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Motivation: polynomial relaxations of discrete optimization
problems

min ¢z

n

s.t. Zaij:vj Z bl 1 <1 <m

j=1
z e {0,1}"
Sherali-Adams, Lovasz-Schrijver:
min ¢’ x
s.t. aprr + Zaija:jxk > bxr 1<k<n, 1<i:1<m
j#k
Zaija:j — Zaija:jxk > bi(l—xp) 1<k<n, 1<i<m
j#k j#k
r € [0,1]"

Semidefinite relaxation:

replace x;z), with X, z; = X;; (all j), X = 0.



Motivation: continuous problems with combinatorial
structure

— Convex objective, cardinality-constrained optimization problems, e.g.
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M =0, ||x|lo = number of nonzero entries in x.
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Motivation: continuous problems with combinatorial
structure

— Convex objective, cardinality-constrained optimization problems, e.g.
min ! Mz +clz
st. Ar =0, [[<z;<wu;, 1<j5j<n
|zflo < K.

M =0, ||x|lo = number of nonzero entries in x.

(NP-Hard even if the number of rows of A is two.)
Relaxation: Let z* = argmin{z! Mz + 'z : Az =0, [; <x; <wuy}

Suppose ||x*|[o > K — can compute ball B C R" with
x* € int (B) and |[z|| > K V « € int (B)
Better relaxation:

min{z' Mo +c'z : Av=0b, |, <x; <wuj, v ¢ int(B)}
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After some iterations

min ! Mz + ¢
st. Ax = b
|z —p"|| > r

'V

(a) How to solve?

(b) Experimental observation — the relaxation becomes much stronger after a
small number of iterations.

Quadratically constrained, quadratic programs

min  fo(z)
st file) <0, 1<i<m

Here,
fz(£E> = HTTMZ'.?? + CZTCIZ’ + d,

is a general quadratic
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Well-known result

min 2! Qr+clx
s.t. Az < b
is NP-hard, as are many variants.
Positive results?

— Polynomial optimization polynomially equivalent with QCQP

— Cucker and Biirgisser (STOC 2010):

A solution to a system of complex polynomial equations can be computed
in near polynomial time.

— A near answer to Smale’s 17" problem.

How about over the reals? Let’s start with easy results.



Simplest example: S-Lemma (abridged)

Let f, g : R® — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(x) > 0. Then
f(x) > 0 whenever g(x) >0
if and only if there exists ~ > 0 such that
f(x) > ~g(x) foral x & R™
Yakubovich (1971), also much earlier, related work

Corollary: Can solve

min{f(z) : g(x) > 0}

in polynomial time (using semidefinite programming)

Note: duality may not hold if there is more than one quadratic constraint



An application: the trust-region subproblem

min{f(z) : g(z) < 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:
min{ f(z) : [[z] < 1}

can be solved in poly time — loge™?!

Y. Ye (1992) — logloge™!

How about extensions of the trust-region subproblem?



Sturm-Zhang (2003)
Where f(x) is a quadratic,

min  f(x)
st x| <1
a'x < b  (one linear side constraint)

can be solved in polynomial time, as can

min  f(x)
8.t x| <1
|z —2"|| < ry  (one additional convex ball constraint)

Ye-Zhang (2003)

min  f(x)
st |lzf] <1
alx < b i=1,2
(alx —b))(azz —by) = 0

(two linear side constraints, but at least one binding)
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In polynomial time, one can solve a problem of the form
min 2! Qz+ 'z
st |lz]| <1
ajx < b i=1,2
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W/ A 1 two linear constraints

ball constraint




Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form
min 2! Qz+ 'z
st |lz]| <1
ajx < b i=1,2

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint

—min{z'Qr+clz 1<z <wu, |z <1}



Anstreicher-Burer (2012)
In polynomial time, one can solve a problem of the form

min ' Qx +clx

st fz|| <1
ajx < b i=1,2

provided the two linear constraints are parallel:

