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Brief introduction
“The grid”:

e Transmission network + distribution networks

e Transmission: used for long-distance transmission of power at high volt-
ages

e Distribution: used for local conveyance of power at low(er) voltages
e This talk: focused on transmission

e What is power and how is it generated? What is voltage?” What is
transmission”

e High-school classical physics:
voltage = potential energy per unit charge,
electrical current = charge per unit time (per unit area)

e Generators generate current at a given voltage
Voltage X current = power



Brief introduction

e GGrid modeled as a network; nodes = “buses”, edges = “lines”
e Steady-state operation: each bus k has a voltage (potential energy)
Vi = [Vi|e!™

e Each line {k, m} has physical attributes: e.g. resistance r, reactance x,
shunt admittance y*"

z = r+jx, (series impedance)
y = 2 ' =g+ jb, (admittance)
r 14 x
p— an == — ,
T r? 4 x?
e A transformer with N = 7¢/7 scales voltages by N.
| Y V%l N*IL, Y=9+jb v,  mk
|%k ! e ] m
1..sh 1,,8h
N:I 2’ 2’




(N = 7€)
(Ve o VAl et
V = (Vm> = ( Volen ) =\ e + 3t (voltages at k and m)
I = ( ?‘: ) (complex current injections at k& and m)
S = ( gfn > ( PZ}: i;g:}: ) (complex power injections at k and m)
Then
Stm = Vily,., Spmx = Vil and [ = YV,
where
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Very nice math, but how does the grid operate?

A simplified view:

e Unit commitment problem
Run e.g. every twelve hours, to decide which (large) generators to operate
Uses a simplifed model of the physics and the grid, plus demand estimates
A linear mixed-integer program

e OPF = Optimal power flow
Once generators have been picked, OPF is used to approximately minimize
generation cost
And also to verify stable operation
Uses a more accurate model of the physics and grid
A nonconvex continuous optimization problem

e OPF = Optimal power flow
Run as often as every five minutes, to minimize generation cost
Uses estimates of demands over the next time window
Simplified model: linear approximation to the physics

e Primary + secondary frequency control
Used for real-time management of small demand oscillations
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Optimal Power Flow

e Primary goal: economic and secure operation

e Accurate physics modeling, but expensive. Linearized version
run most commonly

e Inputs for the computation: the current state ot the grid, and
estimates of demands (“loads”) in the next time window

e [irst proposed by Carpentier (EDF) in 1962

Stm = Pem + 1Qkm

Pem = [Vil?g — [Vil|Vinlg cos Orm — [Vii||Vin| b sin Op,
(active power injected by k into km)

Qrm = —|Vk\26—|— Vi |[Vin|b cos O — | Vie| [ Vin |0 sin Oy,

(reactive power injected by k into km)



Stm = Pem + 1Qkm

Pim = |Vil?g — Vil Vinlg cos O — [Vie| [Vin|bsin Oy,
(active power injected by k into km)

Qrm = —|Vklzb+ Vil [Vin|b cos O, — | Vi| [ Vin |0 sin O,

(reactive power injected by k into km)

P. = Z P, total active power injection by &

km

Qr = Z Qrm total reactive power injection by &

km



OPF problem, simple version

Choose |Vj| and 6, for each bus k, so that

min Z F,(P,)

S.t.

geG

Vkmin S |‘//€’ S ‘/]{:max all k

S| < ST all km

km

0| < 0720 all km, sometimes

F, convex quadratic, usually.



OPF problem, simple version

Choose |Vj| and 6, for each bus k, so that

min Z F,(P,)

geG

st. Lp < P, < U, all k
Vkmin S |‘//€’ S ‘/]{:max all k
S| < S% Al km

km

0| < 0720 all km, sometimes

F, convex quadratic, usually.

In principle, this is a difficult, nonconvex optimization problem



How does the industry handle this problem?

e Techniques borrowed from convex optimization, i.e. logarithmic barrier
methods

e Sequential linearization
e Other heuristics

e [f everything fails, change the problem

e Some software is quite old
e Works very well on routine problems — may run in (tens of) seconds

e May not work well on grids under distress
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Pem = |Vil?g = |Vi||Vinlg co8 Om — [Vl [V |bsin O,
Practical adaptation for routine operation

e r = () for each line (zero resistance).

