Experiments with Robust Optimization

Daniel Bienstock

Columbia University
New York

ISMP 2006, Rio
Robust Optimization

- Optimization under parameter (data) uncertainty
- Ben-Tal and Nemirovsky, El Ghaoui et al
- Bertsimas et al
- Uncertainty is modeled by assuming that data is not known precisely, and will instead lie in known sets.
- Example: a coefficient a_i is uncertain. We allow $a_i \in [l_i, u_i]$.
- Typically, a minimization problem becomes a min-max problem.
Motivation

Robust Optimization

- Optimization under parameter (data) uncertainty
- Ben-Tal and Nemirovsky, El Ghaoui et al
- Bertsimas et al

Uncertainty is modeled by assuming that data is not known precisely, and will instead lie in known sets.

Example: a coefficient a_i is uncertain. We allow $a_i \in [l_i, u_i]$.

Typically, a minimization problem becomes a min-max problem.
Robust Optimization

- Optimization under parameter (data) uncertainty
- Ben-Tal and Nemirovsky, El Ghaoui et al
- Bertsimas et al

- Uncertainty is modeled by assuming that data is not known precisely, and will instead lie in known sets.

- Example: a coefficient a_i is uncertain. We allow $a_i \in [l_i, u_i]$.

- Typically, a minimization problem becomes a min-max problem.
Motivation

Robust Optimization

- Optimization under parameter (data) uncertainty
- Ben-Tal and Nemirovsky, El Ghaoui et al
- Bertsimas et al

Uncertainty is modeled by assuming that data is not known precisely, and will instead lie in known sets.

- Example: a coefficient a_i is uncertain. We allow $a_i \in [l_i, u_i]$.
- Typically, a minimization problem becomes a min-max problem.
Robust Optimization

- Optimization under parameter (data) uncertainty
- Ben-Tal and Nemirovsky, El Ghaoui et al
- Bertsimas et al
- Uncertainty is modeled by assuming that data is not known precisely, and will instead lie in known sets.
- Example: a coefficient a_i is uncertain. We allow $a_i \in [l_i, u_i]$.
- Typically, a minimization problem becomes a min-max problem.
Robust Optimization

- Optimization under parameter (data) uncertainty
- Ben-Tal and Nemirovsky, El Ghaoui et al
- Bertsimas et al

Uncertainty is modeled by assuming that data is not known precisely, and will instead lie in known sets.

Example: a coefficient a_i is uncertain. We allow $a_i \in [l_i, u_i]$.

Typically, a **minimization** problem becomes a **min-max** problem.
Example: Linear Programs with Row-Wise uncertainty

Ben-Tal and Nemirovsky, 1999 (also: Soyster (1973))

\[
\begin{align*}
\min & \quad c^t x \\
\text{Subject to:} & \quad Ax \geq b \quad \text{for all } A \in \mathcal{U} \\
& \quad x \in X
\end{align*}
\]

\(\mathcal{U} = \text{uncertainty set} \)

\(\rightarrow \text{the } i^{th} \text{ row of } A \text{ belongs to an ellipsoidal set } \mathcal{E}_i \)

\(\text{e.g. } \sum_j \alpha_{ij}^2 (a_{ij} - \bar{a}_{ij})^2 \leq 1 \)

\(\rightarrow \text{can be solved using SOCP techniques} \)
Other forms of optimization under uncertainty

- Stochastic programming
- Adversarial queueing, online optimization
- “Risk-aware” optimization
- Optimization of utility functions as a substitute for handling infeasibilities
Other forms of optimization under uncertainty

- Stochastic programming
- Adversarial queueing, online optimization
- “Risk-aware” optimization
- Optimization of utility functions as a substitute for handling infeasibilities
Other forms of optimization under uncertainty

- Stochastic programming
- Adversarial queueing, online optimization
- “Risk-aware” optimization
- Optimization of utility functions as a substitute for handling infeasibilities
Other forms of optimization under uncertainty

- Stochastic programming
- Adversarial queueing, online optimization
- “Risk-aware” optimization
- Optimization of utility functions as a substitute for handling infeasibilities
Scenario I: Stability

Data is fairly accurate, though possibly noisy – small errors are possible

→ Idiosyncratic decisions and small changes in data could have major impact
Scenario I: Stability

Data is fairly accurate, though possibly noisy – small errors are possible

→ Idiosyncratic decisions and small changes in data could have major impact
Scenario II: Hedging

Significant, but within order-of-magnitude, data uncertainty

Example:
A certain parameter, α, is volatile. Its long-term average is 1.5 but it we could expect changes of the order of .3.

- Possibly more than just noise
- Could use deviations to our advantage, especially if there are several uncertain parameters that act “correlated”
- Are we guarding against risk or are we hedging?
Scenario III: Insurance

Real world data can exhibit undesirable and unexpected behavior

- Classical goal: how can we protect without becoming too risk averse
- Need to clearly spell out desired tradeoff between risk and performance
- Magnitude and geometry of risk are not the same
Scenario III: Insurance

Real world data can exhibit undesirable and unexpected behavior

- Classical goal: how can we protect without becoming too risk averse
- Need to clearly spell out desired tradeoff between risk and performance
- **Magnitude** and **geometry** of risk are not the same
Application: Portfolio Optimization

\[\min \lambda x^T Q x - \mu^T x \]

Subject to:

\[Ax \geq b \]

- \(\mu \) = vector of “returns”, \(Q \) = “covariance” matrix
- \(x \) = vector of “asset weights”
- \(Ax \geq b \): general linear constraints
- \(\lambda \geq 0 \) = “risk-aversion” multiplier
Application: Portfolio Optimization

\[\min \lambda x^T Q x - \mu^T x \]

Subject to:

\[A x \geq b \]

- \(\mu \) = vector of “returns”, \(Q \) = “covariance” matrix
- \(x \) = vector of “asset weights”
- \(A x \geq b \): general linear constraints
- \(\lambda \geq 0 \) = “risk-aversion” multiplier
Application: Portfolio Optimization

\[\min \lambda x^T Q x - \mu^T x \]

Subject to:

\[Ax \geq b \]

- \(\mu \) = vector of “returns”, \(Q \) = “covariance” matrix
- \(x \) = vector of “asset weights”
- \(Ax \geq b \): general linear constraints
- \(\lambda \geq 0 \) = “risk-aversion” multiplier
Application: Portfolio Optimization

$$\min \lambda x^T Q x - \mu^T x$$

Subject to:

$$Ax \geq b$$

- μ = vector of “returns”, Q = “covariance” matrix
- x = vector of “asset weights”
- $Ax \geq b$: general linear constraints
- $\lambda \geq 0$ = “risk-aversion” multiplier
Application: Portfolio Optimization

\[\text{min } \lambda x^T Q x - \mu^T x \]

Subject to:

\[Ax \geq b \]

- \(\mu = \) vector of “returns”, \(Q = \) “covariance” matrix
- \(x = \) vector of “asset weights”
- \(Ax \geq b \): general linear constraints
- \(\lambda \geq 0 = \) “risk-aversion” multiplier
Robust Portfolio Optimization
Goldfarb and Iyengar, 2001

\[\text{min}_x \left\{ \max_{Q \in Q} \lambda x^T Q x - \min_{\mu \in \mathcal{E}} \mu^T x \right\} \]

Subject to:
\[\sum_j x_j = 1, \ x \geq 0 \]

→ When \(Q \) is an ellipsoid and \(\mathcal{E} \) is a product of intervals the robust problem can be solved as an SOCP
Robust Portfolio Optimization

A different uncertainty model

→ Want to model that deviations of the returns μ_j from their nominal values are rare but could be significant

A simple example

- Parameters: $0 \leq \gamma \leq 1$, integer $N \geq 0$, for each asset j:
 - $\bar{\mu}_j =$ expected return, $0 \leq \delta_j$ small (possibly zero)

