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ABSTRACT

Integer programming techniques for Polynomial
Optimization

Gonzalo Muñoz

Modern problems arising in many domains are driving a need for more capable, state-of-

the-art optimization tools. A sharp focus on performance and accuracy has appeared, for

example, in science and engineering applications. In particular, we have seen a growth in

studies related to Polynomial Optimization: a field with beautiful and deep theory, offering

flexibility for modeling and high impact in diverse areas.

The understanding of structural aspects of the feasible sets in Polynomial Optimization,

mainly studied in Real Algebraic Geometry, has a long tradition in Mathematics and it has

recently acquired increased computational maturity, opening the gate for new Optimization

methodologies to be developed. The celebrated hierarchies due to Lasserre, for example,

emerged as good algorithmic templates. They allow the representation of semi-algebraic

sets, possibly non-convex, through convex sets in lifted spaces, thus enabling the use of long-

studied Convex Optimization methods. Nonetheless, there are some computational draw-

backs for these approaches: they often rely on possibly large semidefinite programs, and due

to scalability and numerical issues associated with SDPs, alternatives and complements are

arising.

In this dissertation, we will explore theoretical and practical Integer-Programming-based

techniques for Polynomial Optimization problems. We first present a Linear Programming

relaxation for the AC-OPF problem in Power Systems, a non-convex quadratic problem, and

show how such relaxation can be used to develop a tractable MIP-based algorithm for the AC

Transmission Switching problem. From a more theoretical perspective, and motivated by the

AC-OPF problem, we study how sparsity can be exploited as a tool for analysis of the funda-

mental complexity of a Polynomial Optimization problem, by showing LP formulations that



can efficiently approximate sparse polynomial problems. Finally, we show a computationally

practical approach for constructing strong LP approximations on-the-fly, using cutting plane

approaches. We will show two different frameworks that can generate cutting planes, which

are based on classical methods used in Mixed-Integer Programming.

Our methods mainly rely on the maturity of current MIP technology; we believe these

contributions are important for the development of manageable approaches to general Poly-

nomial Optimization problems.
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Chapter 1

Introduction

1.1 The main motivation: AC-OPF problem

The main motivation for this work, which involves the development of efficient and accurate

Polynomial Optimization techniques, is drawn from a Power System problem: the so-called

AC-OPF problem.

The AC-OPF problem was introduced in [33], and it is a fundamental software component

in the operation of electrical power transmission systems. According to the Federal Energy

Regulatory Commission1:

Finding a good solution technique for the AC-OPF could potentially save tens of

billions of dollars annually.

The goal of this problem is to determine where and how much power should be generated

in order to satisfy given demands in the transmission grid, in a way that optimizes generation

costs. The AC-OPF problem is solved every day, sometimes in time intervals of not more

than 10 minutes, thus efficient solution techniques are needed. Moreover, given its important

role, solutions should be as accurate as possible.

The problem can be formulated as a non-convex, continuous optimization problem. Non-

convexities arise naturally from the physics laws governing the power flows in the transmission

grid. Mainly Ohm’s Law and Kirchhoff’s current law. Any reliable model or solution method

1https://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers.asp

https://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers.asp


CHAPTER 1. INTRODUCTION 2

accounts for these somehow, as they are not a simple modeling choice, but a physical phe-

nomenon.

Due to its intrinsic non-convex nature, the problem is NP-Hard (see [107, 74]). In rou-

tine problem instances, solutions of excellent quality can be quickly obtained using a variety

of methodologies, including sequential linearization and interior point methods (e.g. MAT-

POWER [111]). Instances involving grids under stress or extreme conditions, however, can

prove significantly more difficult, as the quality of the usual approximations and simplifica-

tions becomes modest. This, along with the recent advances in computation technology and

optimization methodologies, has motivated considerable efforts in solving the problem more

accurately and efficiently. For more background on this problem, see [16].