Sog=55=0b=— -

2-|—:C2 = -7

o |V;| =1 for all buses k (after scaling)
e 0. — 0, ~ 0 for all lines km, so sin(0y — 6,,) ~ O — 6,

e Only focus on active power
Pem = |Vil’g — Vil |Viulg cos Ok — Vil [Vin|bsin O,

Or — O

X

Q

= y(Or — On)



P = |Vil’g — [Vil[Vinlg o8 O — Vil [Vin|bsin O
“DC Approximation”

e = () for each line (zero resistance).
Sogzrgi—x?:(),b:—rgi—ﬂ:—x_l

o |V;| =1 for all buses k (after scaling)

e 0 — 0, ~ 0 for all lines km, so sin(0y — 6,,) ~ 0 — 6,

e Only focus on active power

P, = \Vk|29 — \Vil|Vinlg cos O — |Vie| | Vi |b sin Oy,

0. — 0,
~ = y(0. — 0,
" y(0r — Om)
S0, get
min Z F,(P,)
geG
s.t. Zykm(ek — 9m> = Pk all k
km

Ly < B, < U, allk, |yem(0p—0n)| < Upy® all km



For the optimization jockes: OPF using rectangular coordi-
nates

(Ve _( Vale N (ent i
V = (Vm) = ( Volen ) = e + 3t (voltages at k and m)

I L
I = ( [km ) (complex current injections at k and m)
mk

— — , |
S ( S ) ( Pt iOm (complex power injections at k and m)

Then
Stm = Vily,., Spmx = Vml,, and [ = YV,

where




OPF using rectangular coordinates
(Ve _ (Ve (et it
V = ( Vm) = ( Volen ) = e + 3t (voltages at k and m)

I L
I = ( [km ) (complex current injections at k and m)
mk

— — , |
S ( S ) ( Pt iOm (complex power injections at k and m)

Then
Stm = Vily,., Spmx = Vil and [ = YV,

sh
( W+%5)%m —Yntw )
Y = )
1 ysh
Yo y+ 2

— Py, and Qy,, are bilinear functions of e, e, fi, fm, €.2.

where

P = ergler — em) — erb(fi — f) + fog(fx — fn) + frbler — en)

in the no shunt, no transformer case.



OPF in rectangular coordinates, simple case

Choose |ey| and fi for each bus k. so that

KOPF = min ZFQ(PQ)
geG
st. w!lAw = P, all &
w!Byw = Qp,  allk

box constraints on P, (), for all k

V}{min < wTMkw < ‘/kmax all k

Here w = (e, €0, ..., €n, f1, for .oy fo)l.



OPF in rectangular coordinates, 11
KOPF

— min w! Fw

st. Lp < wA*w < U,

Here, F' > 0.
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OPF in rectangular coordinates, 11

KOPF — min  w! Fw
s.t. Lk < wTAkw < Uk, k:1,2,...m
w € R",

Here, F' > 0. A quadratically constrained, quadratic program.

Write W = ww! € R™". Then W > 0, rank 1. So:

OPF :
K = min Zﬂjmj

7]
st Ly < Y AW, < U, k=12,...m
]

A linear program ? A quadratically constrained, quadratic pro-

gram.



OPF in rectangular coordinates, 111
KOPF

— min w! Fw

st. Lp < wA*w < U,

Here, F' > 0.



Back to DC Approximation

min Z F,(F,)

geG
S.t. Zykm(ﬁk — €m> = P all k
km

Ly < P, < Uy allk, |yem(0p —0n)| < Up® all km

Q: how do we handle wind power?



Back to DC Approximation

min Z F,(F,)

geG
S.t. Zykm(ﬁk — Qm> = P all k
km

Ly < P, < Uy allk, |yem(0p —0n)| < Up® all km

Q: how do we handle wind power?