- Well-behaved asset j: $\bar{\mu}_j - \delta_j \leq \mu_j \leq \bar{\mu}_j + \delta_j$

- Misbehaving asset j: $(1 - \gamma)\bar{\mu}_j \leq \mu_j \leq \bar{\mu}_j$

- At most N assets misbehave
Robust Portfolio Optimization

A different uncertainty model

→ Want to model that deviations of the returns \(\mu_j \) from their nominal values are rare but could be significant

A simple example

- Parameters: \(0 \leq \gamma \leq 1 \), integer \(N \geq 0 \), for each asset \(j \):
 \(\bar{\mu}_j = \) expected return, \(0 \leq \delta_j \) small (possibly zero)

- **Well-behaved asset \(j \):** \(\bar{\mu}_j - \delta_j \leq \mu_j \leq \bar{\mu}_j + \delta_j \)

- **Misbehaving asset \(j \):** \((1 - \gamma)\bar{\mu}_j \leq \mu_j \leq \bar{\mu}_j \)

- At most \(N \) assets misbehave
Robust Portfolio Optimization

A different uncertainty model

→ Want to model that deviations of the returns μ_j from their nominal values are rare but could be significant

A simple example

- Parameters: $0 \leq \gamma \leq 1$, integer $N \geq 0$, for each asset j:
 $\overline{\mu}_j =$ expected return, $0 \leq \delta_j$ small (possibly zero)

- Well-behaved asset j: $\overline{\mu}_j - \delta_j \leq \mu_j \leq \overline{\mu}_j + \delta_j$

- Misbehaving asset j: $(1 - \gamma)\overline{\mu}_j \leq \mu_j \leq \overline{\mu}_j$

- At most N assets misbehave
Robust Portfolio Optimization
A different uncertainty model

→ Want to model that deviations of the returns μ_j from their nominal values are rare but could be significant

A simple example

- Parameters: $0 \leq \gamma \leq 1$, integer $N \geq 0$, for each asset j: $\bar{\mu}_j = \text{expected return}$, $0 \leq \delta_j$ small (possibly zero)

- Well-behaved asset j: $\bar{\mu}_j - \delta_j \leq \mu_j \leq \bar{\mu}_j + \delta_j$

- Misbehaving asset j: $(1 - \gamma)\bar{\mu}_j \leq \mu_j \leq \bar{\mu}_j$

- At most N assets misbehave
A more comprehensive setting

- Parameters: \(0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1 \), integers \(0 \leq n_i \leq N_i, \ 1 \leq i \leq K \)

 for each asset \(j \): \(\bar{\mu}_j = \) expected return

- Between \(n_i \) and \(N_i \) assets \(j \) satisfy:

\[
(1 - \gamma_i)\bar{\mu}_j \leq \mu_j \leq (1 - \gamma_{i-1})\bar{\mu}_j, \text{ for each } i \geq 1 \quad (\gamma_0 = 0)
\]
A more comprehensive setting

- Parameters: $0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1$, integers $0 \leq n_i \leq N_i$, $1 \leq i \leq K$

 for each asset j: $\bar{\mu}_j = \text{expected return}$

- between n_i and N_i assets j satisfy:

 $$(1 - \gamma_i)\bar{\mu}_j \leq \mu_j \leq (1 - \gamma_{i-1})\bar{\mu}_j, \text{ for each } i \geq 1 \quad (\gamma_0 = 0)$$
A more comprehensive setting

Alternative

- Parameters: \(0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1 \), integers \(0 \leq n_i \leq N_i, \ 1 \leq i \leq K \)

for each asset \(j \): \(\bar{\mu}_j \) = expected return, \(\bar{\delta}_j \) = “standard deviation” of return

- between \(n_i \) and \(N_i \) assets \(j \) satisfy:

\[
\bar{\mu}_j - \gamma_i \delta_j \leq \mu_j \leq \bar{\mu}_j - \gamma_{i-1} \delta_j
\]
A more comprehensive setting

Alternative

- Parameters: $0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1$, integers $0 \leq n_i \leq N_i$, $1 \leq i \leq K$

for each asset j: $\bar{\mu}_j =$ expected return, $\bar{\delta}_j =$ “standard deviation” of return

- between n_i and N_i assets j satisfy:

 $$\bar{\mu}_j - \gamma_i \bar{\delta}_j \leq \mu_j \leq \bar{\mu}_j - \gamma_{i-1} \bar{\delta}_j$$
A more comprehensive setting

- Parameters: \(0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1\),
 integers \(0 \leq n_i \leq N_i, \quad 1 \leq i \leq K\)
 for each asset \(j\): \(\bar{\mu}_j = \text{expected return}\)

- between \(n_i\) and \(N_i\) assets \(j\) satisfy:
 \[(1 - \gamma_i)\bar{\mu}_j \leq \mu_j \leq (1 - \gamma_{i-1})\bar{\mu}_j\]

- \(\sum_j \mu_j \geq \Gamma \sum_j \bar{\mu}_j; \quad \Gamma > 0\) a parameter

- (R. Tütüncü) For \(1 \leq h \leq H\),
 - a set (“tier”) \(T_h\) of assets, and a parameter \(\Gamma_h > 0\)
 for each \(h\), \(\sum_{j \in T_h} \mu_j \geq \Gamma_h \sum_{j \in S_h} \bar{\mu}_j\)

Note: only downwards changes are modeled
A more comprehensive setting

- Parameters: \(0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1 \), integers \(0 \leq n_i \leq N_i \), \(1 \leq i \leq K \)
 for each asset \(j \): \(\bar{\mu}_j = \) expected return

- between \(n_i \) and \(N_i \) assets \(j \) satisfy:
 \[(1 - \gamma_i)\bar{\mu}_j \leq \mu_j \leq (1 - \gamma_{i-1})\bar{\mu}_j\]

- \(\sum_j \mu_j \geq \Gamma \sum_j \bar{\mu}_j; \Gamma > 0 \) a parameter

- (R. Tütüncü) For \(1 \leq h \leq H \),
 a set ("tier") \(T_h \) of assets, and a parameter \(\Gamma_h > 0 \)
 for each \(h \), \(\sum_{j \in T_h} \mu_j \geq \Gamma_h \sum_{j \in S_h} \bar{\mu}_j \)

Note: only downwards changes are modeled
A more comprehensive setting

- Parameters: $0 \leq \gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_K \leq 1$, integers $0 \leq n_i \leq N_i$, $1 \leq i \leq K$
 for each asset j: $\bar{\mu}_j = \text{expected return}$

- between n_i and N_i assets j satisfy:
 $$(1 - \gamma_i)\bar{\mu}_j \leq \mu_j \leq (1 - \gamma_{i-1})\bar{\mu}_j$$

- $\sum_j \mu_j \geq \Gamma \sum_j \bar{\mu}_j$; $\Gamma > 0$ a parameter

- (R. Tütüncü) For $1 \leq h \leq H$,

 - a set (“tier”) T_h of assets, and a parameter $\Gamma_h > 0$

 for each h, $\sum_{j \in T_h} \mu_j \geq \Gamma_h \sum_{j \in S_h} \bar{\mu}_j$

Note: only downwards changes are modeled.
A more comprehensive setting

- Parameters: \(0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1\), integers \(0 \leq n_i \leq N_i, 1 \leq i \leq K\)
 for each asset \(j\): \(\tilde{\mu}_j = \text{expected return}\)

- **between** \(n_i\) and \(N_i\) assets \(j\) satisfy:
 \[(1 - \gamma_i)\tilde{\mu}_j \leq \mu_j \leq (1 - \gamma_{i-1})\tilde{\mu}_j\]