Recently, in [73], a semidefinite programming (SDP) approach is explored, where relax-

ations of this type are used to obtain valid bounds on the AC-OPF problem, and thus certify

when a given feasible solution is close to optimal. These relaxations can provide good bounds,

nevertheless, SDP solvers in general can be numerically unstable and slow. It has also been

argued that, in general, the semidefinite approach can be inexact [62], even in small networks.

Other approaches typically involve convex quadratic relaxations to provide good bounds, re-

lying in more mature and stable optimization routines. See [73, 86, 59, 80, 87, 57, 28, 93, 61]

and the citations therein for these and other cutting edge approaches.

In this dissertation we will present fast methods to obtain good bounds without having to

rely on SDP tools. We will exploit linear programming tools as much as possible, providing

elaborate linear inequalities that can yield valid and good quality bounds in short time. These

can be useful on their own, or to work as a complement of other state-of-the-art relaxations.

In addition, we will show these tools can be used to tackle the AC transmission switching

problem, an extension of the AC-OPF problem where a planner can decide to turn off some

lines of the grid.
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1.2 Network Polynomial Optimization Problems

Building on the aforementioned motivation, the following question arises naturally: to what

extent can one exploit linear programming (LP) techniques in non-convex problems?. Since,

in general, the AC-OPF problem is strongly NP-Hard [107], for the question to have a non-

trivial answer further characteristics need to be considered. In this case, we will rely on

the fact that transmission grids are typically sparse networks in a very specific way; they

present a tree-like structure (see [81]). More precisely, they are graphs of low tree-width, a

graph-theoretical parameter that measures, roughly, how tree-like a given graph is. We will

study what is the effect of this structure in the tractability of the problem.

In a more abstract level, we will introduce the concept of Network Polynomial Optimiza-

tion (NPO) problems. These are optimization problems defined over networks where the

decision variables are associated to the nodes of the network. Additionally, there are “flows”

associated to each edge, which depend on the variables of the end-nodes. The expressions

defining these flows will be allowed to be non-linear. In the AC-OPF problem, for example,

the network is given by the transmission grid itself, the decision variables represent voltages

in each node of the network, and the physics laws governing the power flows yield non-linear

expressions for the power flowing through any line.

Mathematically, NPOs are defined as follows:

• There is a network G, with vertices V (G) and edges E(G).

• For each u ∈ V (G) there is a set of variables Xu and a set Ku of constraints associated

with u.

And the optimization problem is of the following form:

min cTx

subject to:
∑

{u,v}∈δG(u)

p
(k)
(u,v)(Xu ∪ Xv) ≥ 0, k ∈ Ku, u ∈ V (G)

x ∈ {0, 1}p × [0, 1]n−p,

where δG(u) is the set of edges of G incident with u and each p
(k)
(u,v) is a polynomial that only

involves variables in Xu ∪ Xv.
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This class of problems not only generalizes the AC-OPF problem, but also other important

optimization problems. Standard network flow problems fit in category [1], capacitated fixed-

charge network flow models [56], the unit-commitment problem [91] and some optimization

problems on gas networks [60]. The well-studied pooling problem [84] can also be cast as an

NPO.

In this dissertation we will study the effect of low tree-width of the underlying network G

defining an NPO. We will provide a way of obtaining LP approximations to it that can achieve

any desired tolerance, moreover, if G possesses bounded tree-width, our LP approximation will

be of moderate size. As a consequence, we will derive polynomial-size linear programs that

approximate accurately the AC-OPF problem on networks that have bounded tree-width.

1.3 Structured Sparsity in General Polynomial Optimization

We will also study sparse mixed-integer polynomial optimization problems, that are not neces-

sarily defined using a network as before. Here, sparsity will be measured using the tree-width

parameter as well, however, the graph we assume has low tree-width will be constructed from

a given formulation. More precisely, we will study problems of the form

min cTx

subject to: fi(x) ≥ 0 1 ≤ i ≤ m

x ∈ {0, 1}p × [0, 1]n−p.

where each fi is a polynomial. These are general Polynomial Optimization (PO) problems.

