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AC Power Flows

Real-time:

k m

v (t)
k

i (t)
km

Voltage at bus k : vk(t) = Vmax
k cos(ωt + θVk )

Current injected at k into km: ikm(t) = Imax
km cos(ωt + θIkm).

Power injected at k into km: pkm(t) = vk(t)ikm(t).

Averaged over period T :

pkm
.

= 1
T

∫ T
0 p(t) = 1

2V
max
k Imax

km cos(θVk − θIkm).
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v (t)
k

i (t)
km

pkm
.

= 1
T

∫ T
0 p(t) = 1

2V
max
k Imax

km cos(θVk − θIkm)

vk(t) = Vmax
k Re e j(ωt+θVk ), ikm(t) = Imax

km Re e j(ωt+θIkm)

Vk
.

=
Vmax
k√

2
e jθ

V
k , Ikm

.
=

Imax
km√

2
e jθ

I
mk

pkm = |Vk ||Ikm| cos(θVk − θIkm) = Re(Vk I
∗
km)

qkm
.

= Im(VkmI
∗
km) and Skm

.
= pkm + jqkm
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Vk
.

=
Vmax
k√

2
e jθ

V
k , Ikm

.
=

Imax
km√

2
e jθ

I
mk (voltage, current)

pkm = Re(Vk I
∗
km), qkm = Im(VkmI

∗
km) (1)

Ikm = y{k,m}(Vk − Vm), y{k,m} = admittance of km. (2)

Network Equations

k
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Network Equations
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Generator: P̂k , |Vk | given. Other buses: P̂k , Q̂k given.
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What happens when there is a generation/load mismatch

conductor
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source
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current,  voltage

Frequency response:
mismatch ∆P ⇒ frequency change ∆ω ≈ −c ∆P
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Managing changing demands

1 Primary frequency control. Handles instantaneous (small)
changes.

Agent: physics.

2 Secondary control. Handles changes that span more than a
few seconds. Agent: algorithms, pre-set controls.

3 “Tertiary” control: OPF (Optimal power flow). Manages
longer lasting changes. Run every few minutes. Goal:
economic generation that meets demands while maintaining
feasibility (stability). Agent: algorithmic computations,
humans.

4 Once (?) a day: unit commitment problem. Chooses which
generators will operate in the next day or half-day. Agent:
algorithms, humans.
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

Large unexpected fluctuations in wind power can cause
additional flows through the transmission system (grid)

Large power deviations in renewables must be balanced by
other sources, which may be far away

Flow reversals may be observed – control difficult

A solution – expand transmission capacity! Difficult
(expensive), takes a long time

Problems already observed when renewable penetration high
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

“Fluctuations” – 15-minute timespan

Due to turbulence (“storm cut-off”)

Variation of the same order of magnitude as mean

Most problematic when renewable penetration starts to
exceed 20− 30%

Many countries are getting into this regime
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Optimal power flow (economic dispatch, tertiary control)

Used periodically to handle the next time window
(e.g. 15 minutes, one hour)

Choose generator outputs

Minimize cost (quadratic)

Satisfy demands, meet generator and network constraints

Constant load (demand) estimates for the time window
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OPF:

min c(p) (a quadratic)

s.t.

Bθ = p − d (6)

|yij(θi − θj)| ≤ uij for each line ij (7)

Pmin
g ≤ pg ≤ Pmax

g for each bus g (8)

Notation:

p = vector of generations ∈ Rn, d = vector of loads ∈ Rn

B ∈ Rn×n, (bus susceptance matrix)

∀i , j : Bij =


−yij , ij ∈ E (set of lines)∑

k;{k,j}∈E ykj , i = j

0, otherwise
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min c(p) (a quadratic)

s.t.

Bθ = p − d

|yij (θi − θj )| ≤ uij for each line ij

Pmin
g ≤ pg ≤ Pmax

g for each bus g

How does the grid handle short-term fluctuations in demand (d)?
Secondary frequency control:

Deployed a few seconds after ongoing change – “minute-by-minute”
control

Generator output varies up or down proportionally to aggregate
change

How does the grid handle short-term fluctuations in renewable output?
Answer: Same mechanism, now used to handle aggregate wind power
change
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“Participation factors”

For each generator i , a parameter αi with∑
i αi = 1

αi ≥ 0

αi > 0 only for selected generators

Assuming real-time generation/demand mismatch ∆, real-time
output of generator i :

pi = pi − αi∆

where pi = OPF computed output for generator i .