- \(\sum_j \mu_j \geq \Gamma \sum_j \tilde{\mu}_j; \Gamma > 0\) a parameter

- (R. Tütüncü) For \(1 \leq h \leq H\),
 - a set ("tier") \(T_h\) of assets, and a parameter \(\Gamma_h > 0\)

 for each \(h\), \(\sum_{j \in T_h} \mu_j \geq \Gamma_h \sum_{j \in S_h} \tilde{\mu}_j\)

Note: only downwards changes are modeled.
A more comprehensive setting

- Parameters: $0 \leq \gamma_1 \leq \gamma_2 \leq \ldots \leq \gamma_K \leq 1$, integers $0 \leq n_i \leq N_i$, $1 \leq i \leq K$
 for each asset j: $\bar{\mu}_j =$ expected return

- between n_i and N_i assets j satisfy:
 $$(1 - \gamma_i)\bar{\mu}_j \leq \mu_j \leq (1 - \gamma_{i-1})\bar{\mu}_j$$

- $\sum_j \mu_j \geq \Gamma \sum_j \bar{\mu}_j$; $\Gamma > 0$ a parameter

- (R. Tütüncü) For $1 \leq h \leq H$,
 - a set (“tier”) T_h of assets, and a parameter $\Gamma_h > 0$
 for each h, $\sum_{j \in T_h} \mu_j \geq \Gamma_h \sum_{j \in S_h} \bar{\mu}_j$

Note: only downwards changes are modeled
Data-driven Model definition
Data-driven Model definition
Data-driven Model definition
General methodology:
Benders’ decomposition (= cutting-plane algorithm)

Generic problem: \[\min_{x \in X} \max_{d \in D} f(x, d) \]

→ Maintain a finite subset \(\tilde{D} \) of \(D \) (a “model”)

GAME

1. Implementor: solve \[\min_{x \in X} \max_{d \in \tilde{D}} f(x, d), \]
with solution \(x^* \)

2. Adversary: solve \[\max_{d \in D} f(x^*, d), \]
with solution \(\tilde{d} \)

3. Add \(\tilde{d} \) to \(\tilde{D} \), and go to 1.
General methodology:

Benders’ decomposition (= cutting-plane algorithm)

Generic problem: \(\min_{x \in X} \max_{d \in \mathcal{D}} f(x, d) \)

→ Maintain a finite subset \(\tilde{D} \) of \(\mathcal{D} \) (a “model”)

GAME

1. **Implementor:** solve \(\min_{x \in X} \max_{d \in \tilde{D}} f(x, d) \), with solution \(x^* \)

2. **Adversary:** solve \(\max_{d \in \mathcal{D}} f(x^*, d) \), with solution \(\tilde{d} \)

3. Add \(\tilde{d} \) to \(\tilde{D} \), and go to 1.
General methodology:

Benders’ decomposition (= cutting-plane algorithm)

Generic problem: \[\min_{x \in X} \max_{d \in D} f(x, d) \]

→ Maintain a finite subset \(\tilde{D} \) of \(D \) (a “model”)

GAME

1. **Implementor:** solve \(\min_{x \in X} \max_{d \in \tilde{D}} f(x, d) \), with solution \(x^* \)

2. **Adversary:** solve \(\max_{d \in D} f(x^*, d) \), with solution \(\tilde{d} \)

3. Add \(\tilde{d} \) to \(\tilde{D} \), and go to 1.
General methodology:
Benders’ decomposition (= cutting-plane algorithm)

Generic problem: \[\min_{x \in X} \max_{d \in D} f(x, d) \]

→ Maintain a finite subset \(\tilde{D} \) of \(D \) (a “model”)

GAME

1. Implementor: solve \[\min_{x \in X} \max_{d \in \tilde{D}} f(x, d), \]
 with solution \(x^* \)

2. Adversary: solve \[\max_{d \in D} f(x^*, d), \]
 with solution \(\tilde{d} \)

3. Add \(\tilde{d} \) to \(\tilde{D} \), and go to 1.
General methodology:

Benders’ decomposition (= cutting-plane algorithm)

Generic problem: \(\min_{x \in X} \max_{d \in \mathcal{D}} f(x, d) \)

→ Maintain a **finite subset** \(\tilde{\mathcal{D}} \) of \(\mathcal{D} \) (a “model”)

GAME

1. **Implementor:** solve \(\min_{x \in X} \max_{d \in \tilde{\mathcal{D}}} f(x, d) \), with solution \(x^* \)

2. **Adversary:** solve \(\max_{d \in \mathcal{D}} f(x^*, d) \), with solution \(\tilde{d} \)

3. Add \(\tilde{d} \) to \(\tilde{\mathcal{D}} \), and go to 1.
Why this approach

- Decoupling of implementor and adversary yields considerably simpler, and smaller, problems
- Decoupling allows us to use more sophisticated uncertainty models
- If number of iterations is small, implementor’s problem is a small “convex” problem
- Most progress will be achieved in initial iterations – permits “soft” termination criteria
Why this approach

- Decoupling of implementor and adversary yields considerably simpler, and smaller, problems

- Decoupling allows us to use more sophisticated uncertainty models

- If number of iterations is small, implementor’s problem is a small “convex” problem

- Most progress will be achieved in initial iterations – permits “soft” termination criteria
Why this approach

- Decoupling of implementor and adversary yields considerably simpler, and smaller, problems

- Decoupling allows us to use more sophisticated uncertainty models

- If number of iterations is small, implementor’s problem is a small “convex” problem

- Most progress will be achieved in initial iterations – permits “soft” termination criteria
Why this approach

- Decoupling of implementor and adversary yields considerably simpler, and smaller, problems.

- Decoupling allows us to use more sophisticated uncertainty models.

- If number of iterations is small, implementor’s problem is a small “convex” problem.

 Most progress will be achieved in initial iterations – permits “soft” termination criteria.
Why this approach

- Decoupling of implementor and adversary yields considerably simpler, and smaller, problems

- Decoupling allows us to use more sophisticated uncertainty models

- If number of iterations is small, implementor’s problem is a small “convex” problem

- Most progress will be achieved in initial iterations – permits “soft” termination criteria
Implementor’s problem
A convex quadratic program

At iteration m, solve

$$\min \lambda x^T Q x - r$$

Subject to:

$$Ax \geq b$$

$$r \leq \mu^T_{(i)} x, \quad i = 1, \ldots, m$$

Here, $\mu(1), \ldots, \mu(m)$ are given return vectors
Adversarial problem: A mixed-integer program

\(x^* \) = given asset weights

\[
\begin{align*}
\min & \quad \sum_j x_j^* \mu_j \\
\text{Subject to:} & \\
\bar{\mu}_j (1 - \sum_i \gamma_{i-1} y_{ij}) & \leq \mu_j \leq \bar{\mu}_j (1 - \sum_i \gamma_i y_{ij}) \quad \forall i \geq 1 \\
\sum_i y_{ij} & \leq 1, \quad \forall j \quad \text{(each asset in at most one segment)} \\
n_i & \leq \sum_j y_{ij} \leq N_i, \quad 1 \leq i \leq K \quad \text{(segment cardinalities)} \\
\sum_{j \in T_h} \mu_j & \geq \Gamma_h \sum_{j \in T_h} \bar{\mu}_j, \quad 1 \leq h \leq H \quad \text{(tier ineqs.)} \\
\mu_j & \text{ free, } y_{ij} = 0 \text{ or } 1, \quad \forall i, j
\end{align*}
\]
2464 assets, 152 factors; total CPU time = 93.27 sec.

