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|
Robust Optimization

Optimization under parameter (data) uncertainty

Ben-Tal and Nemirovsky, El Ghaoui et al

Bertsimas et al

Uncertainty is modeled by assuming that data is not known
precisely, and will instead lie in known sets.

Example: a coefficient a; is uncertain. We allow a € [li, uj].

Typically, a minimization problem becomes a min-max problem.
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What is the most common word in robust optimization literature? J
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What is the most common word in robust optimization literature? J

“Tractable”

convex uncertainty models — convex optimization techniques

— polynomial-time algorithms

— sacrifice model richness in favor of theoretical algorithm efficiency

— in practice, SOCP not quite so “tractable”
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Mean-Variance Portfolio Optimization J

@ minAx'Qx — u'x
Subject to:

Ax > Db
@ u = vector of “returns”, Q = “covariance” matrix
@ X = vector of “asset weights”
@ Ax > b: general linear constraints
@ )\ > 0 = “risk-aversion” multiplier
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Mean-Variance Portfolio Optimization J

@ minAx'Qx — u'x
Subject to:

Ax > Db
@ u = vector of “returns”, Q = “covariance” matrix
@ X = vector of “asset weights”
@ Ax > b: general linear constraints
@ )\ > 0 = “risk-aversion” multiplier

— want to model uncertainty in
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The histogram model J

@ Parameters: 0 <y <42 <...<~ <1,
integers 0 < n; <Nj, 1<i <K
for each asset j: fi; = expected return
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The histogram model J

@ Parameters: 0 <y <42 <...<~ <1,
integers 0 < n; <Nj, 1<i <K
for each asset j: fi; = expected return

@ between n; and N; assets | satisfy:
Q=) < pp < (1 —vi-1)i

) Zj M > I'Zj fj; T > 0 aparameter
@ (R. Tutincu) For 1 < h <H,

e aset (“tier") T, of assets, and a parameter I't, > 0

foreach h, > icr pi > Th ) jes, A
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General methodology:
Benders’ decomposition (= cutting-plane algorithm)

Generic problem: miny ex Maxgep f (X, d)

— Maintain a finite subset D of D (a “model” )
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Generic problem: miny ex Maxgep f (X, d)

— Maintain a finite subset D of D (a “model” )

GAME

© Implementor: solve minyex max g f(x,d),
with solution x*

@ Adversary: solve maxqcp f(x*,d), with solution d

© Add dto D,andgotol.
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|
Why this approach J

@ Decoupling of implementor and adversary yields considerably
simpler, and smaller, problems

@ Decoupling allows us to use more sophisticated uncertainty
models

@ If number of iterations is small, implementor’s problem is a small
“convex” problem

@ Most progress will be achieved in initial iterations — permits “soft”
termination criteria
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Implementor’s problem
A convex quadratic program

At iteration m, solve

min AXTQx — r
Subject to:
Ax > b
T P —
r gp(i)x, i=1,...,m

Here, p(1),- - -, k(m) are given return vectors
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Adversarial problem: A mixed-integer program
X* = given asset weights J

min 37 X"y

Subject to:

Bl — > vicaYi) < pp < (= dmy) Vi>1
>iVvi <1, Vj (each assetin at most one segment)
n < Zj yi < Nj, 1<i <K (segment cardinalities)
Sier i = Th Yjer, i, 1< h <H (tierinegs.)

p; free, yj = Oorl, alli,j
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Why the adversarial problem is “easy” J

(K =no. of segments, H = no. of tiers)

Theorem . For every fixed K and H, and for every € > 0, there is an
algorithm that finds a solution to the adversarial problem with optimality
relative error < ¢, in time polynomial in e~ and n (= no. of assets).
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The simplest case

max > X;*6;

Subject to:

>y 6 < T

0 <4 <uy;,yj=00r1, alj
>i¥i <N

- a cardinality constrained knapsack problem
B. (1995), DeFarias and Nemhauser (2004)
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The LP relaxation x* = given asset weights
should (?) be tight J

min 37 X"y

Subiject to:

