
Polynomial-time solvability of extensions of the
trust-region subproblem

Daniel Bienstock and Alexander Michalka,
Columbia University



Motivation: polynomial relaxations of discrete optimization
problems

min cTx

s.t.

n∑
j=1

aijxj ≥ bi 1 ≤ i ≤ m

x ∈ {0, 1}n



Motivation: polynomial relaxations of discrete optimization
problems

min cTx

s.t.

n∑
j=1

aijxj ≥ bi 1 ≤ i ≤ m

x ∈ {0, 1}n

Sherali-Adams, Lovász-Schrijver:

min cTx

s.t. aikxk +
∑
j 6=k

aijxjxk ≥ bixk 1 ≤ k ≤ n, 1 ≤ i ≤ m∑
j 6=k

aijxj −
∑
j 6=k

aijxjxk ≥ bi(1− xk) 1 ≤ k ≤ n, 1 ≤ i ≤ m

x ∈ [0, 1]n



Motivation: polynomial relaxations of discrete optimization
problems

min cTx

s.t.

n∑
j=1

aijxj ≥ bi 1 ≤ i ≤ m

x ∈ {0, 1}n

Sherali-Adams, Lovász-Schrijver:

min cTx

s.t. aikxk +
∑
j 6=k

aijxjxk ≥ bixk 1 ≤ k ≤ n, 1 ≤ i ≤ m∑
j 6=k

aijxj −
∑
j 6=k

aijxjxk ≥ bi(1− xk) 1 ≤ k ≤ n, 1 ≤ i ≤ m

x ∈ [0, 1]n

Semidefinite relaxation:

replace xjxk with Xjk, xj = Xjj (all j), X � 0.
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M � 0, ‖x‖0 = number of nonzero entries in x.

(NP-Hard even if the number of rows of A is two.)

Relaxation: Let x∗ = argmin{xTMx + cTx : Ax = b, lj ≤ xj ≤ uj}

Suppose ‖x∗‖0 > K → can compute ball B ⊆ Rn with

x∗ ∈ int (B) and ‖x‖ > K ∀ x ∈ int (B)

Better relaxation:

min{xTMx + cTx : Ax = b, lj ≤ xj ≤ uj, x /∈ int (B)}
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After some iterations

min xTMx + cTx

s.t. Ax = b, lj ≤ xj ≤ uj, 1 ≤ j ≤ n

‖x− µh‖ ≥ rh, h = 1, 2, . . .

(a) How to solve?

(b) Experimental observation – the relaxation becomes much stronger after a
small number of iterations.

Quadratically constrained, quadratic programs

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

Here,
fi(x) = xTMix + cTi x + di

is a general quadratic
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Well-known result

min xTQx + cTx

s.t. Ax ≤ b

is NP-hard, as are many variants.

Positive results?

→ Polynomial optimization polynomially equivalent with QCQP

→ Cucker and Bürgisser (STOC 2010):

A solution to a system of complex polynomial equations can be computed
in near polynomial time.

→ A near answer to Smale’s 17th problem.

How about over the reals? Let’s start with easy results.



Simplest example: S-Lemma (abridged)

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0

if and only if there exists γ ≥ 0 such that

f(x) ≥ γg(x) for all x ∈ Rn.

Yakubovich (1971), also much earlier, related work

Corollary: Can solve

min{f(x) : g(x) ≥ 0}
in polynomial time (using semidefinite programming)

Note: duality may not hold if there is more than one quadratic constraint



An application: the trust-region subproblem

min{f(x) : g(x) ≤ 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:

min{f(x) : ‖x‖ ≤ 1}

can be solved in poly time → log ε−1

Y. Ye (1992) → log log ε−1

How about extensions of the trust-region subproblem?