4 segments: (400, 0.01), (50, 0.05), (30, 0.2), (10, 0.3)

3 tiers: the three top deciles lose at most 10% each

green = nominal return, blue = estimate, red = adversarial
Same run

2464 assets, 152 factors; total CPU time = 93.27 sec.
4 segments: (400, 0.01), (50, 0.05), (30, 0.20), (10, 0.30)
3 tiers: the three top deciles lose at most 10% each
Summary

<table>
<thead>
<tr>
<th>columns</th>
<th>rows</th>
<th>iterations</th>
<th>time (sec.)</th>
<th>imp. time</th>
<th>adv. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>20</td>
<td>47</td>
<td>1.85</td>
<td>1.34</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>20</td>
<td>3</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>703</td>
<td>108</td>
<td>1</td>
<td>0.29</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>499</td>
<td>140</td>
<td>3</td>
<td>3.12</td>
<td>2.65</td>
</tr>
<tr>
<td>5</td>
<td>499</td>
<td>20</td>
<td>19</td>
<td>0.42</td>
<td>0.21</td>
</tr>
<tr>
<td>6</td>
<td>1338</td>
<td>81</td>
<td>7</td>
<td>0.45</td>
<td>0.17</td>
</tr>
<tr>
<td>7</td>
<td>2019</td>
<td>140</td>
<td>8</td>
<td>41.53</td>
<td>39.6</td>
</tr>
<tr>
<td>8</td>
<td>2443</td>
<td>153</td>
<td>2</td>
<td>12.32</td>
<td>9.91</td>
</tr>
<tr>
<td>9</td>
<td>2464</td>
<td>153</td>
<td>111</td>
<td>100.81</td>
<td>60.93</td>
</tr>
</tbody>
</table>
Why the adversarial problem is “easy”

\(x^* = \) given asset weights

\[
\begin{align*}
\min & \quad \sum_j x_j^* \mu_j \\
\text{Subject to:} & \\
\bar{\mu}_j (1 - \sum_i \gamma_{i-1} y_{ij}) & \leq \mu_j \leq \bar{\mu}_j (1 - \sum_i \gamma_i y_{ij}) \\
\sum_i y_{ij} & \leq 1, \quad \forall j \quad \text{(each asset in at most one segment)} \\
n_i & \leq \sum_j y_{ij} \leq N_i, \quad \forall i \quad \text{(segment cardinalities)} \\
\sum_{j \in T_h} \mu_j & \geq \Gamma_h (\sum_{j \in T_h} \bar{\mu}_j), \quad \forall h \quad \text{(tier inequalities)} \\
\mu_j & \text{ free, } y_{ij} = 0 \text{ or } 1, \quad \forall i, j
\end{align*}
\]
Why the adversarial problem is “easy”

\(K = \) no. of segments, \(H = \) no. of tiers

Theorem. For every fixed \(K \) and \(H \), and for every \(\epsilon > 0 \), there is an algorithm that finds a solution to the adversarial problem with optimality relative error \(\leq \epsilon \), in time polynomial in \(\epsilon^{-1} \) and \(n \) (= no. of assets).
The simplest case

\[
\max \sum_j x_j^* \delta_j
\]

Subject to:

\[
\sum_j \delta_j \leq \Gamma
\]

\[
0 \leq \delta_j \leq u_j y_j, \quad y_j = 0 \text{ or } 1, \quad \text{all } j
\]

\[
\sum_j y_j \leq N
\]

\ldots a cardinality constrained knapsack problem

What is the impact of the uncertainty model

All runs on the same data set with 1338 columns and 81 rows

- 1 segment: (200, 0.5)
 robust random return = 4.57, 157 assets

- 2 segments: (200, 0.25), (100, 0.5)
 robust random return = 4.57, 186 assets

- 2 segments: (200, 0.2), (100, 0.6)
 robust random return = 3.25, 213 assets

- 2 segments: (200, 0.1), (100, 0.8)
 robust random return = 1.50, 256 assets

- 1 segment: (100, 1.0)
 robust random return = 1.24, 281 assets
Ambiguous chance-constrained models

1. The implementor chooses a vector x^* of assets

2. The adversary chooses a probability distribution P for the returns vector

3. A random returns vector μ is drawn from P

\rightarrow Implementor wants to choose x^* so as to minimize value-at-risk (conditional value at risk, etc.)

\rightarrow We want to model correlated errors in the returns
Ambiguous chance-constrained models

1. The implementor chooses a vector x^* of assets.
2. The adversary chooses a *probability distribution* P for the returns vector.
3. A random returns vector μ is drawn from P.

→ Implementor wants to choose x^* so as to minimize value-at-risk (conditional value at risk, etc.)

→ We want to model *correlated* errors in the returns.
Ambiguous chance-constrained models

1. The implementor chooses a vector x^* of assets
2. The adversary chooses a probability distribution P for the returns vector
3. A random returns vector μ is drawn from P

Implementor wants to choose x^* so as to minimize value-at-risk (conditional value at risk, etc.)

We want to model correlated errors in the returns
Ambiguous chance-constrained models

1. The implementor chooses a vector x^* of assets
2. The adversary chooses a probability distribution P for the returns vector
3. A random returns vector μ is drawn from P

→ Implementor wants to choose x^* so as to minimize \textbf{value-at-risk} (conditional value at risk, etc.)

→ We want to model \textit{correlated} errors in the returns
Ambiguous chance-constrained models

1. The implementor chooses a vector x^* of assets
2. The adversary chooses a *probability distribution* P for the returns vector
3. A random returns vector μ is drawn from P

→ Implementor wants to choose x^* so as to minimize value-at-risk (conditional value at risk, etc.)

→ We want to model *correlated* errors in the returns
Ambiguous chance-constrained models

1. The implementor chooses a vector x^* of assets
2. The adversary chooses a probability distribution P for the returns vector
3. A random returns vector μ is drawn from P

→ Implementor wants to choose x^* so as to minimize value-at-risk (conditional value at risk, etc.)

→ We want to model correlated errors in the returns
Uncertainty set

Given a vector x^* of assets, the adversary

1. Chooses a vector $w \in \mathbb{R}^n$ (n = no. of assets) with $0 \leq w_j \leq 1$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$

→ Random return: $\mu_j = \bar{\mu}_j (1 - \delta w_j)$ ($\bar{\mu} =$ nominal returns).

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of x^* is the real $\rho \geq 0$ such that

$$\text{Prob}(\nu - \mu^T x^* \geq \rho) \geq \theta$$

→ The adversary wants to maximize VAR.
Uncertainty set

Given a vector \mathbf{x}^* of assets, the adversary

1. Chooses a vector $\mathbf{w} \in \mathbb{R}^n$ ($n =$ no. of assets) with $0 \leq w_j \leq 1$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$

→ Random return: $\mu_j = \bar{\mu}_j (1 - \delta w_j)$ ($\bar{\mu}$ = nominal returns).

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of \mathbf{x}^* is the real $\rho \geq 0$ such that

$$\text{Prob}(\nu - \mu^T \mathbf{x}^* \geq \rho) \geq \theta$$

→ The adversary wants to maximize VAR
Uncertainty set

Given a vector x^* of assets, the adversary

1. Chooses a vector $w \in \mathbb{R}^n$ (n = no. of assets) with $0 \leq w_j \leq 1$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$

\[\text{→ Random return: } \mu_j = \bar{\mu}_j (1 - \delta w_j) \quad (\bar{\mu} = \text{nominal returns}). \]

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of x^* is the real $\rho \geq 0$ such that

\[\text{Prob}(\nu - \mu^T x^* \geq \rho) \geq \theta \]

→ The adversary wants to maximize VAR
Uncertainty set

Given a vector \mathbf{x}^* of assets, the adversary

1. Chooses a vector $\mathbf{w} \in \mathbb{R}^n$ (n = no. of assets) with $0 \leq w_j \leq 1$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$

→ Random return: $\mu_j = \bar{\mu}_j (1 - \delta w_j)$ ($\bar{\mu} = \text{nominal returns}$).