Bl = >vicaYi) < < (1 — dvyi) Vi>1
>iVvi <1, Vj (each assetin at most one segment)
n < EJ- yi < N;j, 1<i <K (segment cardinalities)
Sier i = Th Yjer, i, 1< h <H (tierinegs.)

p free, 0 < y; < 1, alli, ]
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Robust problem:
V =min AXXTQx —r

Subjectto: Ax > b
r < u'x, V pachievable by adversary
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V =min AXXTQx —r
Subjectto: Ax > b
r < u'x, V pachievable by adversary
Robust problem for relaxed adversary:
V =min AXXTQx —r
Subjectto: Ax >b

r < u'x, V pachievable by relaxed adversary

V* >V, perhaps V* =V,
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Robust problem for relaxed adversary:
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Robust problem for relaxed adversary:

V =min AXXTQx —r
Subjectto: Ax > b
r < u'x, V pachievable by relaxed adversary

or, V =min AXxTQx —r

Subjectto: Ax > b
r < minimum return(x)
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Robust problem for relaxed adversary:
V =min AXXTQx —r
Subjectto: Ax > b
r < u'x, V pachievable by relaxed adversary
or, V =min AXxTQx —r
Subjectto: Ax > b
r < minimum return(x)

but, minimum return(x) = min Zj X i

Subjectto:  Mip + My > W
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Robust problem for relaxed adversary:
V =min AXXTQx —r
Subjectto: Ax > b
r < u'x, V pachievable by relaxed adversary
or, V =min AXxTQx —r
Subjectto: Ax > b
r < minimum return(x)

duality: minimum return(x) = max W'«

Subjectto:  M{a = x, Mja = 0, a >0
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Robust problem for relaxed adversary:
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Robust problem for relaxed adversary:
V =min AXXTQx —r

Subjectto: Ax > b
r < minimum return(x)

Robust problem:
min AxTQx — r

Subject to:
Ax > b
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Robust problem for relaxed adversary:
V =min AXXTQx —r

Subjectto: Ax > b
r < minimum return(x)

Robust problem:
min AxTQx — r
Subject to:
Ax > b
r—vla <0

MIa—X = 0, Mga=0, a>0
DETIEIRIE IS (olo o] [V [ ERULIVEIWAINEWAE xperiments in Robust Portfolio Optimization

29th July 2007

16 /43



Robust problem for relaxed adversary:

V* = min AXTQx —r
Subjectto: Ax > b
r—wia <0
(=) MIa—X =0
MZTa =0 a>0
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Robust problem for relaxed adversary:

V* = min AXTQx —r
Subjectto: Ax > b
r—Wwia <0

Let & = optimal duals for (**)
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Robust problem for relaxed adversary:

V* = min AXTQx —r
Subjectto: Ax > b
r—wia <0
(=) MIa—X =0
MZTa =0 a>0

Let & = optimal duals for (**)
V* = min AXTQx —r
Subjectto: Ax > b

r—a'x <0

(r — pu'x <0, Vpuavailable to strict adversary)

Problem: Find p available to strict adversary, and with u = i
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Benders’ algorithm with strengthening J

Step 1. Solve relaxed robust problem; answer = i

Step 2. Solve MIP to obtain vector f which is legal for histogram
model, and with i =~ 1

Step 3. Run Benders beginning withthe cut r — a'x < 0
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Alternate algorithm? J

Step 1. Solve relaxed robust problem, let 7 be the min-max return
vector

Step 2. Find a cut o' i < ag, that separates i from the convex hull of
vectors available to the strict adversary

Step 3. Add aTﬁ < ap to the definition of the adversarial problem, and
goto 1.
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Example: 2464 assets, 152-factor model. CPU time: 300 seconds
No Strengthening — straight Benders J

10 segments (a: “heavy tail”)
6 tiers: the top five deciles lose at most 10% each, total loss < 5%

