gov.

[22] A. Wächter and L. T. Biegler, “On the Implementation of an Interior-
Point Filter Line-Search Algorithm for Large-Scale Nonlinear Program-
ming,” Mathematical Programming Vol 106 (2006), 25 – 57.

Daniel Bienstock Daniel Bienstock works on computational applied mathe-
matics with focus on methodology of large-scale optimization and applications
to engineering, physics and biology. He received the PhD in Operations
Research from MIT in 1985.

