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Robust Optimization

Optimization under parameter (data) uncertainty

Ben-Tal and Nemirovsky, El Ghaoui et al

Bertsimas et al

Uncertainty is modeled by assuming that data is not known
precisely, and will instead lie in known sets.

Example: a coefficient ai is uncertain. We allow ai ∈ [l i , u i ].

Typically, a minimization problem becomes a min-max problem.
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What is the most common word in robust optimization literature?

“Tractable”

convex uncertainty models → convex optimization techniques

→ polynomial-time algorithms

→ sacrifice model richness in favor of theoretical algorithm efficiency

→ in practice, SOCP not quite so “tractable”
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Mean-Variance Portfolio Optimization

min λx T Qx − µT x

Subject to:

Ax ≥ b

µ = vector of “returns”, Q = “covariance” matrix

x = vector of “asset weights”

Ax ≥ b : general linear constraints

λ ≥ 0 = “risk-aversion” multiplier

→ want to model uncertainty in µ
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The histogram model

Parameters: 0 ≤ γ1 ≤ γ2 ≤ . . . ≤ γK ≤ 1,
integers 0 ≤ n i ≤ Ni , 1 ≤ i ≤ K
for each asset j : µ̄j = expected return

between n i and Ni assets j satisfy:
(1− γi )µ̄j ≤ µj ≤ (1− γi−1)µ̄j∑

j µj ≥ Γ
∑

j µ̄j ; Γ > 0 a parameter

(R. Tütüncü) For 1 ≤ h ≤ H,

a set (“tier”) Th of assets, and a parameter Γh > 0

for each h,
∑

j∈Th
µj ≥ Γh

∑
j∈Sh

µ̄j
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General methodology:

Benders’ decomposition (= cutting-plane algorithm)

Generic problem: min x∈X maxd∈D f (x , d )

→ Maintain a finite subset D̃ of D (a “model” )

GAME

1 Implementor: solve min x∈X maxd∈D̃ f (x , d ),
with solution x ∗

2 Adversary: solve maxd∈D f (x ∗, d ), with solution d̃

3 Add d̃ to D̃, and go to 1.
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Why this approach

Decoupling of implementor and adversary yields considerably
simpler, and smaller, problems

Decoupling allows us to use more sophisticated uncertainty
models

If number of iterations is small, implementor’s problem is a small
“convex” problem

Most progress will be achieved in initial iterations – permits “soft”
termination criteria
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Implementor’s problem

A convex quadratic program

At iteration m, solve

min λx T Qx − r

Subject to:

Ax ≥ b

r ≤ µT
(i )x , i = 1, . . . , m

Here, µ(1), . . . , µ(m) are given return vectors

Daniel Bienstock ( Columbia University, New York)Experiments in Robust Portfolio Optimization 29th July 2007 8 / 43



Adversarial problem: A mixed-integer program

x ∗ = given asset weights

min
∑

j x ∗
j µj

Subject to:

µ̄j (1 −
∑

i γi−1 y ij ) ≤ µj ≤ µ̄j (1 −
∑

i γi y ij ) ∀i ≥ 1∑
i y ij ≤ 1, ∀ j (each asset in at most one segment)

n i ≤
∑

j y ij ≤ Ni , 1 ≤ i ≤ K (segment cardinalities)∑
j∈Th

µj ≥ Γh
∑

j∈Th
µ̄j , 1 ≤ h ≤ H (tier ineqs.)

µj free, y ij = 0 or 1 , all i, j
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Why the adversarial problem is “easy”

( K = no. of segments, H = no. of tiers)

Theorem . For every fixed K and H, and for every ε > 0, there is an
algorithm that finds a solution to the adversarial problem with optimality
relative error ≤ ε, in time polynomial in ε−1 and n (= no. of assets).
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The simplest case

max
∑

j x ∗
j δj

Subject to:∑
j δj ≤ Γ

0 ≤ δj ≤ u j y j , y j = 0 or 1 , all j∑
j y j ≤ N

· · · a cardinality constrained knapsack problem
B. (1995), DeFarias and Nemhauser (2004)
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The LP relaxation x ∗ = given asset weights

should (?) be tight

min
∑

j x ∗
j µj

Subject to:

µ̄j (1 −
∑

i γi−1 y ij ) ≤ µj ≤ µ̄j (1 −
∑

i γi y ij ) ∀i ≥ 1∑
i y ij ≤ 1, ∀ j (each asset in at most one segment)

n i ≤
∑

j y ij ≤ Ni , 1 ≤ i ≤ K (segment cardinalities)∑
j∈Th

µj ≥ Γh
∑

j∈Th
µ̄j , 1 ≤ h ≤ H (tier ineqs.)