1.00
0.80 —i

0.80 4

0.70 4

0.60

0.50 4

“\,nominal
0.40 | “\, adversary
“\.implementor

0.30 4

0.20 4

0.10 4

L o I B B B L S I B B R
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Same run J

2464 assets, 152 factors;
10 segments, 6 tiers

250 4
2254
200+
175
150
100
754
504

25

O 1 T T T T T T T T T T T T T
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Summary of average problems with 3-4 segments, 2-3 tiers

columns | rows | iterations time | imp. time | adv. time
(sec.)
1 500 20 47 1.85 1.34 0.46
2 500 20 3 0.09 0.01 0.03
3 703 | 108 1 0.29 0.13 0.04
4 499 | 140 3 3.12 2.65 0.05
5 499 20 19 0.42 0.21 0.17
6 1338 81 7 0.45 0.17 0.08
7 2019 | 140 8| 4153 39.6 0.36
8 2443 | 153 2| 12.32 9.91 0.07
9 2464 | 153 111 | 100.81 60.93 36.78
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| time | bigQP | bigMIP [ iters [ impT | advT [ Olvars

A 327.04 | 252 | 211.72 | 135 | 12.27 | 100.24 5000
C 29.32 | 3.01 9.35 27 1.02 | 15.76 4990
F 74.06 | 13.57 | 15.96 27 247 | 41.42 13380
G* || 681.12 - - 19 64.7 | 615.54 | 20190
I 124.82 | 93.38 | 22.58 1 417 2.46 24640

Table: Heavy-tailed instances, 10 segments, 6 tiers, tol. = 1.0e %3
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500 500 499 499P | 703 * 1338 2443
error x 20| x 20 x 20| x 140 | x 108 x 81| x 153
5.0e—2 | 214.53 | 14.81 | 144.86 | 122.53 | 11.77 | 274.64 | 140.29
1.0e—2 | 223.21 | 15.49 | 144.86 | 122.53 | 14.66 | 356.98 | 140.29
5.0e—3 | 254.73 | 16.03 | 162.41 | 126.63 | 34.16 | 363.84 | 140.29
1.0e—3 | 300.88 | 35.23 | 183.12 | 157.49 | 64.61 | 469.75 | 140.29
5.0e—* | 361.20 | 37.92 | 216.52 | 167.40 | 73.87 | 598.94 | 140.29

Table: Convergence time on heavy-tailed instances, 10 segments, 6 tiers
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What is the impact of the uncertainty model J

All runs on the same data set with 1338 columns and 81 rows

@ 1 segment: (200,0.5)
robust random return = 4.57, 157 assets

@ 2 segments: (200, 0.25), (100, 0.5)

robust random return = 4.57, 186 assets
@ 2 segments: (200, 0.2), (100, 0.6)

robust random return = 3.25, 213 assets

@ 2 segments: (200,0.1), (100, 0.8)
robust random return = 1.50, 256 assets

@ 1 segment: (100,1.0)
robust random return = 1.24, 281 assets
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VaR Definition

Ambiguous chance-constrained models J

© The implementor chooses a vector x* of assets
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VaR Definition
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@ The adversary chooses a probability distribution P for the returns
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@ The adversary chooses a probability distribution P for the returns
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© A random returns vector p is drawn from P

— Implementor wants to choose x* so as to minimize value-at-risk
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VaR Definition

Ambiguous chance-constrained models J

© The implementor chooses a vector x* of assets

@ The adversary chooses a probability distribution P for the returns
vector

© A random returns vector p is drawn from P

— Implementor wants to choose x* so as to minimize value-at-risk
(conditional value at risk, etc.)

Erdogan and lyengar (2004), Calafiore and Campi (2004)
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VaR Definition

Ambiguous chance-constrained models J

© The implementor chooses a vector x* of assets

@ The adversary chooses a probability distribution P for the returns
vector

© A random returns vector p is drawn from P

— Implementor wants to choose x* so as to minimize value-at-risk
(conditional value at risk, etc.)

