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Discrete Time Model: for subgroup j at time t + 1:

S j
t+1 = S j

t e
−λj∗βt∗p

E j
t+1 = E j

t e
−µEj + S j

t (1− e−λj∗βt∗p)

I jt+1 = I jt e−µRRj + E j
t (1− e−µEj )

R j
t+1 = R j

t + I jt (1− e−µRRj ).

[LJS Allen et al, 1991; Larson, 2007]
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Example - Profile

Demographics

General Population High Risk Population

Size 900,000 20,000

Initial infected 5 0

Contact rates (per day) 30 35

Incubation rate (µE) 10/19 10/19

Removal rate (µR) 10/41 10/41

Survival prob (f) 1 1

Uncertainty Set

P = [0.01, 0.012]× [0.0125, 0.0135]
p can change on day {140, ..., 160}

Procurement Considerations

Can bring up to 3,000 volunteers
Stay up to 1 week

Social Contact Model

Nonhomogeneous-mixing
Damp contact rates by 30% when epidemic is declared

Queueing Cost
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Example - Scenario 1

Worst case: (p1, p2, d) = (0.0109, 0.0135, 140) Cost: 4.58
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Example - Scenario 2

Given Robust strategy is implemented:
Worst case:(p1, p2, d) = (0.01168, 0.0135, 140) Cost: 1.43
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Example - Comparing strategies

Takeaway: Planning against worst-case scenario may not be
enough!

No Intervention
Robust 

Strategy

Worst‐Case 

Strategy

No intervention: Cost 4.581 0.050 0.000

worst tuple Maximum ρ 1.002 1.048 1.000

(0.01092, 0.0135, 140) Critical days ( ρ > 1) 28 8 0

Robust Strategy: Cost 1.694 0.052 0.686

worst tuple Maximum ρ 1.024 1.003 1.017

(0.01168, 0.0135, 140) Critical days ( ρ > 1) 21 7 12

Worst‐case Strategy: Cost 1.430 0.050 0.710

worst tuple Maximum ρ 1.021 1.002 1.018

(0.01172, 0.0135, 140) Critical days ( ρ > 1) 20 8 13
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Motivation Model Results

Final Remarks

Consider robust models of surge capacity planning in view of a
flu pandemic.

Focus on critical staff levels.

SEIR model + adversarial models (contagion rate).

Present efficient and accurate algorithms → procurement
strategies which optimally hedge against uncertainty.

Need to prepare for more than just the worst case scenario.
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Thank you!

Cecilia Zenteno

acz2103@columbia.edu

www.columbia.edu/∼acz2103
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