Sturm-Zhang (2003)

Where f (x) is a quadratic,

min f (x)

s.t. ‖x‖ ≤ 1

aTx ≤ b (one linear side constraint)

can be solved in polynomial time, as can

min f (x)

s.t. ‖x‖ ≤ 1

‖x− x0‖ ≤ r0 (one additional convex ball constraint)

Ye-Zhang (2003)

min f (x)

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

(aT1 x− b1)(aT2 x− b2) = 0

(two linear side constraints, but at least one binding)
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In polynomial time, one can solve a problem of the form

min xTQx + cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint

→min {xTQx + cTx : l ≤ x1 ≤ u, ‖x‖ ≤ 1 }

restate as: min
∑
i,j

qijXij + cTx

s.t. X11 + lu ≤ (l + u)x1
‖X.1 − lx‖ ≤ x1 − l
‖ux−X.1‖ ≤ u− x1∑
j

Xjj ≤ 1 , X � xxT

Lemma: This problem has an optimal solution with X = xxT . Also: Ye-Zhang
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Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

min xTQx + cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi 1 ≤ i ≤ m

if no two linear inequalities are simultaneously binding in the feasible region

Lemma: the following problem has an optimal solution with X = xxT .

min
∑
i,j

qijXij + cTx

s.t. X11 + lu ≤ (l + u)x1
‖bix−Xai‖ ≤ bi − aTi x i ≤ m

bibj − bjaTi x− biaTj x + aTi Xaj ≤ 0 i < j ≤ m∑
j

Xjj ≤ 1 , X � xxT
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min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }
Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersecting⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.

Anstreicher-Burer: Case (1) with 3 faces of P meeting the feasible region.

Burer-Yang: Case (1) with m + 1 faces of P meeting the feasible region.



More precise statement for case (1)

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }
Theorem.
For each fixed |S| ≥ 1, |K| there is an algorithm that solves the problem, to
tolerance 0 < ε < 1 in time

(a) Polynomial in the number of bits in the data and log ε−1

(b) Linear in the number of faces of P that intersect⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh}.
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1. If K = ∅ , a convex optimization problem:

min ‖x− µi‖, any given i ∈ S
s.t. ‖x− µh‖ ≤ rh, h ∈ S − i,

x ∈ P .
= {x ∈ Rn : Ax ≤ b }

2. Otherwise, pick any i ∈ K , and solve

min −‖x− µi‖
s.t. ‖x− µh‖ ≤ rh, h ∈ S,

‖x− µh‖ ≥ rh, h ∈ K − i,
Ax ≤ b.
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Corollary (but more than we need):

Given a collection of balls Bh ⊂ Rn (h ∈ S)

and a polyhedron

P = {x ∈ Rn : Ax ≤ b},

there is an algorithm that lists the faces of P that intersect
⋂
h∈S Bh

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces

Proof sketch. Use e.g. breadth-first search on the faces of P , starting
with P itself.

Basic step:

• Pick a row aTi x ≤ bi of Ax ≤ b.

• Impose aTi x = bi.

• Test for feasibility. If feasible, found a new face.
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Basic Idea

min{xTQx+cTx : ‖x−µh‖ ≤ rh, h ∈ S, ‖x−µh‖ ≥ rh, h ∈ K, Ax ≤ b}
Let x∗ be optimal. Trivial: there exist (possibly empty) subsets

S= of S, K= of K, and I= of the rows of Ax ≤ b, such that

‖x∗ − µh‖ =rh ∀h ∈ S= ∪K=, aTi x
∗ =bi ∀ i ∈ I=

‖x∗ − µh‖ <rh ∀h ∈ S − S=, ‖x∗ − µh‖ >rh ∀h ∈ K −K=

aTi x
∗ <bi ∀ i /∈ I=.

(S=, K=, I=): an optimal triple. x∗: tight for (S=, K=, I=)

Algorithm will guess (S=, K=, I=) (actually, compute I=).

For each enumerated triple (Ŝ, K̂, Î), it will (in polynomial time) either

(a) Compute a finite set of vectors tight for (Ŝ, K̂, Î), one of which must be
x∗ if the guess is right, or

(b) Prove that if (Ŝ, K̂, Î) is optimal, there is a different optimal triple
(S̃, K̃, Ĩ) with

S̃ ⊇ Ŝ, K̃ ⊇ K̂, Ĩ ⊇ K̂ and |S̃|+ |K̃|+ |Ĩ| > |Ŝ|+ |K̂|+ |Î|.
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Geometry, 1

Notation. Given a ball B = {x ∈ Rn : ‖x− µ̂i‖ ≤ r̂},
∂B

.
= {x ∈ Rn : ‖x− µ̂i‖ = r̂}

Lemma. Let Bi = {x ∈ Rn : ‖x − µi‖ ≤ ri}, i = 1, 2, be distinct and
intersecting.