W/ 1 \ two linear constraints

ball constraint

—min{2'Qr+clz 1<z <u, |z <1}

restate as:  min Zqinij + c'x

(l + U)le
r1 — [

B

|
M)
A IA A

u— I
Zijgl , XEZUZUT

Lemma: This problem has an optimal solution with X = 22!, i vezuume
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Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

min  z' Qx +clx

st lz]|| <1
a?az < b 1<i:1<m

if no two linear inequalities are simultaneously binding in the feasible region

Lemma: the following problem has an optimal solution with X = za?.

min ZC]Z’]‘XZ']' + CTZIZ
0,
st Xp+lu < ([ +u)r
1bix — Xail| < bj—alz i<m
bib; —balx —bale+al Xa; <0 i< j<m
J J" ¥l ) J

ZijSl , XEII'T
J



This talk

min ' Qx +clx
st |l — || <7p, hES,
lz = pnll = 70, h€ K,

reP ={zeR": Az <}
Theorem.

For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(M €R" : o — | < i},

hesS
or

(2) |S| = 0 and the number of rows of A is bounded.



This talk

min ' Qx +clx

st |l — || <7p, hES,
o — pnl| =70, h €K,
reP ={zeR": Az <}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersecting

(M €R" : o — | < i},
hesS
or

(2) |S| = 0 and the number of rows of A is bounded.

Anstreicher-Burer: Case (1) with 3 faces of P meeting the feasible region.
Burer-Yang: Case (1) with m + 1 faces of P meeting the feasible region.



More precise statement for case (1)

min ' Qx +clx

st |l — || <7p, hES,
o — pnl| =70, h €K,
reP ={zeR": Az <}

Theorem.

For each fixed |S| > 1, | K| there is an algorithm that solves the problem, to
tolerance 0 < € < 1 in time

(a) Polynomial in the number of bits in the data and log e~

(b) Linear in the number of faces of P that intersect

(xR« Jlw — pull < 7},
hes



For fixed [S| > 1, |K| how to test for feasibility of

HCIT—/Lhu S T'h, h S S:
|z —pal] = . h €K,
Ax < b,

in time polynomial in the size of the data,
linear in the number of faces of Az < b that intersect
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For fixed [S| > 1, |K| how to test for feasibility of

HCE’ o :uhH S T'h, h S S:
|z —pal] = 7m0, h €K,
Ax < b,

in time polynomial in the size of the data,
linear in the number of faces of Az < b that intersect

e eR": o — mll <},
hes

1. If K =1, a convex optimization problem:
min ||z — u;l|, any giveni e S
st. |l —pl| <rpy, heS—i,
reP ={xeR": Ax <b}
2. Otherwise, pick any 7 € K | and solve
min - — ||z — g
st e —pn|| <rp, hES,
|z —ppll =70, heK—i,
Ax <b.



Corollary (but more than we need):
Given a collection of balls By, C R" (h € 5)
and a polyhedron

P = {zx eR": Ax < b},
there is an algorithm that lists the faces of P that intersect [, B

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces



Corollary (but more than we need):
Given a collection of balls By, C R" (h € 5)
and a polyhedron

P = {zx eR": Ax < b},
there is an algorithm that lists the faces of P that intersect [, B

In time

(a) polynomial in the number of bits in the data

(b) linear in the number of intersecting faces

Proof sketch. Use e.g. breadth-first search on the faces of P, starting
with P itself.

Basic step:
e Pick a row a;az < b; of Ax <b.
e Impose a! x = b;.

e Test for feasibility. If feasible, found a new face.
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Let a* be optimal. Trivial: there exist (possibly empty) subsets
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Basic Idea

min{z! Qr+c'z : |o—m|| <ri, h €S, |lo—pn|| >, h€ K, Ax <b}
Let a* be optimal. Trivial: there exist (possibly empty) subsets

S=of §, K= of K,and I~ of therowsof Ax < b, such that

2% — || =r, YhESTUK™, al2*=b Viecl
|z* — pp|| <rp YVheS—=857, |[z5—wl| >rn Vhe K- K~

(S=, K=, I7): an optimal triple.  x*: tight for (S=, K—, I7)

Algorithm will guess (S=, K=, I=) (actually, compute I~).