Erdogan and lyengar (2004), Calafiore and Campi (2004)

— We want to model correlated errors in the returns
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VaR Definition

Uncertainty set J

Given a vector x™* of assets, the adversary
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VaR Definition

Uncertainty set J

Given a vector x™* of assets, the adversary

@ Chooses a vector w € R" (n = no. of assets) with 0 < w; < 1
for all .
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Uncertainty set J

Given a vector x™* of assets, the adversary

@ Chooses a vector w € R" (n = no. of assets) with 0 < w; < 1
for all .

© Chooses arandom variable 0 < § < 1

— Random return: p; = f; (1 — d6w;) (i = nominal returns).
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VaR Definition

Uncertainty set J

Given a vector x™* of assets, the adversary

@ Chooses a vector w € R" (n = no. of assets) with 0 < w; < 1
for all .

© Chooses arandom variable 0 < § < 1

— Random return: p; = f; (1 — d6w;) (i = nominal returns).

Definition (Rockafellar and Uryasev): Givenreals vand 0 <6 <1
the value-at-risk of x* is the real p > 0 such that

Prob(v — pu'x* > p) > 6
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VaR Definition

Uncertainty set J

Given a vector x™* of assets, the adversary

@ Chooses a vector w € R" (n = no. of assets) with 0 < w; < 1
for all .

© Chooses arandom variable 0 < § < 1

— Random return: p; = f; (1 — d6w;) (i = nominal returns).

Definition (Rockafellar and Uryasev): Givenreals vand 0 <6 <1
the value-at-risk of x* is the real p > 0 such that

Prob(v — pu'x* > p) > 6

— The adversary wants to maximize VaR
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VaR Definition

Uncertainty set J

Given a vector x™* of assets, the adversary

@ Chooses a vector w € R" (n = no. of assets) with 0 < wj < 1
for all .

© Chooses arandom variable 0 < § < 1

— Random return: p; = f; (1 — d6w;) (i = nominal returns).

Definition: Givenreals v and 0 < 6 < 1 the conditional value-at-risk
of x* equals

E(v — u'x* |v — u'x* > p) where p = VaR

— The adversary wants to maximize CVaR
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VaR Definition

— Random return; = f;(1 — éw;) where 0 <w; <1 Vj, and
0 < 6 < lisarandom variable.
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VaR Definition

— Random return; = f;(1 — éw;) where 0 <w; <1 Vj, and
0 < 6 < lisarandom variable.

A discrete distribution:
@ We are given fixed values 0 = dp < 6, <...<dx =1
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VaR Definition

— Random return; = f;(1 — éw;) where 0 <w; <1 Vj, and

0 < 6 < lisarandom variable.

A discrete distribution:

@ We are given fixed values 0 =69 <62 < ... <dx =1

example: & = ¢
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VaR Definition

— Random return; = f;(1 — éw;) where 0 <w; <1 Vj, and
0 < 6 < lisarandom variable.
A discrete distribution:
@ We are given fixed values 0 =69 <62 < ... <dx =1
example: & = ¢
@ Adversary chooses = = Prob(d = 6;),0<i <K
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VaR Definition

— Random return; = f;(1 — éw;) where 0 <w; <1 Vj, and
0 < 6 < lisarandom variable.
A discrete distribution:
@ We are given fixed values 0 =69 <62 < ... <dx =1
example: & = ¢
@ Adversary chooses = = Prob(d = 6;),0<i <K

@ The 7 are constrained: we have fixed bounds, « < m < 7!
(and possibly other constraints)

DETIERE IS (ol W ] [V [ ERULIVEIWAINEWAE xperiments in Robust Portfolio Optimization 29th July 2007 29/43



VaR Definition

— Random return; = f;(1 — éw;) where 0 <w; <1 Vj, and
0 < 6 < lisarandom variable.
A discrete distribution:
@ We are given fixed values 0 =69 <62 < ... <dx =1
example: & = ¢
@ Adversary chooses = = Prob(d = 6;),0<i <K