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of \mathbf{x}^* is the real $\rho \geq 0$ such that

$$\text{Prob}(\nu - \mu^T \mathbf{x}^* \geq \rho) \geq \theta$$

→ The adversary wants to maximize VAR
Uncertainty set

Given a vector \mathbf{x}^* of assets, the adversary

1. Chooses a vector $\mathbf{w} \in \mathbb{R}^n$ ($n = \text{no. of assets}$) with $0 \leq w_j \leq 1$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$.

→ Random return: $\mu_j = \bar{\mu}_j (1 - \delta w_j)$ ($\bar{\mu}$ = nominal returns).

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of \mathbf{x}^* is the real $\rho \geq 0$ such that

$$\text{Prob}(\nu - \mu^T \mathbf{x}^* \geq \rho) \geq \theta$$

→ The adversary wants to maximize VAR.
Uncertainty set

Given a vector x^* of assets, the adversary

1. Chooses a vector $w \in \mathbb{R}^n$ ($n =$ no. of assets) with $0 \leq w_j \leq 1$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$

→ Random return: $\mu_j = \bar{\mu}_j (1 - \delta w_j)$ ($\bar{\mu} =$ nominal returns).

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of x^* is the real $\rho \geq 0$ such that

$$\text{Prob}(\nu - \mu^T x^* \geq \rho) \geq \theta$$

→ The adversary wants to maximize VAR
Given a vector \mathbf{x}^* of assets, the adversary

1. Chooses a vector $\mathbf{w} \in \mathbb{R}^n$ (n = no. of assets) with $0 \leq w_j \leq W$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$

→ Random return: $\mu_j = \bar{\mu}_j - \delta w_j$ ($\bar{\mu} =$ nominal returns).

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of \mathbf{x}^* is the real $\rho \geq 0$ such that

$$\text{Prob}(\nu - \mu^T \mathbf{x}^* \geq \rho) \geq \theta$$

→ The adversary wants to maximize VAR
Given a vector x^* of assets, the adversary

1. Chooses a vector $w \in \mathbb{R}^n$ (n = no. of assets) with $0 \leq w_j \leq W$ for all j.

2. Chooses a random variable $0 \leq \delta \leq 1$

→ Random return: $\mu_j = \bar{\mu}_j - \delta w_j$ ($\bar{\mu} =$ nominal returns).

Definition: Given reals ν and $0 \leq \theta \leq 1$ the value-at-risk of x^* is the real $\rho \geq 0$ such that

$$\text{Prob}(\nu - \mu^T x^* \geq \rho) \geq \theta$$

→ The adversary wants to maximize VAR
The classical factor model for returns

\[
\mu = \bar{\mu} + V^T f + \epsilon
\]

where

- \(\bar{\mu} \) = expected return,
- \(V \) = “factor exposure matrix”,
- \(f \) = a bounded random variable,
- \(\epsilon \) = residual errors

\(V \) is \(r \times n \) with \(r << n \).
Random return $j = \bar{\mu}_j (1 - \delta w_j)$ where $0 \leq w_j \leq 1 \ \forall \ j$, and $0 \leq \delta \leq 1$ is a random variable.

A discrete distribution:

- We are given fixed values $0 = \delta_0 \leq \delta_2 \leq ... \leq \delta_K = 1$
- example: $\delta_i = \frac{i}{K}$
- Adversary chooses $\pi_i = \text{Prob}(\delta = \delta_i)$, $0 \leq i \leq K$
- The π_i are constrained: we have fixed bounds, $\pi_i^l \leq \pi_i \leq \pi_i^u$ (and possibly other constraints)
- Tier constraints: for sets ("tiers") T_h of assets, $1 \leq h \leq H$, we require:

$$E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h \text{ (given)}$$

or,

$$(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h$$

- Cardinality constraint: $w_j > 0$ for at most N indices j
Adversarial problem

Random return $j = \bar{\mu}_j(1 - \delta w_j)$ where $0 \leq w_j \leq 1 \ \forall \ j$, and $0 \leq \delta \leq 1$ is a random variable.

A discrete distribution:

- We are given fixed values $0 = \delta_0 \leq \delta_2 \leq \ldots \leq \delta_K = 1$

 example: $\delta_i = \frac{i}{K}$

- Adversary chooses $\pi_i = \text{Prob}(\delta = \delta_i), 0 \leq i \leq K$

- The π_i are constrained: we have fixed bounds, $\pi^l_i \leq \pi_i \leq \pi^u_i$
 (and possibly other constraints)

- Tier constraints: for sets (“tiers”) T_h of assets, $1 \leq h \leq H$, we require:

 $E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h$ (given)

 or, $(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h$

- Cardinality constraint: $w_j > 0$ for at most N indices j
Random return \(r_j = \bar{\mu}_j (1 - \delta w_j) \) where \(0 \leq w_j \leq 1 \) \(\forall j \), and \(0 \leq \delta \leq 1 \) is a random variable.

A discrete distribution:

- We are given fixed values \(0 = \delta_0 \leq \delta_2 \leq \ldots \leq \delta_K = 1 \)
 example: \(\delta_i = \frac{i}{K} \)
- Adversary chooses \(\pi_i = \text{Prob}(\delta = \delta_i), 0 \leq i \leq K \)
- The \(\pi_i \) are constrained: we have fixed bounds, \(\pi_l^i \leq \pi_i \leq \pi_u^i \)
 (and possibly other constraints)
- Tier constraints: for sets ("tiers") \(T_h \) of assets, \(1 \leq h \leq H \), we require:
 \[
 E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h \quad \text{(given)}
 \]
 or, \((\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h \)
- Cardinality constraint: \(w_j > 0 \) for at most \(N \) indices \(j \)
\[\text{Random return}_j = \bar{\mu}_j (1 - \delta w_j) \] where \(0 \leq w_j \leq 1 \ \forall \ j\), and \(0 \leq \delta \leq 1\) is a random variable.

A discrete distribution:

- We are given fixed values \(0 = \delta_0 \leq \delta_2 \leq \ldots \leq \delta_K = 1\)

 example: \(\delta_i = \frac{i}{K}\)

- Adversary chooses \(\pi_i = \text{Prob}(\delta = \delta_i), 0 \leq i \leq K\)

- The \(\pi_i\) are constrained: we have fixed bounds, \(\pi_i^l \leq \pi_i \leq \pi_i^u\)
 (and possibly other constraints)

- Tier constraints: for sets ("tiers") \(T_h\) of assets, \(1 \leq h \leq H\), we require:
 \[E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h \] (given)

 or, \((\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h\)

- Cardinality constraint: \(w_j > 0\) for at most \(N\) indices \(j\)
Random return $j = \bar{\mu}_j (1 - \delta w_j)$ where $0 \leq w_j \leq 1 \ \forall \ j$, and $0 \leq \delta \leq 1$ is a random variable.

A *discrete distribution*:
- We are given **fixed** values $0 = \delta_0 \leq \delta_2 \leq \ldots \leq \delta_K = 1$
 - example: $\delta_i = \frac{i}{K}$
- Adversary *chooses* $\pi_i = \text{Prob}(\delta = \delta_i), 0 \leq i \leq K$
- The π_i are *constrained*: we have fixed bounds, $\pi^l_i \leq \pi_i \leq \pi^u_i$
 (and possibly other constraints)
- Tier constraints: for sets ("tiers") T_h of assets, $1 \leq h \leq H$, we require:
 $$E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h \text{ (given)}$$
 or,
 $$\left(\sum_i \delta_i \pi_i\right) \sum_{j \in T_h} w_j \leq \Gamma_h$$
- Cardinality constraint: $w_j > 0$ for at most N indices j
Random return $j = \bar{\mu}_j (1 - \delta w_j)$ where $0 \leq w_j \leq 1 \ \forall \ j$, and $0 \leq \delta \leq 1$ is a random variable.