We will develop a reformulation operator which relies on the combinatorial structure of the

constraints to produce linear programming approximations which attain provable bounds. In

order to include the graph-theoretical parameter tree-width in this optimization context, we

will use the concept of intersection graph: a graph with vertices corresponding to variables,

and that has an edge whenever two variables appear together in a constraint. We will show

that a polynomial optimization problem whose intersection graph possesses low tree-width

has a “small” extended linear formulation that approximates it. We will also argue on the

difference between assuming sparsity of the intersection graph of a PO problem and assuming
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sparsity in the underlying network that defines an NPO.

Polynomial optimization has recently seen a considerable growth in studies related to it.

This is a long-studied field with beautiful theory, offering an appealing flexibility for model-

ing, and that recently has acquired much more maturity on the computational aspect. The

celebrated hierarchies by Lasserre [66], for example, emerged as a compelling approach for

solving polynomial optimization problems. Nevertheless, since they rely on SDP, scalability

issues and numerical instability associated to current SDP solvers are frequent. For these

reasons, some alternatives based on Linear Programming, or Second-order Cone Program-

ming are arising.

From the tree-width-based sparsity perspective, there is broad literature dating from the

1980s on polynomial-time algorithms for combinatorial problems on graphs with bounded

tree-width. An early reference is [6]. Also see [4, 5, 30, 17, 24, 19] and from a very general

perspective, [27]. These algorithms rely on “nonserial dynamic programming”, i.e., dynamic-

programming on trees. See [3], [88], [18].

A parallel research stream concerns “constraint satisfaction problems”, or CSPs. One

can obtain efficient algorithms for CSPs, whenever the constraints present a sparse pattern

given by low tree-width. These algorithms rely on similar dynamic programming ideas as

the algorithms above, from the perspective of belief propagation on an appropriately defined

graphical model. Another central technique is the tree-junction theorem of [72], which shows

how a set of marginal probability distributions on the edges of a hypertree can be extended

to a joint distribution over the entire vertex set. Early references are [92, 47, 41]. Also see

[108, 34, 109] (and references therein).

In the integer programming context, extended formulations for binary linear programs

whose constraints present intersection graphs of small tree-width have been developed in

[20, 108, 70]. A different use of tree-width in integer programming is given in [38]. An

alternative perspective on structural sparsity in optimization is taken in [29].

In this context, [21] (also see the PhD thesis [112]) develop extended formulations for
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binary linear programs by considering the subset algebra of feasible solutions for individual

constraints or small groups of constraints; this entails a refinement of the cone of set-functions

approach of [77]. The method in [21] is similar to the one used here, in that here we rely on

a similar algebra and on extended reformulations for 0/1 integer programs. The classical ex-

amples in this vein are the reformulation-linearization technique of [99], the cones of matrices

method [77], the lift-and-project method of [10], and the moment relaxation methodology of

[66]. See [69] for a unifying analysis; another comparison is provided in [8].

In [108], binary polynomial optimization problems are considered, i.e problems as

min{ cTx : x ∈ {0, 1}n, fi(x) ≥ 0, 1 ≤ i ≤ m}

where each fi(x) is a polynomial. They show that if the tree-width of the intersection graph

of the constraints is ≤ ω, then the level-ω Sherali-Adams or Lasserre reformulation of the

problem is exact. Hence there is an LP formulation with O(nω+2) variables and O(nω+2m)

constraints.