One option:
e model each wind farm as another node (bus) in the transmission system
e model average wind output of a farm as a negative load
e manage real-time variations using frequency control
e c.g. secondary control:

load change A = generator g changes its output by a,A

E a, = 1, a4 = “participation factor”, computed based on economics
g



THE ENERGY CHALLENGE

Wind Energy Bumps Into Power Grid’s Limits

Mike GrollAssociated Press
The Maple Ridge Wind farm near Lowville, N.Y. It has been forced to shut down when regional electric lines become
congested.

By MATTHEW L. WALD
Published: August 26, 2008 « TWITTER

When the builders of the Maple Ridge Wind farm spent $320 million [} LINKEDIN

to put nearly 200 wind turbines in upstate New York, the idea was to ¥ COMMENTS
get paid for producing electricity. But at times, regional electric lines =0
) =] SIGN IN TO E-
have been so congested that Maple Ridge has been forced to shut MAIL OR SAVE
THIS

down even with a brisk wind blowing,

| e | T —



CIGRE -International Conference on Large High
Voltage Electric Systems ’09

e Large unexpected fluctuations in wind power can cause addi-
tional flows through the transmission system (grid)

e Large power deviations in renewables must be balanced by
other sources, which may be far away

e Flow reversals may be observed — control difficult

e A solution — expand transmission capacity! Difficult (expen-
sive), takes a long time

e Problems already observed when renewable penetration
high



OPF:

S.t.

min ¢(p) (a quadratic)

BO=p—d (1)
yii(0i —0;)] < w;; for each line 7 (2)
Pgmm < py, < P for each bus g (3)
Notation:
p = vector of generations € R", d = vector of loads € R"
B € R™"  (bus susceptance matrix)

—Yij, ij € & (set of lines)
Vi,j: By = Zk;{k,j}eé’ Ykj> 1=

0, otherwise



OPF:

S.t.

min ¢(p) (a quadratic)

BO=p—d (4)
yii(60; — 0;)| < w;; for each line ij (5)
Pgmm < py, < P for each bus g (6)
Notation:
p = vector of generations € R", d = vector of loads € R"
B € R™"  (bus susceptance matrix)

—Yij, ij € & (set of lines)
Vi,j: By = Zk;{k,j}eé’ Ykj> 1=

0, otherwise

Secondary response:
“Load” change A = generator g changes its output by a,A



Experiment Bonneville Power Administration data, Northwest US

e data on wind fluctuations at planned farms

e with standard OPF, 7 lines exceed limit > 8% of the time

W e

= % /1]
_ gﬁ-%afﬁﬁf-f:’;



Modeling risk: line limits and line tripping

[f power flow in a line exceeds its limit, the line becomes compromised and
may 'trip’. But process is complex and time-averaged:



Modeling risk: line limits and line tripping

[f power flow in a line exceeds its limit, the line becomes compromised and
may 'trip’. But process is complex and time-averaged:

e Thermal limit is most common
e Thermal limit may be in terms of terminal equipment, not line itself
e Wind strength and wind direction contributes to line temperature

e [EEE Standard 738 computes line temperature as a function of power flow
and numerous exogenous parameters (wind, temperature, humidity, air
pressure, date, time of day, latitude and longitude, ...)

e In 2003 U.S. blackout event, many critical lines tripped due to thermal
reasons, but well short of their line limit



Modeling risk: line limits and line tripping

summary: exceeding limit for too long is bad, but precise model difficult
want: "fraction of time a line exceeds its limit is small”

proxy: prob(violation on line km) < €,

® ¢;,, small, a parameter we control

e must have a working model for wind behavior



OPF:

S.t.

min ¢(p) (a quadratic)

BO=p—d (7)
yii(60; — 0;)| < w;; for each line ij (8)
Pgmm < py, < P for each bus g (9)
Notation:
p = vector of generations € R", d = vector of loads € R"
B € R™"  (bus susceptance matrix)