µj free, 0 ≤ y ij ≤ 1, all i, j

Daniel Bienstock ( Columbia University, New York)Experiments in Robust Portfolio Optimization 29th July 2007 12 / 43



Robust problem:

V
.
= min λx T Qx − r

Subject to: Ax ≥ b
r ≤ µT x , ∀ µ achievable by adversary

Robust problem for relaxed adversary:

V
.
= min λx T Qx − r

Subject to: Ax ≥ b
r ≤ µT x , ∀ µ achievable by relaxed adversary

V ∗ ≥ V , perhaps V ∗ ≈ V ,
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Robust problem for relaxed adversary:

V
.
= min λx T Qx − r

Subject to: Ax ≥ b
r ≤ µT x , ∀ µ achievable by relaxed adversary

or , V
.
= min λx T Qx − r

Subject to: Ax ≥ b
r ≤ minimum return(x)

but, minimum return(x) = min
∑

j x ∗
j µj

Subject to: M1µ + M2y ≥ Ψ
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Robust problem for relaxed adversary:

V
.
= min λx T Qx − r

Subject to: Ax ≥ b
r ≤ µT x , ∀ µ achievable by relaxed adversary

or , V
.
= min λx T Qx − r

Subject to: Ax ≥ b
r ≤ minimum return(x)

duality: minimum return(x) = max ΨT α

Subject to: MT
1 α = x , MT

2 α = 0, α ≥ 0
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Robust problem for relaxed adversary:

V
.
= min λx T Qx − r

Subject to: Ax ≥ b
r ≤ minimum return(x)

Robust problem:

min λx T Qx − r
Subject to:
Ax ≥ b

r − ΨT α ≤ 0

MT
1 α − x = 0, MT

2 α = 0, α ≥ 0
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Robust problem for relaxed adversary:

V ∗ .
= min λx T Qx − r

Subject to: Ax ≥ b
r − ΨT α ≤ 0

(∗∗) MT
1 α − x = 0

MT
2 α = 0, α ≥ 0

Let µ̂ = optimal duals for (**)

V ∗ = min λx T Qx − r
Subject to: Ax ≥ b
r − µ̂T x ≤ 0

( r − µT x ≤ 0, ∀µ available to strict adversary)

Problem: Find µ available to strict adversary, and with µ ≈ µ̂
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Benders’ algorithm with strengthening

Step 1. Solve relaxed robust problem; answer = µ̂

Step 2. Solve MIP to obtain vector µ̆ which is legal for histogram
model, and with µ̆ ≈ µ̂

Step 3. Run Benders beginning with the cut r − µ̆T x ≤ 0
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Alternate algorithm?

Step 1. Solve relaxed robust problem, let µ̂ be the min-max return
vector

Step 2. Find a cut αT µ ≤ α0, that separates µ̂ from the convex hull of
vectors available to the strict adversary

Step 3. Add αT µ̂ ≤ α0 to the definition of the adversarial problem, and
go to 1.
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Example: 2464 assets, 152-factor model. CPU time: 300 seconds
No Strengthening – straight Benders

10 segments (a: “heavy tail”)
6 tiers: the top five deciles lose at most 10% each, total loss ≤ 5%
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Same run

2464 assets, 152 factors;
10 segments, 6 tiers
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Summary of average problems with 3-4 segments, 2-3 tiers

columns rows iterations time imp. time adv. time
(sec.)

1 500 20 47 1.85 1.34 0.46
2 500 20 3 0.09 0.01 0.03
3 703 108 1 0.29 0.13 0.04
4 499 140 3 3.12 2.65 0.05
5 499 20 19 0.42 0.21 0.17
6 1338 81 7 0.45 0.17 0.08
7 2019 140 8 41.53 39.6 0.36
8 2443 153 2 12.32 9.91 0.07
9 2464 153 111 100.81 60.93 36.78
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time bigQP bigMIP iters impT advT 01vars
A 327.04 2.52 211.72 135 12.27 100.24 5000
C 29.32 3.01 9.35 27 1.02 15.76 4990
F 74.06 13.57 15.96 27 2.47 41.42 13380
G ∗ 681.12 – – 19 64.7 615.54 20190
I 124.82 93.38 22.58 1 4.17 2.46 24640