A comprehensive survey of results on polynomial optimization and related topics is pro-

vided in [70]. Section 8 of [70] builds on the work in [69], which provides a common framework

for the Sherali-Adams, Lovász-Schrijver and Lasserre reformulation operators. In addition to

the aforementioned results, [70] explicitly shows that the special case of the vertex-packing

problem on a graph with n vertices and tree-width ≤ ω has a formulation of size O(2ωn);

this is stronger than the implication from [20] discussed above. Similarly, it is shown in [70]

that the max-cut problem on a graph with n vertices and tree-width ≤ ω has a formulation

of size O(2ωn).

In the continuous variable polynomial optimization setting, [63, 110] present methods for

exploiting low tree-width of the intersection graph e.g. to speed-up the sum-of-squares or

moment relaxations of a problem. Also see [53] and Section 8 of [70]. [65] shows that where

ω is the tree-width of the intersection graph of a polynomial optimization problem, there is

a hierarchy of semidefinite relaxations where the rth relaxation (r = 1, 2, . . . ...) has O(nω2r)

variables and O(n + m) LMI constraints; further, as r → +∞ the value of the relaxation

converges to the optimum. Also see [89, 68].
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Finally, there are a number of results on using lifted formulations for polynomial optimiza-

tion problems, along the lines of the RLT methodology of [99]. See [101, 100] and references

therein.

1.4 Cutting Plane Approaches to Polynomial Optimization

Besides showing the existence of moderate-sized LPs that can approximate sparse polynomial

problems, and with a more pragmatic focus, we also aim to the development of computation-

ally tractable techniques for Polynomial Optimization problems that can have an empirically

good performance. For this purpose, we will make use of cutting planes algorithms, widely

used in Mixed-Integer Programming, in a Polynomial Optimization context.

Cutting planes applied to non-convex problems are typically derived using problem-

specific structures; either using particular assumptions on the data that drives a given opti-

mization model, or tackling single non-linear terms or single constraints separately. In this

work we pursue the development of general cutting plane techniques that rely on minimal

assumptions on the problem structure.

We will explore two different families of cutting planes applicable to Polynomial Optimiza-

tion: Digitization cuts and Intersection cuts. Digitization cuts make use of a discretization

technique that can be traced back to [51]; also see [22, 39, 54]. Using this discretization,

polynomials can be approximated accurately with a linear expression over binary variables,

thus allowing MIP technology to be of use in generating cuts. We will present theoretical

arguments for the validity of the inequalities and the quality of the cuts, and show heuristics

that can speed-up the cut-finding algorithms.

As for Intersection cuts, we will make use of a reformulation of Polynomial Optimization

problems that represents the feasible solutions (semi-algebraic sets) as P ∩ S, where P is a

polyhedron and S is a closed set. These cuts will be generated from convex forbidden zones,

or S-free sets, according to the Intersection cuts introduced by Balas [9]. We review the work

developed in [23], showing different families of S-free sets where cuts can be derived from.

We will also provide details on the computational efficacy of these cuts.
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There is a considerable amount of literature concerning cuts and strong linear relaxations

that can be applicable to Polynomial Optimization problems. These cuts typically tackle

single non-linear terms or single constraints, making use of substructures like edge-concavity

[85, 103], multilinearity [79, 12, 94], or other special characteristics to derive convex envelopes

and cuts. Also see [76, 105, 104]. All cuts we will present can account for several (or all)

variables and functions in the problem simultaneously. To the best of our knowledge, two

papers are similar in this regard. The disjunctive cuts of Saxena, Bonami, and Lee [97, 98]

and the lift-and-project-based cuts, using moment relaxations, proposed Ghaddar, Vera, and

Anjos [50].

1.5 Overview

This dissertation is organized as follows. In Chapter 2 we discuss the AC-OPF problem and

our contributions towards fast bounding procedures. We begin by showing the commonly

used models for Power Flows in Section 2.1, which are used in AC-OPF problem formulation

presented in Section 2.2. In Section 2.3 we describe our approach in general terms as an

introduction to Section 2.4, where we present in full detail the inequalities we developed for

this problem. A tightening procedure of these inequalities is presented in Section 2.5, and in

Section 2.6 we present experiments testing the performance of them.