For each enumerated triple (S, K, I), it will (in polynomial time) either
(a) Compute a finite set of vectors tight for (S, K, I), one of which must be
x* if the guess is right, or
(b) Prove that if (S KT ) is optimal, there is a different optimal triple
(S, K, I) with

SOS, KDOK,IDK and |S|+ |K|+|I| > |S|+|K|+ 1]
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Geometry, 1

Notation. Given a ball B ={z € R" : ||z — ;|| < 7},
OB = {z € R" : |z — ;|| = 7}

Lemma. Let B; = {x € R" : ||lv — w;|| < i}, i = 1,2, be distinct and
intersecting.

There exists an (n—1)-dim hyperplane H, a point v € H, and » > 0 such
that

0B1NdB; = {z € H : [z —v|| =7}
and
OBiNH = {x€eH : |lx—v||=7r}, 1=1,2

(9
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Geometry, 1

Corollary Given balls B;, ¢ € I, not all equal, with

el

there exists an (n — t)-dim hyperplane H (t > 1), v € H and r > 0
s.t.

(Nier@Bi = {zx € H : ||z —v| =7}

Implication: When guessing an optimal triple (S=, K=, I7)
|z* — pal| =r, YRESTUK=, ala*=b Vicl™
|l — pp|| <rn YheS—=57, |z5—pupl| >rn Vhe K— K~

ajz* <b; Vi¢I~.
we
(1) Restrict to a lower dimensional space

(2) Obtain a single, binding, ball constraint
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The original problem:

min 2! Qz+ 'z

st. |lx—pnl| < rp, hES,
‘|$_Mh|l > 1, heK,
aix < by, i€l

Given a guess, this becomes (ignoring the non-binding constraints):

min 2! Qz+ 'z

st. |lz—p
r € H

:’]"7

Almost correct: first-order condition restricted to H

projection of
x* 2Qx* + ¢ onto H

Better: Use projected quadratic representation
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Theorem (abridged).

Given a triple (S’ . K , I ) there is polynomially computable list of points
x?, (§ € J) tight for the triple, such that if (S, K, I) is optimal,
then either

(1) x* = a7 for some j € J, or

(2) There exists infeasible y and a Jordan curve © joining y and x*, s.t.
2'Qz + ¢tz = z7'Qx* 4+ cl'z* Vz€ O
z tight for (S,K,I) Vz€®
Implication: In case (2), there is a different optimal triple (S, K, I)
with

SDO8, KDK, IDK and |S|+|K|+|I| >8]+ |K|+ I

Algorithm: Record the minimum-objective 7.
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Generalization.

min ' Qz + 'z

st e —pl <rn, heS,
|z —pnl| =10, h €K,
reP ={zxeR": Az <D}

CDT problem
min 2! Qur + ¢l x
st. 2l Qur +clx + d
' Qo + v + do

VAN
-

VAN
o

where Q1 > 0, Q2 = 0



A blast from the past.
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding
feasibility of a system
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lz]] = 1,

where the M, are general matrices.



A blast from the past.
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding
feasibility of a system

Mz =0, 1<i<p,
lz]] = 1,

where the M, are general matrices.

Connection with discrete geometry:
— J. Canny, The complexity of robot motion planning (1987)

— Connectivity queries in algebraic sets



Theorem.

For each fixed m > 1 there is a polynomial-time algorithm that, given an
optimization problem

min  fo(z) = z'Qox + ¢l
s.t. :BTQZ-a:—|—csz—|—di < 0 1<72<m,
where Q1 > 0, and 0 < € < 1, either

(1) proves that the problem is infeasible,
or
(2) computes an e-feasible vector & such that there exists no feasible

x € R" with fo(x) < f(&) — €.

The complexity of the algorithm is polynomial in the number of bits in the
data and in loge™?!