Note: the αi are precomputed e.g. uniform or based on economic
considerations.

Bienstock Columbia University

Operations Research Problems in Power Engineering



Experiment

Bonneville Power Administration data, Northwest US

data on wind fluctuations at planned farms

with standard OPF, 7 lines exceed limit ≥ 8% of the time
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Wind model?

Need to model variation in wind power between dispatches

Wind at farm attached to bus i of the form µi + wi . Weibull
distribution?
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Wind model

Typical wind farm spans a significant geographical zone with
many turbines

Real-time variations due to turbulence

Turbulence is local (≈ 50m radius) and arguably local effects
are indepenent

Working model: real-time variations in a farm’s output
modeled as a normal variable
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Line limits and line tripping

If power flow in a line exceeds its limit, the line becomes compromised
and may ’trip’. But process is complex and time-averaged:

Thermal limit is most common

Thermal limit may be in terms of terminal equipment, not line itself

Wind strength and wind direction contributes to line temperature

IEEE Standard 738 attempts to account for everything

In 2003 U.S. blackout event, many critical lines tripped due to
thermal reasons, but well short of their line limit
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Background

When a power line overheats it becomes exposed to several
risk factors

If the line overheats enough, it may sag and experience a
contact/arc, which will cause a trip

If overheating is detected, and is deemed risky, the line will
may be preemptively tripped

What is risky? What is a critical temperature?

2003 event: critical temperatures estimates were sometimes
incorrect.
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IEEE Standard 738

A comprehensive method for determining the temperature of
a power line,

as a function of current and pause physical
properties of the conductor .

It attempts to account for: wind, and ambient temperature,
day of the year, latitude and longitude, angle between wind
and conductor, altitude of sun (and time of day), density and
viscosity of air, several other factors.

It also relies on the heat equation for a “static” calculation.

Note: power lines can be more than 100 miles long.

How can we account for data uncertainty, errors,
unavailability?
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Line trip model

summary: exceeding limit for too long is bad, but complicated

want: ”fraction time a line exceeds its limit is small”

proxy: prob(violation on line i) < ε for each line i
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Goals

simple control

aware of limits

not too conservative

computationally practicable with a simple algorithm

Bienstock Columbia University
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Control

For each generator i , two parameters:

pi = risk-aware mean output

αi = risk-aware participation factor

Real-time output of generator i :

pi = pi − αi

∑
j

∆ωj

where ∆ωj = change in output of renewable j (from mean).∑
i

αi = 1

Bienstock Columbia University
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Set up
control

Bienstock Columbia University

Operations Research Problems in Power Engineering



Computing line flows

wind power at bus i : µi + wi

DC approximation

Bθ = p − d
+(µ+ w − α

∑
i∈G wi )

θ = B+(p̄ − d + µ) + B+(I − αeT )w
flow is a linear combination of bus power injections:

fij = yij(θi − θj)
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Computing line flows

fij = yij

(
(B+

i − B+
j )T (p̄ − d + µ) + (Ai − Aj)

Tw
)
,

A = B+(I − αeT )

Given distribution of wind can calculate moments of line flows:

E fij = yij(B
+
i − B+

j )T (p̄ − d + µ)

var(fij ) := s2
ij ≥ y2

ij

∑
k(Aik − Ajk)2σ2

k

(assuming independence)

and higher moments if necessary
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Chance constraints to deterministic constraints

chance constraint: P(fij > f max
ij ) < εij and P(fij < −f max

ij ) < εij

from moments of fij , can get conservative approximations using e.g.
Chebyshev’s inequality

for Gaussian wind, can do better, since fij is Gaussian :

|E fij | + var(fij )φ−1 (1− εij) ≤ f max
ij
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Formulation:
Choose mean generator outputs and control to minimize expected cost,
with the probability of line overloads kept small.