Table: Heavy-tailed instances, 10 segments, 6 tiers, tol. = 1.0e−03

Daniel Bienstock ( Columbia University, New York)Experiments in Robust Portfolio Optimization 29th July 2007 23 / 43



500 500 499 499 b 703 ∗ 1338 2443
error × 20 × 20 × 20 × 140 × 108 × 81 × 153

5.0e−2 214.53 14.81 144.86 122.53 11.77 274.64 140.29

1.0e−2 223.21 15.49 144.86 122.53 14.66 356.98 140.29

5.0e−3 254.73 16.03 162.41 126.63 34.16 363.84 140.29

1.0e−3 300.88 35.23 183.12 157.49 64.61 469.75 140.29

5.0e−4 361.20 37.92 216.52 167.40 73.87 598.94 140.29

Table: Convergence time on heavy-tailed instances, 10 segments, 6 tiers
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What is the impact of the uncertainty model

All runs on the same data set with 1338 columns and 81 rows

1 segment: (200, 0.5)
robust random return = 4.57, 157 assets

2 segments: (200, 0.25), (100, 0.5)
robust random return = 4.57, 186 assets

2 segments: (200, 0.2), (100, 0.6)
robust random return = 3.25, 213 assets

2 segments: (200, 0.1), (100, 0.8)
robust random return = 1.50, 256 assets

1 segment: (100, 1.0)
robust random return = 1.24, 281 assets
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VaR Definition

Ambiguous chance-constrained models

1 The implementor chooses a vector x ∗ of assets

2 The adversary chooses a probability distribution P for the returns
vector

3 A random returns vector µ is drawn from P

→ Implementor wants to choose x∗ so as to minimize value-at-risk
(conditional value at risk, etc.)

Erdogan and Iyengar (2004), Calafiore and Campi (2004)

→We want to model correlated errors in the returns
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VaR Definition

Uncertainty set

Given a vector x ∗ of assets, the adversary

1 Chooses a vector w ∈ Rn (n = no. of assets) with 0 ≤ w j ≤ 1
for all j.

2 Chooses a random variable 0 ≤ δ ≤ 1

→ Random return: µj = µ̄j (1− δw j ) (µ̄ = nominal returns).

Definition (Rockafellar and Uryasev): Given reals ν and 0 ≤ θ ≤ 1
the value-at-risk of x∗ is the real ρ ≥ 0 such that

Prob(ν − µT x ∗ ≥ ρ) ≥ θ

→ The adversary wants to maximize VaR
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VaR Definition

Uncertainty set

Given a vector x ∗ of assets, the adversary

1 Chooses a vector w ∈ Rn (n = no. of assets) with 0 ≤ w j ≤ 1
for all j.

2 Chooses a random variable 0 ≤ δ ≤ 1

→ Random return: µj = µ̄j (1− δw j ) (µ̄ = nominal returns).

Definition: Given reals ν and 0 ≤ θ ≤ 1 the conditional value-at-risk
of x∗ equals

E(ν − µT x ∗ | ν − µT x ∗ ≥ ρ) where ρ = VaR

→ The adversary wants to maximize CVaR
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VaR Definition

→ Random returnj = µ̄j (1− δw j ) where 0 ≤ w j ≤ 1 ∀ j , and
0 ≤ δ ≤ 1 is a random variable.

A discrete distribution:

We are given fixed values 0 = δ0 ≤ δ2 ≤ ... ≤ δK = 1
example: δi = i

K

Adversary chooses πi = Prob(δ = δi ), 0 ≤ i ≤ K

The πi are constrained: we have fixed bounds, πl
i ≤ πi ≤ πu

i
(and possibly other constraints)

Tier constraints: for sets (“tiers”) Th of assets, 1 ≤ h ≤ H, we
require:
E(δ

∑
j∈Th

w j ) ≤ Γh (given)

or, (
∑

i δi πi )
∑

j∈Th
w j ≤ Γh
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VaR Definition

Robust optimization problem (VaR case):
Given 0 < ε,

min V

Subject to:

λx T Qx − µT x ≤ v ∗+ε

Ax ≥ b

V ≥ VaRmax (x )

Here, v ∗ .
= min λx T Qx − µT x

Subject to:

Ax ≥ b
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VaR Definition

Robust optimization problem (VaR case):
Given 0 < ε,

min V

Subject to:

λx T Qx − µT x ≤ v ∗+ε

Ax ≥ b

V ≥ VaRmax (x )

