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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

Large unexpected fluctuations in wind power can cause
additional flows through the transmission system (grid)

Large power deviations in renewables must be balanced by
other sources, which may be far away

Flow reversals may be observed – control difficult

A solution – expand transmission capacity! Difficult
(expensive), takes a long time

Problems already observed when renewable penetration high
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

“Fluctuations” – 15-minute timespan

Due to turbulence (“storm cut-off”)

Variation of the same order of magnitude as mean

Most problematic when renewable penetration starts to
exceed 20− 30%

Many countries are getting into this regime
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Optimal power flow (economic dispatch, tertiary control)

Used periodically to handle the next time window
(e.g. 15 minutes, one hour)

Choose generator outputs

Minimize cost (quadratic)

Satisfy demands, meet generator and network constraints

Constant load (demand) estimates for the time window
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OPF:

min c(p) (a quadratic)

s.t.

Bθ = p − d (1)

|yij(θi − θj)| ≤ uij for each line ij (2)

Pmin
g ≤ pg ≤ Pmax

g for each bus g (3)

Notation:

p = vector of generations ∈ Rn, d = vector of loads ∈ Rn

B ∈ Rn×n, (bus susceptance matrix)

∀i , j : Bij =


−yij , ij ∈ E (set of lines)∑

k;{k,j}∈E ykj , i = j

0, otherwise
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min c(p) (a quadratic)

s.t.

Bθ = p − d

|yij (θi − θj )| ≤ uij for each line ij

Pmin
g ≤ pg ≤ Pmax

g for each bus g

How does OPF handle short-term fluctuations in demand (d)?
Frequency control:

Automatic control: primary, secondary

Generator output varies up or down proportionally to aggregate
change

How does OPF handle short-term fluctuations in renewable output?

Answer: Same mechanism, now used to handle aggregate wind power

change
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Wind model?

Need to model variation in wind power between dispatches

Wind at farm attached to bus i of the form µi + wi – Weibull
distribution?
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Wind model

From CIGRE report, aggregated over Germany:
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Experiment

Bonneville Power Administration data, Northwest US

data on wind fluctuations at planned farms

with standard OPF, 7 lines exceed limit ≥ 8% of the time
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Line limits and line tripping

If power flow in a line exceeds its limit, the line becomes compromised
and may ’trip’. But process is complex and time-averaged:

Thermal limit is most common

Thermal limit may be in terms of terminal equipment, not line itself

Wind strength and wind direction contributes to line temperature

In medium-length lines (∼ 100 miles) the line limit is due to voltage
drop, not thermal reasons

In long lines, it is due to phase angle change (stability), not thermal
reasons

In 2003 U.S. blackout event, many critical lines tripped due to
thermal reasons, but well short of their line limit

Harnett, Bienstock, Chertkov Columbia University, LANL

Robust Optimal Power Flow with Uncertain Renewables



Line trip model

summary: exceeding limit for too long is bad, but complicated

want: ”fraction time a line exceeds its limit is small”

proxy: prob(violation on line i) < ε for each line i
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Goals

simple control

aware of limits

not too conservative

computationally practicable
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Control

For each generator i , two parameters:

pi = mean output

αi = response parameter

Real-time output of generator i :

pi = pi − αi

∑
j

∆ωj

where ∆ωj = change in output of renewable j (from mean).∑
i

αi = 1

∼ primary + secondary control
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Set up
control
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Computing line flows

wind power at bus i : µi + wi

DC approximation

Bθ = p − d
+(µ+ w − α

∑
i∈G wi )

θ = B+(p̄ − d + µ) + B+(I − αeT )w

flow is a linear combination of bus power injections:

f ij = yij(θi − θj)
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Computing line flows

f ij = yij

(
(B+

i − B+
j )T (p̄ − d + µ) + (Ai − Aj)

Tw
)
,

A = B+(I − αeT )

Given distribution of wind can calculate moments of line flows:

f̄ij = yij(B
+
i − B+

j )T (p̄ − d + µ)

var(f ij) := s2
ij ≥ y2

ij

∑
k(Aik − Ajk)2σ2

k

(assuming independence)

and higher moments if necessary
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Chance constraints to deterministic constraints

recall chance constraints: P(|f ij| > f max
ij ) < εij

from moments of f ij, can get conservative approximations
using e.g. Chebyshev’s inequality

for Gaussian wind, can do better, since f ij is Gaussian :

f max
ij ± f̄ij ≥ sijφ

−1
(

1−
εij
2

)
Other distributions?
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Other distributions?