min
p,α

E[c(p)]

s.t.
∑
i∈G

αi = 1, α ≥ 0

Bδ = α, δn = 0∑
i∈G

pi +
∑
i∈W

µi =
∑
i∈D

di

f ij = yij(θi − θj),
Bθ = p + µ− d , θn = 0

s2
ij ≥ y2

ij

∑
k∈W

σ2
k(B+

ik − B+
jk − δi + δj)

2

|f ij | + sijφ
−1 (1− εij) ≤ f max

ij
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Big cases

Polish 2003-2004 winter peak case

2746 buses, 3514 branches, 8 wind sources

5% penetration and σ = .3µ each source

CPLEX: the optimization problem has

36625 variables

38507 constraints, 6242 conic constraints

128538 nonzeros, 87 dense columns
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Big cases

CPLEX:

total time on 16 threads = 3393 seconds

”optimization status 6”

solution is wildly infeasible

Gurobi:

time: 31.1 seconds

”Numerical trouble encountered”

→ basic cutting-plane algorithm works well
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Experiment: Polish grid, 20% wind penetration, 50 farms

1 2 3 40

  Probability
Overload

Standard OPF

# of lines

5

0.50

0.09

0.15

0.06

0.04

0.03

0.02

1 3 40

  Probability
Overload

# of lines

Chance−constrained OPF

2

0.00137

0.00136

0.00135

0.00003

0.00006

0.00002

5

0.00030

Bienstock, Chertkov, Harnett, SIAM Review ’15
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Extensions and Ongoing work

Account for errors in estimations of distribution

Account for correlations (spatial and timewise)

Extension to unit commitment problem

Better risk model for line temperature
Bienstock, Blanchet and Li ’15
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The heat equation on a 1-dimensional line

Line modeled as one-dimensional object parameterized by x ,
0 ≤ x ≤ L.

Time domain: [0, τ ]

(for example: OPF intervals)

I (t) = current at time t, T (x , t) = temperature at x at time t.

Heat equation:

∂T (x , t)

∂t
= κ

∂2T (x , t)

∂x2
+ αI 2(t)− ν(T (x , t)− T ext(x , t)),

where κ ≥ 0, α ≥ 0 and ν ≥ 0 are (line dependent) constants, and
T ext(x , t) is the ambient temperature at (x , t)
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The heat equation on a 1-dimensional line

Heat equation:

∂T (x , t)

∂t
= κ

∂2T (x , t)

∂x2
+ αI 2(t)− ν(T (x , t)− T ext(x , t)).

IEEE 738, other authors:

∂T (x , t)

∂t
= αI 2(t)− ν(T (x , t)− T ext(x , t)).

Us:
∂T (x , t)

∂t
= αI 2(t)− ν(T (x , t)− G (h(x)).

h(x) = a random variable, at x .
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Back to the stochastic heat equation

∂T (x , t)

∂t
= αI 2(t)− ν(T (x , t)− G (h(x)).

Recall: x ∈ [0, L], t ∈ [0, τ ]

Integrate and divide by L, get

1

L

∫ L

0

∂T (x , t)

∂t
dx = αI 2(t)− ν

L

∫ L

0

T (x , t)dx +
ν

L

∫ L

0

G (h(x))dx .

1

L

∫ L

0

∂T (x , t)

∂t
dx =

d

dt

1

L

∫ L

0

T (x , t)dx =
dH(t)
dt

.

H(t) ,
1

L

∫ L

0

T (x , t)dx (average internal line temperature at t)
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Back to the stochastic heat equation

∂T (x , t)

∂t
= αI 2(t)− ν(T (x , t)− G (h(x)).

Recall: x ∈ [0, L], t ∈ [0, τ ]

Integrate and divide by L, get

dH(t)
dt

= αI 2(t)− νH(t) +
ν

L

∫ L

0

G (h(x))dx .

R ,
1

L

∫ L

0

G (h(x))dx (average ambient temperature,

random!)

dH(t)
dt

= αI 2(t)− νH(t) + νR.
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Once more

dH(t)
dt

= αI 2(t)− νH(t) + νR.