In Section 2.7 we describe the AC transmission switching problem (ACTS), to then spec-

ify our proposed algorithm for it in Section 2.8, which makes use of our linear relaxation of

AC-OPF. Finally, in Section 2.9 we provide computational experiments on the ACTS prob-

lem.

In the subsequent chapters, and motivated by the sparse structure present in transmission

grids, we will provide a thorough study on tree-width-based sparsity in optimization problems.

In Chapter 3 we discuss a general class of optimization problems over binary variables and

analyze the effect of a low tree-width intersection graph. This will serve as the basic building

block for all subsequent results. Here, we show how to obtain a reformulation of these binary
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problems, where the size of the reformulation will be parametrized by the tree-width of the

corresponding intersection graph. In Section 3.1 we provide a brief tutorial on the tree-width

concept, along with the key results we will use. In Sections 3.2 through 3.5 we provide

a preliminary discussion on the results we will prove, the necessary definitions and their

consequences. Finally, in Sections 3.6 and 3.7 we provide two different LP reformulations

that attain the desired effect.

Chapter 4 concerns Mixed-integer Polynomial Optimization problems that present an

intersection graph with small tree-width. In Section 4.1 we state the family of problems we

will tackle, as well as the main results of the chapter. In Section 4.2 we present the digitization

technique that will allow us to approximate polynomial problems with pure binary problems.

In Section 4.3 we show how to reformulate this pure binary approximation with an LP,

analyzing what is the effect of low tree-width in this process. We conclude the chapter with

Section 4.4, where we further discuss some aspects of our results and give a full detailed

example of the LP approximation we obtain on a concrete problem.

In Chapter 5 we move to approximability results for Network Polynomial Optimization

problems, which serve as a generalization of the AC-OPF problem since they have an un-

derlying graph in the problem description, as opposed to the problems studied in Chapter

4, where a graph is drawn from a formulation. In Section 5.1 we formally define Network

Polynomial Optimization problems and argue on the difference between assuming a sparse

structure in the underlying graph and assuming the same structure on the intersection graph

of a formulation. In Section 5.2 we outline the technique we will rely on to obtain tractability

for these problems. We provide a complete example of this proof technique in Section 5.3,

and then in Section 5.4 we provide the proof of the general case.

On a more pragmatic spirit, in Chapter 6 we discuss the two families of cutting planes

mentioned above, meant for generating strong LP relaxations of Polynomial Optimization in

a computationally effective manner. The first family, Digitization cuts, is presented in Section

6.1. These are cuts based on a digitization technique used for theoretical purposes in Chapter

4, and used here for generating cuts efficiently. The second family, Intersection cuts, which

were were introduced in [23] in the polynomial optimization context, is discussed in Section
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6.2. We review the key concepts behind them and show details on the computational aspects.

Finally, in Chapter 7 we present our concluding remarks, providing a general view on

the proposed techniques of this dissertation and their impact, as well as future extensions of

them.

1.6 Notation

We will denote as R and Z the set of real and integer numbers, respectively. We denote as

Rn and Zn the sets of n-dimensional vectors with coordinates in R and Z, respectively. We

use Sn×n to denote the space of symmetric n×n matrices, and Sn×n+ for the symmetric n×n

matrices that are positive semidefinite. In some occasions we will use [n] to denote the set

{1, . . . , n}.

Given a set S, we let int(S) be its interior, bd(S) its boundary, conv(S) its convex hull,

clconv(S) the closure of its convex hull, cone(S) its conic hull and clcone(S) the closure of

its conic hull. We use proj(S) to denote the projection of S onto a lower dimensional space,

which will be specified using a subscript. For example, if V is a subspace, then projV(S)

will be the projection of S onto V. In the case we distinguish different coordinates in S, for

example, if we use (x, y) to refer to vectors in S, we use projx(S) to denote the projection of

S onto the x coordinates.