—Yij, ij € & (set of lines)
Vi,j: By = Zk;{k,j}eé’ Ykj> 1=7

0, otherwise



Line flows under wind power

wind power at bus ¢: u; + w;
DC approximation =

e BO=p—d
+(p+w—a) i cqw;)
00 =B p—d+p) + BT —ael)w
e flow is a linear combination of bus power injections:

fij = Bij(0; — 6;)



Line flows under wind power

fij = Bij ((B@'+ - Bf)T(ﬁ —d+p)+ (A; — Aj)Tw> ,
A= BHI - ael)

(Given distribution of wind can calculate moments of line flows:
e Efij = Bij(Bf = BN (p—d+p)

o var(fiz) = s7; = B7; Sop(Aug — Ajp)°of
(assuming independence)

e and higher moments if necessary



Chance constraints to deterministic constraints

e chance constraint:
max max ..
P(fzj > i ) < €5 and P(_fw < — i ) < €
e from moments of f,ij, can get conservative approximations
using e.g. Chebyshev’s inequality
o for Gaussian wind, can do better, since f;; is Gaussian :

Efil + var(fij)e~" (1—ej) < fi7



Chance-constrained DC OPF':

Choose mean generator outputs and control to minimize ex-
pected cost, with the probability of line overloads kept small.

min Ec(p)]
D,
s.t.Zoz@- =1, a>0
1€G
B5 — CY, 6n —
D Bt =) d;
1€G 1€F B e
fzy 5@]( ')7
zg > 6 Z Ok ] — 0 + 0; )
keF

Fijl + sijo (L) < £



An experiment:

Polish 2003-2004 winter peak case
e 2746 buses, 3514 branches, 8 wind sources

e 5% penetration and o = .3u each source

The optimization problem has:

e 306625 variables
e 38507 constraints, 6242 conic constraints

e 128538 nonzeros, 87 dense columns



CPLEX:
e total time on 16 threads = 3393 seconds
e "optimization status 6”

e solution is wildly infeasible

Gurobi:
e time: 31.1 seconds

e "Numerical trouble encountered”



Cutting-plane algorithm:

remove all conic constraints
repeat until convergence:
solve linearly constrained problem
if no conic constraints violated: return
find separating hyperplane for maximum violation
add linear constraint to problem



Candidate solution violates conic constraint




Separate: find a linear constraint also violated




Solve again with linear constraint




New solution

still violates conic constraint




Separate again




We might end up with many linear constraints

10
1Y

g

6




.. which approximate the conic constraint




Polish 2003-2004 case
CPLEX: “opt status 6”
Gurobi: “numerical trouble”

Example run of cutting-plane algorithm:

Iteration Max rel. error Objective

1 1.2e-1 7.0933¢e6
4 1.3e-3 7.0934¢e6
7 1.9e-3 7.0934e6
10 1.0e-4 7.0964¢6
12 8.9e-7 7.0965e6

Total running time: 32.9 seconds



Back to motivating example: BPA case
e standard OPF" cost 235603, 7 lines unsafe > 8% of the time

e CC-OPF: cost 237297, every line safe > 98% of the time

e run time = 9.5 seconds (one cutting plane!)

B, ‘\ N s
e ~ [ i

N
Yo




Summary:
e Specialized cutting-plane algorithm proves effective
e Commercial solvers do not

e Algorithm efficient even in cases with thousands of buses/lines



Summary:

e Specialized cutting-plane algorithm proves effective

e Commercial solvers do not

e Algorithm efficient even in cases with thousands of buses/lines
Current work:

e Handle imprecise estimations in a robst way

e Fixtension to nonlinear power flow models

e Perhaps: interaction with some utilities



Need for robustness!

min E|c(p)]
p,&
s.t.Zozi: I, «a >0
1eG
Zw D= d;
1€G 1€F B €D
f@] 52]( '>7
ke F

‘72]‘ + Sij¢_1( Ezy) < maaz



Robustness: what do we want

1. We do not want to go crazy

2. When data errors are big we want our solutions to degrade
in a controlled manner

3. When data errors are small we want our solutions to degrade
very little from nominal behavior