H(t) ,
1

L

∫ L

0
T (x, t)dx, R ,

1

L

∫ L

0
G(h(x))dx,

Solution:

H(t) =

∫ t

0

e−ν(t−s)αI 2(s)ds + R(1− e−νt) + Ce−νt ,

where

C = H(0) =
1

L

∫ L

0

T (x , 0)dx .

Control goal: make I (t) “large”, but with P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε
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Constant control: I (t) = Ī , for all t ∈ [0, τ ]

H(t) =

∫ t

0
e−ν(t−s)

αĪ2(s)ds + R(1− e−νt ) + Ce−νt
,

where

C = H(0) =
1

L

∫ L

0
T (x, 0)dx.

Constant current ⇒ H(t) = (αν Ī
2 + R)(1− e−νt) + Ce−νt

So, H ′(t) > 0 for Ī large enough, (and of constant sign for any Ī ).

So, P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε equivalent to P(H(τ ) > k) ≤ ε.

Solution:

Ī 2 ≤ ν

α

k − Ce−ντ − ρε(1− e−ντ )

1− e−ντ
= L(τ, k)
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So, P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε equivalent to P(H(τ ) > k) ≤ ε.

Solution:
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H(t) =

∫ t

0
e−ν(t−s)
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Adaptive control

Simplification:
R is a discrete random variable. P(R = ri ) = pi , i = 1, 2, . . . , n (known).

1. At time τ = 0, we compute values I1, and I2,i for i = 1, 2, . . . , n.
These values are used as follows:

2. For all t ∈ [0, τ/2], we set I (t) = I1.

3. At time τ/2, we observe the value of R. Assuming R = ri , then
for all t ∈ [τ/2, τ ], we set I (t) = I2,i .

Goals:

(a) P(H(τ ) > k) < ε. k smaller than critical temperature

(b) I1 ≤ L(τ/2).

(c) What about performance?
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We want to maximize:

“Total” current: τ
2 I1 + τ

2 I2,i ?

“Average” current? Square current?

F (I1, I2) : a monotonely increasing function of I1, I2
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Adaptive control

Simplification:
R is a discrete random variable. P(R = ri ) = pi , i = 1, 2, . . . , n (known).

1. At time τ = 0, we compute values I1, and I2,i for i = 1, 2, . . . , n.
These values are used as follows:

2. For all t ∈ [0, τ/2], we set I (t) = I1.

3. At time τ/2, we observe the value of R. Assuming R = ri , then
for all t ∈ [τ/2, τ ], we set I (t) = I2,i .

Goals:

(a) P(H(τ ) > k) < ε. k smaller than critical temperature

(b) I1 ≤ L(τ/2).

(c) Maximize:
n∑

i=1

F (I1, I2,i )pi
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max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε

H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.
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max
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Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint s of the form:
n∑

i=1

I{v1 I 2
1︸︷︷︸

z1

+ v2 I 2
2 (i)︸ ︷︷ ︸

z2(i)

> u − ri (1− e−ντ ) − Ce−ντ︸ ︷︷ ︸
wi

}pi ≤ ε.
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max
n∑

i=1

F̃ (z1, z2(i)) pi

s.t.
n∑

i=1

I{z1 + z2(i) > wi}pi ≤ ε

z1 + z2(i) ≤ ui (wi < ui )

z1 ≤ k̄

other constraints.

Lemma: At optimality,

z1 + z2(i) = wi or ui , all i

→ Use binary variable

yi =

{
0 when z1 + z2(i) = wi

1 when z1 + z2(i) = ui
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Continuous knapsack problem

max
n∑

i=1

F̃ (z1,wi − zi )pi (1− yi ) + F̃ (z1, ui − zi )piyi

s.t.
n∑

i=1

uipiyi ≤ ε

0 ≤ z1 ≤ k̄

yi = 0 or 1, all i .
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Continuous knapsack problem

max
z1∈[0,k̄]

M(z1)

M(z1) ,
n∑

i=1

F̃ (z1,wi − zi )pi (1− yi ) + F̃ (z1, ui − zi )piyi

s.t.
n∑

i=1

uipi yi ≤ ε

yi = 0 or 1, all i .