We use | · | to denote the absolute value, or magnitude, of the argument. When applied

to a complex number (in the AC-OPF context), it denotes the complex number magnitude.

‖ · ‖ is used to denote the euclidean norm in Rn and ‖ · ‖1 for the 1-norm. The inner product

between two vectors u and v will be denoted as uT v, where (·)T is the transpose operator.

We reserve ≤ (<) for component-wise (strict) inequality between vectors.

We let 〈·, ·〉 be the Frobenius inner product of matrices

〈A,B〉 = trace(ATB) =
∑
i,j

AijBij ,

and ‖·‖F be the corresponding norm. We use X � 0 (X � 0) whenever a matrix X is positive

(semi) definite, and we let rank(X) be its rank, i.e, the number of linearly independent rows
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(or columns) of X. X[i,j] represents the principal submatrix of X induced by indices i and j,

i.e,

X[i,j] =

 Xii Xij

Xij Xjj

 .
For a polynomial f(x), we will use the following representation. Given α ∈ Zn+ we write

xα
.
=

n∏
j=1

x
αj
j .

Then, we represent f(x) as a sum of weighted monomials:

f(x) =
∑

α∈I(f)

fαx
α,

where each fα is rational and I(f) ⊆ Zn+ is a finite set. We write ‖f‖1 =
∑

α∈I(f) |fα|. The

degree of f is defined as maxα∈I(f)

∑
j αj and the support of f , denoted supp(f), is defined

as the set of variables that appear explicitly in f(x).
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Chapter 2

AC Optimal Power Flow Problem

In this chapter we formally describe the AC-OPF problem, a key component in the oper-

ations of the power grid. This problem can be modeled using a non-convex optimization

problem, and needs to be solved, in some form, every day, even every 10 minutes. Thus, it

yields challenging optimization instances that are typically approximated in order to achieve

tractability. We present details on the formulation of the problem, along with novel linear re-

laxations that can provide valid strong bounds quickly. We will also discuss how this efficient

relaxation can be used on the AC Transmission Switching problem.

2.1 Modeling Power Flows on the Grid

The power grid can be represented as a network. We call the nodes of the network buses (that

can be generators, loads or nodes where the power is redistributed) and the edges lines. Some

buses will have a demand of power that must be satisfied, some buses will be able to gener-

ate power, and the power will flow through lines. Even though this setting is reminiscent of

classical network-flow problems, extra difficulties arise from the way current flows in the lines.

Each bus k will have a voltage associated to it, given by a complex number Vk. Two

variables ek and fk are used to represent the real and imaginary part of Vk, i.e,

Vk = ek + jfk
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where j =
√
−1. Alternatively, one can use a polar representation of Vk given by

Vk = |Vk|ejθk

where θk is known as the phase angle. We will use both representations, depending on which

is better suited for arguing a given statement.

In order to represent the lines of the network, we use the traditional π-model (see Figure

2.1). Consider a line {k,m} between buses k and m; its series impedance z{k,m} is defined as

z{k,m} = r{k,m} + jx{k,m}

where r{k,m} and x{k,m} are constants representing the line’s resistance and reactance, re-

spectively. A line’s series admittance is given by

y{k,m}
.
= z−1

{k,m} = g{k,m} + jb{k,m}, where (2.1)

g{k,m} =
r{k,m}

r2
{k,m} + x2

{k,m}
and b{k,m} = −

x{k,m}

r2
{k,m} + x2

{k,m}
. (2.2)

In addition, there will be a shunt admittance ysh{k,m} = gsh{k,m}+ jbsh{k,m}, and a transformer

(assuming it is located at the k side of the line) with ratio

Nk
.
= τke

jσk ,

where τk and σk are constants representing the transformer’s magnitude and phase shift

angle, respectively.