Theorem: The problem can be reduced to K SOCPs.
K = number of points in discrete distribution
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VaR Definition

Adversarial problem – a nonlinear MIP

Recall: random returnj µj = µ̄j (1− δw j )
where δ = δi (given) with probability πi (chosen by adversary),
0 ≤ δ0 ≤ δ1 ≤ . . . ≤ δK = 1 and 0 ≤ w

min π,w ,V min 1≤i≤k Vi

Subject to

0 ≤ w j ≤ 1, all j, πl
i ≤ πi ≤ πu

i , all i,∑
i πi = 1,

Vi =
∑

j µ̄j (1− δi w j )x ∗
j , if πi + πi+1 + . . . + πK ≥ θ

Vi = M (large ), otherwise

(
∑

i δi πi )
∑

j∈Th
w j ≤ Γh , for each tier h
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VaR Definition

Approximation

(
∑

i δi πi )
∑

j∈Th
w j ≤ Γh , for each tier h (∗)

Let N > 0 be an integer. For 1 ≤ k ≤ N , write

k
N

∑
j∈Th

w j ≤ Γh + M (1− zhk ), where

zhk = 1 if k −1
N <

∑
i δi πi ≤ k

N

zhk = 0 otherwise∑
k zhk = 1

and M is large

Lemma. Under reasonable conditions, replacing (∗) with this system
creates an error of order O( 1

N )
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VaR Definition

Implementor’s problem for Benders approach, at iteration r:

min V

Subject to:

λx T Qx − µT x ≤ (1 + ε)v ∗

Ax ≥ b

V ≥ ν −
∑

j µ̄j

(
1− δi (t )w

(t )
j

)
x j , t = 1, 2, . . . , r − 1

Here, δi (t ) and w (t ) are the adversary’s output at iteration t < r .
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VaR Definition

But we can do better:

At iteration t , the adversary produces a probability distribution π(t )

and a vector w (t )

and the cut is: V ≥ ν −
∑

j µ̄j

(
1− δi (t )w

(t )
j

)
x j

here, i (t ) is smallest s.t.
∑

i≥i (t ) π
(t )
i ≥ θ
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VaR Definition

But we can do better:

At iteration t , the adversary produces a probability distribution π(t )

and a vector w (t )

and the cut is: V ≥ ν −
∑

j µ̄j

(
1− δi (t )w

(t )
j

)
x j

How about a cut that is valid for every w s.t. (π(t ), w ) is feasible for
the adversary?
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VaR Definition

We want an expression for

min
∑

j µ̄j (1− δi (t )w j )x j
Subject to

(
∑

i δi π
(t )
i )

∑
j∈Th

w j ≤ Γh , for each tier h

→ Use LP duality

→ The implementor’s problem will gain new variables and rows at
each iteration
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VaR Definition

Typical convergence behavior – simple Benders
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VaR Definition

Heavy-tailed instances, θ = .05

Heavy tail, proportional error (100 points):

 0
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VaR Definition

Heavy-tailed instances, θ = .05, K = 100

VaR A D E F G I
time 1.98 5.02 2.47 2.03 26.51 38.32
iters 2 2 2 2 2 2
impt 0.25 2.25 0.54 1.07 14.09 19.90
advt 1.26 1.14 1.32 0.24 2.17 1.47
adj τ 2.8e−04 2.4e−04 3.0e−04 2.5e−04 4.7e−05 2.1e−04

CVaR A D E F G I
time 7.10 14.11 6.23 11.45 33.13 88.43
iters 2 2 2 2 2 3
impt 0.16 1.72 1.18 0.66 9.56 52.13
advt 6.72 10.67 4.74 10.33 12.2 23.85
gap 9.8e−04 2.2e−05 7.3e−05 5.1e−05 3.2e−05 1.3e−04

apperr 2.3e−04 2.2e−05 2.4e−04 1.6e−05 1.0e−04 2.2e−04
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VaR Definition

Impact of tail probability

“confidence level” = 1− θ
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VaR Definition

Impact of suboptimality target

Fix θ = 0.95 but vary suboptimality criterion
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VaR Definition

Experiment: sensitivity of model to parameters

Adversary chooses πi = P(δ = δi ), πl
i ≤ πi ≤ πu

i

Experiment: choose ∆ ≥ 0, and solve robust problems for

πi ← max{πl
i −∆, 0}, πl

i ← πu
i + ∆
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VaR Definition

VaR and CVaR as a function of data errors:
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( N = 104 for VaR case)
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