Practicable!
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Identifying Risky Contingencies of Transmission Systems

(Joint with S. Harnett, T. Kim and S. Wright)

N - 1 criterion widely used. But is it enough?

How about N - K, for K “larger”? Everybody knows that:

It is too slow. A very difficult combinatorial problem.

N K = 2 K = 3 K = 4
1000 499500 166167000 41417124750
4000 7998000 10658668000 10650673999000
8000 31996000 85301336000 170538695998000

10000 49995000 166616670000 416416712497500

It is too conservative. It is not conservative enough.
(T. Boston) during Hurricane Sandy, N - 142 was observed.
Perhaps N - K does not necessarily capture all interesting
events?
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Example: August 14 2003

U.S. - Canada report on blackout:
“Because it had been hot for several days in the Cleveland-Akron
area, more air conditioners were running to overcome the persistent
heat, and consuming relatively high levels of reactive power –
further straining the area’s limited reactive generation capabilities.”

A system-wide condition that impedes the system

Not a cause, but a contributor

Look for events that combine both effects?
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A continuous interdiction model

A fictitious adversary is trying to interdict the transmission
system.

This adversary negatively alters the physical parameters of
equipment, e.g. transmission lines, so as to impede
transmission.

The adversary has a budget available (both system-wide and
per-line).

On line km, reactance xkm increased to (1 + λkm)xkm
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A blast from the past: Bienstock and Verma 2007

DC approximation to power flows.

Adversary increases reactances of lines.

Limit on total percentage-increase of reactances, and on
per-line increase.

Adversary maximizes the maximum line overload:

max
x,θ

max
km

{
|θk − θm|
ukm xkm

}
= max

km

|flow on line km|
limit of line km

s.t. Bxθ = d

x within budget

Continuous, but non-smooth problem.
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A blast from the past: Bienstock and Verma, 2007

DC approximation to power flows.

Adversary increases reactances of lines.

Limit on total percentage-increase of reactances, and on
per-line increase.

Adversary maximizes the maximum line overload:

max
x,θ,α

∑
km

(α+
km − α

−
km)

(θk − θm)

ukm xkm

s.t. Bxθ = d

x within budget∑
km

(α+
km + α−km) = 1, α+, α− ≥ 0.

Continuous, smooth, nonconvex.
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And what happens?

Efficient computation of gradient and Hessian of objective

Local optimization algorithm implemented using LOQO

Algorithm scales well (2007): CPU times of ∼ 1 hour for
studying systems with thousands of lines.

Optimal * attack concentrated on a handful of lines

Plus system-wide attack impacting many lines

Bienstock Columbia University

Operations Research Problems in Power Engineering



single = 20 total = 60 single = 10 total = 30 single = 10 total = 40

Range Count Range Count Range Count

[ 1, 1 ] 8 [ 1, 1 ] 1 [ 1, 1 ] 14
( 1, 2 ] 72 ( 1, 2 ] 405 ( 1, 2 ] 970
( 2, 3 ] 4 ( 2, 9 ] 0 ( 2, 5 ] 3
( 5, 6 ] 1 ( 9, 10 ] 3 ( 5, 6 ] 0
( 6, 7 ] 1 ( 6, 7 ] 1
( 7, 8 ] 4 ( 7, 9 ] 0

( 8, 20 ] 0 ( 9, 10 ] 2

“single” = max multiplicative increase of a line’s reactance
“total” = max total multiplicative increase of line reactances
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Today: the AC power flows setting

Adversary increases impedances, so as to maximize:

Phase angle differences across ends of a lines

Voltage deviations (loss)

Lost load following recourse actions

Generically:

max F(x)

s.t. x ∈ B

x = impedances, B = budget constraints

F(x)= meausure of phase angle differences, voltage loss, load
loss

Challenge: F(x) is implicitly defined (bilevel optimization
problem)
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Voltage attack on 2383-bus Polish
“Double the reactance of at most three lines”
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→ Primarily 4 lines interdicted
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