Real-time output of generator i : pi = pi − αi
∑

j ∆ωj

Flow fp,q on any line (p, q) is an bilinear combination of the
ωj and the (p̄i , αi ).

Wind distribution is VAR convex if the VAR (value-at-risk) of
every fp,q is convex in the p̄i and the αi .

If so: cutting-plane algorithm to solve chance-constrained
problem.
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Formulation:
Choose mean generator outputs and response parameters to minimize
expected cost, so that the probability that any given line overloads is
small.

min
p,α

E[c(p)] :

s.t. Bδ = α, δn = 0

s2
ij ≥ y2

ij

∑
k∈W

σ2
k(B+

ik − B+
jk − δi + δj)

2

Bθ = p + µ− d , θn = 0

f ij = yij(θi − θj), f max
ij ± f ij ≥ sijφ

−1(1− εij
2

)∑
i∈G

pi +
∑
i∈W

µi =
∑
i∈D

di∑
i∈G

αi = 1, α ≥ 0
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Toy example

1 What if no line limits?

2 What if tight limit on line connecting generators?
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Answer 1

What if no line limits?
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Answer 2

What if small limit on line connecting generators?
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Experiment

How much wind penetration can we handle?
And how much money does this save?

39-bus New England system from MATPOWER

30% penetration, CC-OPF cost 264,000
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Experiment

’standard’ OPF solution with 10% buffer on line limits
feasible only up to 5% penetration (right)

Cost 1,275,000 – almost 5 times greater than chance-constrained
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Big cases

Polish system - winter 2003-04 evening peak
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Big cases

Polish 2003-2004 winter peak case

2746 buses, 3514 branches, 8 wind sources

5% penetration and σ = .3µ each source

CPLEX: the optimization problem has

36625 variables

38507 constraints, 6242 conic constraints

128538 nonzeros, 87 dense columns
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Big cases

CPLEX:

total time on 16 threads = 3393 seconds

”optimization status 6”

solution is wildly infeasible

Gurobi:

time: 31.1 seconds

”Numerical trouble encountered”
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Cutting-plane method
overview

Cutting-plane algorithm:

remove all conic constraints
repeat until convergence:

solve linearly constrained problem
if no conic constraints violated: return
find separating hyperplane for maximum violation
add linear constraint to problem
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Cutting-plane method

Candidate solution violates conic constraint

-3 -2 -1 1 2 3

-4

-2

2

4

6

8

10
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Cutting-plane method

Separate: find a linear constraint also violated
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-4

-2

2

4

6

8

10

Harnett, Bienstock, Chertkov Columbia University, LANL

Robust Optimal Power Flow with Uncertain Renewables



Cutting-plane method

Solve again with linear constraint
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Cutting-plane method

New solution still violates conic constraint
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Cutting-plane method

Separate again
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Cutting-plane method

We might end up with many linear constraints
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Cutting-plane method

... which approximate the conic constraint
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conic constraint: √
x2
1 + x2

2 + ...+ x2
k = ‖x‖2 ≤ y

candidate solution:
(x∗, y∗)

cutting-plane (linear constraint):

‖x∗‖2 +
x∗T

‖x∗‖2
(x − x∗) =

x∗T x

‖x∗‖2
≤ y
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Polish 2003-2004 case
CPLEX: “opt status 6”
Gurobi: “numerical trouble”

Example run of cutting-plane algorithm:

Iteration Max rel. error Objective

1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6
12 8.9e-7 7.0965e6

Total running time: 32.9 seconds
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Back to motivating example

BPA case

standard OPF: cost 235603, 7 lines unsafe ≥ 8% of the time
CC-OPF: cost 237297, every line safe ≥ 98% of the time
run time = 9.5 seconds (one cutting plane!)
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Polish grid “winter peak” example:

Wind farms co-located with the 18 largest generators

Penetration: 20% (roughly 30% renewable variance)

Standard OPF: four lines overloaded 50% of the time, one line
overloaded 32% of the time (plus other overloaded lines).

CCOPF: Seven lines overloaded < 0.24% of the time, increase
in cost ≈ 1%, CPU time: 15 seconds.
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Conclusion

Our chance-constrained optimal power flow:

safely accounts for variability in wind power between dispatches

uses a simple control which is easily integrable into existing system

is fast enough to be useful at the appropriate time scale
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