@ The 7 are constrained: we have fixed bounds, « < m < 7!
(and possibly other constraints)

@ Tier constraints: for sets (“tiers”) Ty of assets, 1 < h < H, we
require:
E(o Zj €T, wj) < 'y (given)
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VaR Definition

— Random return; = f;(1 — éw;) where 0 <w; <1 Vj, and
0 < 6 < lisarandom variable.
A discrete distribution:
@ We are given fixed values 0 =69 <62 < ... <dx =1
example: & = ¢
@ Adversary chooses = = Prob(d = 6;),0<i <K

@ The ; are constrained: we have fixed bounds, = < m < 7!
(and possibly other constraints)

@ Tier constraints: for sets (“tiers”) Ty of assets, 1 < h < H, we
require:
E(o Zj €T, wj) < 'y (given)

or, (32 0imi) > jer, Wj < Th
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VaR Definition

Robust optimization problem (VaR case):
Given 0 < e,

min V

Subject to:

MXTQx — u'x < v x+4e

Ax >b

V > VaR™(x)

Here, v* =min AxTQx — pu'x

Subject to:

Ax > b
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VaR Definition

Robust optimization problem (VaR case):
Given 0 < e,

min V

Subject to:

AXTOx — u'™x < v *+e

Ax > b

V > VaR™(x)

Theorem: The problem can be reduced to K SOCPs.
K = number of points in discrete distribution
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VaR Definition

Adversarial problem — a nonlinear MIP J

Recall: random return; p; = f1;(1 — dw;)
where § = §; (given) with probability = (chosen by adversary),
0<9<§<...<d =1land 0<w
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VaR Definition

Adversarial problem — a nonlinear MIP J

Recall: random return; p; = f1;(1 — dw;)
where § = §; (given) with probability = (chosen by adversary),
0<9<§<...<d =1land 0<w

min - ,v Min <<k Vi
Subject to

0<w; <1, allj, n <= <=, alli,

|
dum =1,
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VaR Definition

Adversarial problem — a nonlinear MIP

Recall: random return; p; = f1;(1 — dw;)
where § = §; (given) with probability = (chosen by adversary),
0<9<§<...<d =1land 0<w

min W,V min 1<i<k Vi

Subject to
0<w; <1, allj, n <= <=, alli,
>im =1,
V, = Zjﬁj(l—éin)Xj*, if mi +mg+...+7 >0
Vi = M (large), otherwise
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VaR Definition

Adversarial problem — a nonlinear MIP

Recall: random return; p; = f1;(1 — dw;)
where § = §; (given) with probability = (chosen by adversary),
0<9<§<...<d =1land 0<w

min W,V min 1<i<k Vi

Subject to
0<w; <1, allj, n <= <=, alli,
>im =1,
V, = Zjﬁj(l—éin)Xj*, if mi +mg+...+7 >0
Vi = M (large), otherwise

(O2 0imi) > jer, W) < Ih, foreachtierh
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VaR Definition

Approximation J

(221 6imi) X jer, W) < Th, foreachtierh (%)
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VaR Definition

Approximation

(221 6imi) X jer, W) < Th, foreachtierh (%)
Let N > 0 be aninteger. For 1 < k < N, write
k et W <Th + M (1—2zn), where
zne = 1if K5 < X dim <
Znk = 0 otherwise
Dk Znk =1

and M is large
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VaR Definition

Approximation

(221 6imi) X jer, W) < Th, foreachtierh (%)
Let N > 0 be aninteger. For 1 < k < N, write
k et W <Th + M (1—2zn), where
zne = 1if K5 < X dim <
Znk = 0 otherwise
Dk Znk =1

and M is large

Lemma. Under reasonable conditions, replacing (x) with this system
creates an error of order O(%)
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VaR Definition

Implementor’s problem for Benders approach, at iteration r: J
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VaR Definition