A discrete distribution:

- We are given fixed values $0 = \delta_0 \leq \delta_2 \leq \ldots \leq \delta_K = 1$

 example: $\delta_i = \frac{i}{K}$

- Adversary chooses $\pi_i = \text{Prob}(\delta = \delta_i), 0 \leq i \leq K$

- The π_i are constrained: we have fixed bounds, $\pi_i^l \leq \pi_i \leq \pi_i^u$ (and possibly other constraints)

- Tier constraints: for sets (“tiers”) T_h of assets, $1 \leq h \leq H$, we require:

 $E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h \quad \text{(given)}$

 or, $(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h$

- Cardinality constraint: $w_j > 0$ for at most N indices j
Random return \(r_j \) = \(\bar{\mu}_j(1 - \delta w_j) \) where \(0 \leq w_j \leq 1 \) \(\forall j \), and \(0 \leq \delta \leq 1 \) is a random variable.

A discrete distribution:

- We are given fixed values \(0 = \delta_0 \leq \delta_2 \leq \ldots \leq \delta_K = 1 \)
 example: \(\delta_i = \frac{i}{K} \)
- Adversary chooses \(\pi_i = \text{Prob}(\delta = \delta_i) \), \(0 \leq i \leq K \)
- The \(\pi_i \) are constrained: we have fixed bounds, \(\pi^l_i \leq \pi_i \leq \pi^u_i \)
 (and possibly other constraints)
- Tier constraints: for sets ("tiers") \(T_h \) of assets, \(1 \leq h \leq H \), we require:
 \[E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h \] (given)
 or, \((\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h \)

- Cardinality constraint: \(w_j > 0 \) for at most \(N \) indices \(j \)
→ Random return \(r_j = \bar{\mu}_j (1 - \delta w_j) \) where \(0 \leq w_j \leq 1 \) \(\forall j \), and \(0 \leq \delta \leq 1 \) is a random variable.

A **discrete distribution**:

- We are given **fixed** values \(0 = \delta_0 \leq \delta_2 \leq \ldots \leq \delta_K = 1 \)

 example: \(\delta_i = \frac{i}{K} \)

- Adversary chooses \(\pi_i = \text{Prob}(\delta = \delta_i) \), \(0 \leq i \leq K \)

- The \(\pi_i \) are **constrained**: we have fixed bounds, \(\pi_i^l \leq \pi_i \leq \pi_i^u \)

 (and possibly other constraints)

- **Tier** constraints: for sets (“tiers”) \(T_h \) of assets, \(1 \leq h \leq H \), we require:

\[
E(\delta \sum_{j \in T_h} w_j) \leq \Gamma_h \quad \text{(given)}
\]

or,

\[
(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h
\]

- **Cardinality constraint**: \(w_j > 0 \) for at most \(N \) indices \(j \)
The adversarial problem is “easy”

\[K = \text{no. of points in discrete distribution, } H = \text{no. of tiers} \]

Theorem

- Without the cardinality constraint, for each fixed \(K \) and \(H \) the adversarial problem can be solved as a polynomial number of linear programs.

- With the cardinality constraint, for each fixed \(K \) and \(H \) the adversarial problem can be solved as a polynomial number of knapsack problems.
The adversarial problem is “easy”

\(K = \) no. of points in discrete distribution, \(H = \) no. of tiers

Theorem

- Without the cardinality constraint, for each fixed \(K \) and \(H \) the adversarial problem can be solved as a polynomial number of linear programs.

- With the cardinality constraint, for each fixed \(K \) and \(H \) the adversarial problem can be solved as a polynomial number of knapsack problems.
The adversarial problem is “easy”

\[K = \text{no. of points in discrete distribution}, \quad H = \text{no. of tiers} \]

Theorem

- Without the cardinality constraint, for each fixed \(K \) and \(H \) the adversarial problem can be solved as a polynomial number of linear programs.

- With the cardinality constraint, for each fixed \(K \) and \(H \) the adversarial problem can be solved as a polynomial number of knapsack problems.
Adversarial problem as an MIP

Recall: random return j
\[\mu_j = \bar{\mu}_j (1 - \delta w_j) \]
where $\delta = \delta_i$ (given) with probability π_i (chosen by adversary),
$0 \leq \delta_0 \leq \delta_1 \leq \ldots \leq \delta_K = 1$ and $0 \leq w$

\[
\min_{\pi, w, V} \min_{1 \leq i \leq k} V_i
\]

Subject to

$0 \leq w_j \leq 1$, all j, $\pi_i^l \leq \pi_i \leq \pi_i^u$, all $i,$
$\sum_i \pi_i = 1,$

$V_i = \sum_j \bar{\mu}_j (1 - \delta_i w_j) x_j^*$, if $\pi_i + \pi_{i+1} + \ldots + \pi_K \geq 1 - \theta$
$V_i = M$ (large), otherwise

$(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h,$ for each tier h
Adversarial problem as an MIP

Recall: random return \(\mu_j = \bar{\mu}_j(1 - \delta w_j) \)

where \(\delta = \delta_i \) (given) with probability \(\pi_i \) (chosen by adversary),
\(0 \leq \delta_0 \leq \delta_1 \leq \ldots \leq \delta_K = 1 \) and \(0 \leq w \)

\[
\min_{\pi, w, \nu} \min_{1 \leq i \leq k} V_i
\]

Subject to

\(0 \leq w_j \leq 1, \) all j, \(\pi_i^l \leq \pi_i \leq \pi_i^u, \) all i,
\(\sum_i \pi_i = 1, \)

\(V_i = \sum_j \bar{\mu}_j(1 - \delta_i w_j)x_j^*, \) if \(\pi_i + \pi_{i+1} + \ldots + \pi_K \geq 1 - \theta \)
\(V_i = M \) (large), otherwise

\((\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h, \) for each tier h
Adversarial problem as an MIP

Recall: random return

\[\mu_j = \bar{\mu}_j (1 - \delta w_j) \]

where \(\delta = \delta_i \) (given) with probability \(\pi_i \) (chosen by adversary),

\(0 \leq \delta_0 \leq \delta_1 \leq \ldots \leq \delta_K = 1 \) and \(0 \leq w \)

\[
\min_{\pi, w, V} \min_{1 \leq i \leq k} V_i
\]

Subject to

\[0 \leq w_j \leq 1, \text{ all } j, \quad \pi_i^l \leq \pi_i \leq \pi_i^u, \text{ all } i, \]

\[\sum_i \pi_i = 1, \]

\[V_i = \sum_j \bar{\mu}_j (1 - \delta_i w_j) x^*_j, \quad \text{if } \pi_i + \pi_{i+1} + \ldots + \pi_K \geq 1 - \theta \]

\[V_i = M \text{ (large)}, \quad \text{otherwise} \]

\[(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h, \quad \text{for each tier } h \]
Adversarial problem as an MIP

Recall: random return \(\mu_j = \bar{\mu}_j(1 - \delta w_j) \)
where \(\delta = \delta_i \) (given) with probability \(\pi_i \) (chosen by adversary),
\(0 \leq \delta_0 \leq \delta_1 \leq \ldots \leq \delta_K = 1 \) and \(0 \leq w \)

\[
\min_{\pi, w, V} \min_{1 \leq i \leq k} V_i
\]
Subject to

\[
0 \leq w_j \leq 1, \quad \text{all } j, \quad \pi_i^l \leq \pi_i \leq \pi_i^u, \quad \text{all } i,
\sum_i \pi_i = 1,
\]
\[
V_i = \sum_j \bar{\mu}_j(1 - \delta_i w_j)x_j^*, \quad \text{if} \quad \pi_i + \pi_{i+1} + \ldots + \pi_K \geq 1 - \theta
\]
\[
V_i = M \ (\text{large}), \quad \text{otherwise}
\]
\[
(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h, \quad \text{for each tier } h
\]
Let $N > 0$ be an integer. For $1 \leq k \leq N$, write
\[
\frac{k}{N} \sum_{j \in T_h} w_j \leq \Gamma_h + M \left(1 - z_{hk}\right), \quad \text{where}
\]
\[
z_{hk} = 1 \quad \text{if} \quad \frac{k-1}{N} < \sum_i \delta_i \pi_i \leq \frac{k}{N}
\]
\[
z_{hk} = 0 \quad \text{otherwise}
\]
\[
\sum_k z_{hk} = 1
\]
and M is large