There exists an (n−1)-dim hyperplaneH , a point v ∈ H , and r ≥ 0 such
that

∂B1 ∩ ∂B2 = {x ∈ H : ‖x− v‖ = r}
and

∂Bi ∩H = {x ∈ H : ‖x− v‖ = r}, i = 1, 2
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Geometry, 1

Corollary Given balls Bi, i ∈ I , not all equal, with⋂
i∈I

Bi 6= ∅,

there exists an (n − t)-dim hyperplane H ( t ≥ 1), v ∈ H and r ≥ 0
s.t. ⋂

i∈I ∂Bi = {x ∈ H : ‖x− v‖ = r}

Implication: When guessing an optimal triple (S=, K=, I=)
‖x∗ − µh‖ =rh ∀h ∈ S= ∪K=, aTi x

∗ =bi ∀ i ∈ I=

‖x∗ − µh‖ <rh ∀h ∈ S − S=, ‖x∗ − µh‖ >rh ∀h ∈ K −K=

aTi x
∗ <bi ∀ i /∈ I=.

we

(1) Restrict to a lower dimensional space

(2) Obtain a single, binding, ball constraint
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The original problem:

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,

aTi x ≤ bi, i ∈ I

Given a guess, this becomes (ignoring the non-binding constraints):

min xTQx + cTx

s.t. ‖x− µ̂‖ = r̂,

x ∈ H

Almost correct: first-order condition restricted to H

µ

r

x*

projection of  

2Qx* + c  onto H

Better: Use projected quadratic representation
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Theorem (abridged).

Given a triple (Ŝ, K̂, Î) there is polynomially computable list of points
xj, (j ∈ J) tight for the triple, such that if (Ŝ, K̂, Î) is optimal,
then either

(1) x∗ = xj for some j ∈ J , or

(2) There exists infeasible y and a Jordan curve Θ joining y and x∗, s.t.

zTQz + cTz = x∗TQx∗ + cTx∗ ∀ z ∈ Θ

z tight for (Ŝ, K̂, Î) ∀ z ∈ Θ

Implication: In case (2), there is a different optimal triple (S̃, K̃, Ĩ)
with

S̃ ⊇ Ŝ, K̃ ⊇ K̂, Ĩ ⊇ K̂ and |S̃|+ |K̃|+ |Ĩ| > |Ŝ|+ |K̂|+ |Î|.

Algorithm: Record the minimum-objective xj.
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Generalization.

min xTQx + cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,
‖x− µh‖ ≥ rh, h ∈ K,
x ∈ P .

= {x ∈ Rn : Ax ≤ b }

CDT problem

min xTQ0x + cT0 x

s.t. xTQ1x + cT1 x + d1 ≤ 0

xTQ2x + cT2 x + d2 ≤ 0

where Q1 � 0, Q2 � 0



A blast from the past.

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1,

where the Mi are general matrices.



A blast from the past.

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding
feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1,

where the Mi are general matrices.

Connection with discrete geometry:

→ J. Canny, The complexity of robot motion planning (1987)

→ Connectivity queries in algebraic sets



Theorem.

For each fixed m ≥ 1 there is a polynomial-time algorithm that, given an
optimization problem

min f0(x)
.
= xTQ0x+ cT0x

s.t. xTQix+ cTi x+ di ≤ 0 1 ≤ i ≤ m,
where Q1 � 0, and 0 < ε < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an ε-feasible vector x̂ such that there exists no feasible
x ∈ Rn with f0(x) < f(x̂)− ε.

The complexity of the algorithm is polynomial in the number of bits in the
data and in log ε−1