Implementor’s problem for Benders approach, at iteration r:

min V

Subject to:

AXTQx — pu'™x < (L4 €)v*
Ax > b

V>u - Y (1—5i(t)wj(‘))xj, t=1,2,...,r —1

Here, ;) and w () are the adversary’s output at iteration t < r.
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VaR Definition

But we can do better: J

At iteration t, the adversary produces a probability distribution 7(t)
and a vector w (1)

and the cutis: V. > v — 37 i (1 _ 6i(t)Wj(t)> X

®)

here, i(t) is smallests.t. > 5w~ =6
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VaR Definition

But we can do better: J

At iteration t, the adversary produces a probability distribution 7(t)
and a vector w(®)

and the cutis: V. > v — 37 i (1 _ 5i(t)Wj(t)) X

How about a cut that is valid for every w s.t. (=), w) is feasible for
the adversary?
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VaR Definition

We want an expression for

min Z] ﬁj (l — 5i (t)Wj)Xj
Subject to

> 5i7ri(t)) > jer,Wj < Th, foreachtierh
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VaR Definition

We want an expression for

min Z] ﬁj (l — 5i (t)Wj)Xj
Subject to

> 5i7ri(t)) > jer,Wj < Th, foreachtierh

— Use LP duality

DETIERE IS (olo W o] [V [ ERULIVEIWAINEWAE xperiments in Robust Portfolio Optimization

29th July 2007

37/43



VaR Definition

We want an expression for

min Z] ﬁj (l — 5i (t)Wj)Xj
Subject to

> 5i7ri(t)) > jer,Wj < Th, foreachtierh
— Use LP duality

— The implementor’s problem will gain new variables and rows at
each iteration
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VaR Definition

Typical convergence behavior — simple Benders J

35

30 A

25 A

207 —aiy

VAR

15 | —imp.

T 1121 3 &1 8 B 71 81 91 101

iterations
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VaR Definition

Heavy-tailed instances, 6 = .05

Heavy tail, proportional error (100 points):

" Upper’
Lower

0.2

0.1
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VaR Definition

Heavy-tailed instances, 6 = .05

Heavy tail, proportional error (100 points):

" Upper’
Lower
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VaR

Definition

Heavy-tailed instances, 8 = .05, K = 100

(vaR | A | D | E | F G |
time 1.98 5.02 2.47 2.03 26.51 38.32
iters 2 2 2 2 2 2
impt 0.25 2.25 0.54 1.07 14.09 19.90
advt 1.26 1.14 1.32 0.24 2.17 1.47
adj T || 2.8e %4 | 2.4e 94 | 3.0e %4 | 256704 | 47705 | 2.1e" %4

[CvaR || A D E F G |
time 7.10 14.11 6.23 11.45 33.13 88.43
iters 2 2 2 2 2 3
impt 0.16 1.72 1.18 0.66 9.56 52.13
advt 6.72 10.67 4.74 10.33 12.2 23.85
gap 98704 | 22e7 05| 730 | 510 | 32e705|1.3e %
apperr || 2.3e % | 227095 | 2404 | 1.6e % | 1.0e794 | 2.2e7%4
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VaR Definition

Impact of tail probability

1-6

“confidence level”

A~

/
2+ A

s
//
15 e
/
e

1 +* . . . . .
065 07 075 08 085 09 095
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VaR Definition

Impact of suboptimality target
Fix # = 0.95 but vary suboptimality criterion
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VaR Definition

Experiment: sensitivity of model to parameters J

Adversary chooses m = P(§ =¢;), =« < m <«
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VaR Definition

Experiment: sensitivity of model to parameters

Adversary chooses m = P(§ =¢;), =« < m <«

Experiment: choose A > 0, and solve robust problems for

m «— max{m| — A,0}, « — w4+ A
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VaR Definition

VaR and CVaR as a function of data errors: J

0.6 L L L L L L L
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

(N = 10* for VaR case)
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