Lemma. Under reasonable conditions, replacing $(*)$ with this system changes the value of the problem by at most a factor of $(1 + \frac{1}{N})$
Approximation

\[(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h, \quad \text{for each tier } h \quad (\ast)\]

Let \(N > 0 \) be an integer. For \(1 \leq k \leq N \), write

\[\frac{k}{N} \sum_{j \in T_h} w_j \leq \Gamma_h + M (1 - z_{hk}), \quad \text{where} \]

\[z_{hk} = 1 \text{ if } \frac{k-1}{N} < \sum_i \delta_i \pi_i \leq \frac{k}{N}\]

\[z_{hk} = 0 \text{ otherwise}\]

\[\sum_k z_{hk} = 1\]

and \(M \) is large

Lemma. Under reasonable conditions, replacing (\(\ast \)) with this system changes the value of the problem by at most a factor of \((1 + \frac{1}{N})\)
Approximation

\[(\sum_i \delta_i \pi_i) \sum_{j \in T_h} w_j \leq \Gamma_h, \quad \text{for each tier } h \quad (*)\]

Let \(N > 0\) be an integer. For \(1 \leq k \leq N\), write

\[
\frac{k}{N} \sum_{j \in T_h} w_j \leq \Gamma_h + M (1 - z_{hk}),
\]

where

\[
z_{hk} = 1 \text{ if } \frac{k-1}{N} < \sum_i \delta_i \pi_i \leq \frac{k}{N},
\]

\[
z_{hk} = 0 \text{ otherwise}
\]

\[
\sum_k z_{hk} = 1
\]

and \(M\) is large

Lemma. Under reasonable conditions, replacing \((*)\) with this system changes the value of the problem by at most a factor of \((1 + \frac{1}{N})\)
Implementor’s problem

Find a near-optimal solution with minimum value-at-risk

Nominal problem:

\[v^* = \min_x \lambda x^T Q x - \mu^T x \]

Subject to:

\[Ax \geq b \]
Implementor’s problem

Find a near-optimal solution with minimum value-at-risk

Nominal problem:

\[v^* = \min_x \lambda x^T Q x - \mu^T x \]

Subject to:

\[Ax \geq b \]
Implementor’s problem

Find a near-optimal solution with minimum value-at-risk

Given asset weights x, we have:

- value-at-risk $\geq \rho$, if the adversary can produce a return vector μ with

$$\text{Prob}(\nu - \mu^T x \geq \rho) \geq \theta$$

where ν is a fixed reference value.
Implementor’s problem

Find a near-optimal solution with minimum value-at-risk

Implementor’s problem at iteration r:

$$\begin{align*}
\min & \quad V \\
\text{Subject to:} & \quad \lambda x^T Q x - \mu^T x \leq (1 + \epsilon) v^* \\
& \quad Ax \geq b \\
& \quad V \geq v - \sum_j \bar{\mu}_j \left(1 - \delta_{i(t)} w_j^{(t)}\right) x_j, \quad t = 1, 2, \ldots, r - 1 \\
\end{align*}$$

Here, $\delta_{i(t)}$ and $w^{(t)}$ are the adversary’s output at iteration $t < r$.
Implementor’s problem

Find a near-optimal solution with minimum value-at-risk

Implementor’s problem at iteration r:

$$\min V$$

Subject to:

$$\lambda x^T Q x - \mu^T x \leq (1 + \epsilon) v^*$$

$$Ax \geq b$$

$$V \geq \nu - \sum_j \bar{\mu}_j \left(1 - \delta_{i(t)} w_{j(t)}^{(t)}\right) x_j, \quad t = 1, 2, \ldots, r - 1$$

Here, $\delta_{i(t)}$ and $w^{(t)}$ are the adversary’s output at iteration $t < r$.
First set of experiments
1338 assets, 41 factors, 81 rows

- problem: find a “near optimal” solution with minimum value-at-risk, for a given threshold probability θ
- experiment: investigate different values of θ
- “near optimal”: want solutions that are at most 1% more expensive than optimal
- random variable δ:

![Probability mass function graph](image)
First set of experiments

1338 assets, 41 factors, 81 rows

- problem: find a “near optimal” solution with minimum value-at-risk, for a given threshold probability θ
- experiment: investigate different values of θ
- “near optimal”: want solutions that are at most 1% more expensive than optimal
- random variable δ:
1338 assets, 41 factors, 81 rows, \(\leq 1\% \) suboptimality

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>time (sec.)</th>
<th>iters.</th>
<th>VAR</th>
<th>VAR as %</th>
</tr>
</thead>
<tbody>
<tr>
<td>.89</td>
<td>1.18</td>
<td>2</td>
<td>3.43131</td>
<td>71.50</td>
</tr>
<tr>
<td>.90</td>
<td>1.42</td>
<td>3</td>
<td>3.74498</td>
<td>78.04</td>
</tr>
<tr>
<td>.91</td>
<td>1.42</td>
<td>3</td>
<td>3.74498</td>
<td>78.04</td>
</tr>
<tr>
<td>.92</td>
<td>3.47</td>
<td>11</td>
<td>4.05669</td>
<td>84.53</td>
</tr>
<tr>
<td>.93</td>
<td>6.35</td>
<td>29</td>
<td>4.05721</td>
<td>84.54</td>
</tr>
<tr>
<td>.94</td>
<td>6.37</td>
<td>20</td>
<td>4.05721</td>
<td>84.54</td>
</tr>
<tr>
<td>.95</td>
<td>26.59</td>
<td>51</td>
<td>4.35481</td>
<td>90.74</td>
</tr>
<tr>
<td>.96</td>
<td>26.25</td>
<td>51</td>
<td>4.35481</td>
<td>90.74</td>
</tr>
<tr>
<td>.97</td>
<td>26.20</td>
<td>51</td>
<td>4.35481</td>
<td>90.74</td>
</tr>
<tr>
<td>.98</td>
<td>33.07</td>
<td>58</td>
<td>4.63938</td>
<td>96.67</td>
</tr>
<tr>
<td>.99</td>
<td>33.11</td>
<td>58</td>
<td>4.63938</td>
<td>96.67</td>
</tr>
</tbody>
</table>
Second set of experiments

Fix $\theta = 0.90$ but vary suboptimality criterion
Typical convergence behavior
- Heavy tail, proportional error (100 points):

- Heavy tail, constant error (100 points):
- Heavy tail, proportional error (100 points):

- Heavy tail, constant error (100 points):
<table>
<thead>
<tr>
<th>θ</th>
<th>Proportional</th>
<th></th>
<th>Constant</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Its</td>
<td>Time</td>
<td>Its</td>
</tr>
<tr>
<td>.85</td>
<td>4.79</td>
<td>8</td>
<td>11.84</td>
<td>11</td>
</tr>
<tr>
<td>.86</td>
<td>2.32</td>
<td>3</td>
<td>8.27</td>
<td>8</td>
</tr>
<tr>
<td>.87</td>
<td>6.40</td>
<td>10</td>
<td>9.55</td>
<td>11</td>
</tr>
<tr>
<td>.88</td>
<td>4.34</td>
<td>4</td>
<td>18.10</td>
<td>24</td>
</tr>
<tr>
<td>.89</td>
<td>8.00</td>
<td>14</td>
<td>5.85</td>
<td>6</td>
</tr>
<tr>
<td>.90</td>
<td>2.58</td>
<td>4</td>
<td>13.54</td>
<td>20</td>
</tr>
<tr>
<td>.91</td>
<td>4.79</td>
<td>9</td>
<td>16.31</td>
<td>23</td>
</tr>
<tr>
<td>.92</td>
<td>7.99</td>
<td>15</td>
<td>13.13</td>
<td>22</td>
</tr>
<tr>
<td>.93</td>
<td>13.43</td>
<td>27</td>
<td>22.47</td>
<td>40</td>
</tr>
<tr>
<td>.94</td>
<td>10.04</td>
<td>15</td>
<td>21.99</td>
<td>40</td>
</tr>
<tr>
<td>.95</td>
<td>9.59</td>
<td>16</td>
<td>11.90</td>
<td>25</td>
</tr>
<tr>
<td>.96</td>
<td>6.63</td>
<td>17</td>
<td>29.89</td>
<td>54</td>
</tr>
<tr>
<td>.97</td>
<td>48.43</td>
<td>110</td>
<td>16.45</td>
<td>35</td>
</tr>
<tr>
<td>.98</td>
<td>20.25</td>
<td>53</td>
<td>20.25</td>
<td>45</td>
</tr>
<tr>
<td>.99</td>
<td>22.02</td>
<td>52</td>
<td>21.89</td>
<td>47</td>
</tr>
</tbody>
</table>
A difficult case

- 2464 columns, 152 factors, 3 tiers
- time = 6191 seconds
- 258 iterations
- implementor time = 6123 seconds, adversarial time = 20 seconds
A difficult case

- 2464 columns, 152 factors, 3 tiers
- time = 6191 seconds
- 258 iterations
- implementor time = 6123 seconds, adversarial time = 20 seconds
A difficult case

- 2464 columns, 152 factors, 3 tiers
- \(\text{time} = 6191 \text{ seconds} \)
- 258 iterations
- \(\text{implementor time} = 6123 \text{ seconds, adversarial time} = 20 \text{ seconds} \)
A difficult case

- 2464 columns, 152 factors, 3 tiers
- time = 6191 seconds
- 258 iterations
- implementor time = 6123 seconds, adversarial time = 20 seconds
A difficult case

- 2464 columns, 152 factors, 3 tiers
- time = 6191 seconds
- 258 iterations
- implementor time = 6123 seconds, adversarial time = 20 seconds
Implementor runtime

![QCP time graph](image)
Implementor’s problem at iteration r

\[
\begin{align*}
\min & \quad V \\
\text{Subject to:} & \\
\lambda x^T Q x - \mu^T x & \leq (1 + \epsilon) v^* \\
Ax & \geq b \\
V & \geq \nu - \sum_j \bar{\mu}_j \left(1 - \delta_i(t) w_j^{(t)} \right) x_j, \quad t = 1, 2, \ldots, r - 1
\end{align*}
\]

Here, $\delta_i(t)$ and $w^{(t)}$ are the adversary’s output at iteration $t < r$.
Implementor’s problem at iteration \(r \)

Approximate version

\[
\begin{align*}
\min & \quad V \\
\text{Subject to:} & \quad 2\lambda x^{T}_{(k)} Q x - \lambda x^{T}_{(k)} Q x_{(k)} - \mu^{T} x \leq (1 + \epsilon) v^{*}, \quad \forall k < r \\
& \quad A x \geq b \\
& \quad V \geq \nu - \sum_{j} \bar{\mu}_{j} \left(1 - \delta_{i(k)} w_{j}^{(k)}\right) x_{j}, \quad \forall k < r
\end{align*}
\]

Here, \(\delta_{i(k)} \) and \(w^{(k)} \) are the adversary’s output at iteration \(k < r \), and \(x_{(k)} \) is the implementor’s output at iteration \(k \).
Does it work?

- Before: 258 iterations, **6191** seconds
- Linearized: 1776 iterations, **3969** seconds
Does it work?

- Before: 258 iterations, **6191** seconds
- Linearized: 1776 iterations, **3969** seconds
Averaging

- $x(k)$ is the implementor’s output at iteration k.
- Define $y(1) = x(1)$
- For $k > 1$, $y(k) = \lambda x(k) + (1 - \lambda) y(k-1)$, $0 \leq \lambda \leq 1$
- Input $y(k)$ to the adversary
- Old ideas, also Nesterov, Nemirovsky (2003)
Averaging

- $x_{(k)}$ is the implementor’s output at iteration k.
- Define $y_{(1)} = x_{(1)}$

For $k > 1$, $y_{(k)} = \lambda x_{(k)} + (1 - \lambda) y_{(k-1)}$, \hspace{1cm} 0 \leq \lambda \leq 1$

- Input $y_{(k)}$ to the adversary

- Old ideas, also Nesterov, Nemirovsky (2003)
Averaging

- $x(k)$ is the implementor’s output at iteration k.
- Define $y(1) = x(1)$
- For $k > 1$, $y(k) = \lambda x(k) + (1 - \lambda) y(k-1)$, $0 \leq \lambda \leq 1$
- Input $y(k)$ to the adversary
- Old ideas, also Nesterov, Nemirovsky (2003)
Averaging

- $x(k)$ is the implementor’s output at iteration k.
- Define $y(1) = x(1)$
- For $k > 1$, $y(k) = \lambda x(k) + (1 - \lambda) y(k-1)$, $0 \leq \lambda \leq 1$
- Input $y(k)$ to the adversary

Old ideas, also Nesterov, Nemirovsky (2003)
Averaging

- $x(k)$ is the implementor’s output at iteration k.
- Define $y(1) = x(1)$
- For $k > 1$, $y(k) = \lambda x(k) + (1 - \lambda) y(k-1)$, $0 \leq \lambda \leq 1$
- Input $y(k)$ to the adversary
- Old ideas, also Nesterov, Nemirovsky (2003)
Does it work?

- Default: 258 iterations, 6191 seconds
- Linearized: 1776 iterations, 3969 seconds
- Averaging plus Linearized: 860 iterations, 530 seconds
Does it work?

- Default: 258 iterations, 6191 seconds
- Linearized: 1776 iterations, 3969 seconds
- Averaging plus Linearized: 860 iterations, 530 seconds
Does it work?

- Default: 258 iterations, 6191 seconds
- Linearized: 1776 iterations, 3969 seconds
- Averaging plus Linearized: 860 iterations, 530 seconds
Other robust models

- Min-max expected loss with orthogonal missing factor

Random return = $\bar{\mu} \bullet (1 - \delta w)$ where $-1 \leq w_j \leq 1 \ \forall j$, and $0 \leq \delta \leq 1$ is a random variable.

Normalization constraints, e.g. $\sum_j w_j = 0$

- Errors in covariance matrix Q

Robust problem: $\rightarrow \min_x \ \max_{Q \in \mathcal{Q}} \ \lambda x^T Q x - \mu^T x$
Other robust models

- Min-max expected loss with orthogonal missing factor

 Random return = $\bar{\mu} \bullet (1 - \delta w)$ where $-1 \leq w_j \leq 1 \ \forall \ j$, and $0 \leq \delta \leq 1$ is a random variable.

 normalization constraints, e.g. $\sum_j w_j = 0$

- errors in covariance matrix Q

 robust problem: $\rightarrow \min_x \max_{Q \in \mathcal{Q}} \lambda x^T Q x - \mu^T x$
Other robust models

- Min-max expected loss with orthogonal missing factor

 Random return = $\bar{\mu} \cdot (1 - \delta w)$ where $-1 \leq w_j \leq 1$ \(\forall j\), and $0 \leq \delta \leq 1$ is a random variable.

 normalization constraints, e.g. $\sum_j w_j = 0$

- errors in covariance matrix Q

 robust problem: $\rightarrow \min_x \max_{Q \in \mathcal{Q}} \lambda x^T Q x - \mu^T x$
On-going work: a provably good version of Benders’ algorithm