We let Ikm be the complex current injection of k in line {k,m}. Pkm will represent the

active power injected by k in line {k,m} and Qkm will represent the reactive power injected

by k in line {k,m}. Similarly, we define Imk, Pmk and Qmk. Defining

Skm = Pkm + jQkm

and using Ohm’s Law, we have

Ikm =
1

τk
y{k,m}

[
1

τk
Vk − ejσkVm

]
+

1

2τ2
k

ysh{k,m}Vk (2.3)

Imk = y{k,m}

[
− 1

τkejσk
Vk + Vm

]
+

1

2
ysh{k,m}Vm (2.4)

Skm = VkI
∗
km (2.5)

Smk = VmI
∗
mk. (2.6)
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Figure 2.1: π-model of a line {k,m}, including transformer on the k side, and shunt admit-

tance.

These are the so-called power flow equations. If we denote I the vector with components

Ikm, and V the vector with components Vk, equations (2.3) and (2.4) are typically written

in summarized form as

I = YV,

where Y is referred to as the branch admittance matrix. This matrix is defined as follows: let

Y{k,m} be the submatrix of Y given by rows km and mk, and columns k and m, then

Y{k,m} =


(
y{k,m} +

ysh{k,m}
2

)
1
τ2k

−y 1
τke
−jσk

−y 1
τke

jσk
y{k,m} +

ysh{k,m}
2

 . (2.7)

All other components of Y (i.e, entries that do not appear in Y{k,m} for some line {k,m})

are 0. Now that we have defined the formulas for the power flow equations, we can move

forward in properly defining the AC-OPF problem.

2.2 The AC-OPF Problem

The AC-OPF problem consists on determining the power to be generated in the generator

buses and the appropriate voltages in each bus, in order to meet the demands of power

throughout the grid and in a way that minimizes the generating costs and satisfies engineer-

ing and operational constraints.
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The parameters of the model are given by

• The branch admittance matrix Y defined above.

• P dk (resp. Qdk) the active (reactive) load, or demand, at bus k.

• Pmax
k , Pmin

k , Qmax
k , Qmin

k the active and reactive generator output limits in bus k. If

bus k is not connected to a generator, then when we set

Pmax
k = Pmin

k = Qmax
k = Qmin

k = 0.

• V min
k and V max

k the voltage magnitude limits in bus k.

And the variables in the model are:

• For each line {k,m} two (complex) variables associated to current Ikm and Imk, two

(complex) variables associated to active power Pkm and Pmk, and two (complex) vari-

ables associated to reactive power Qkm and Qmk.

• For each bus k a (complex) variable for the voltage Vk, and additionally P gk (resp., Qgk)

the active (or reactive) generation at k (which would be fixed at zero by the limits

above, if no generator is connected to bus k).

For a bus k, we denote as δk the set of buses connected to k through a line. The AC-OPF

problem can be represented using the following form (see [73], equations (2)):

min F (P g, Qg) (2.8a)

subject to:

∀bus k : Pmin
k ≤ P gk ≤ P

max
k (2.8b)

Qmin
k ≤ Qgk ≤ Q

max
k (2.8c)

V min
k ≤ ‖Vk‖ ≤ V max

k (2.8d)∑
m∈δk

(Pkm + jQkm) = (P gk − P
d
k ) + j(Qgk −Q

d
k) (2.8e)

∀ line {k,m} : Pkm + jQkm = VkI
∗
km (2.8f)
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Pmk + jQmk = VmI
∗
mk (2.8g)

I = YV. (2.8h)

In (2.8a) F is a cost function, usually a sum of quadratics depending on the active power

generation. Constraints (2.8b) and (2.8c) set the generation limits in each bus. Constraints

(2.8d) indicate line voltage magnitude limits in each bus. Constraints (2.8e) are active and

reactive balance constraints, i.e, they account for the power demanded on a bus and/or

power generation limits on a bus. Constraints (2.8f)-(2.8h) capture the Power Flow equations

described before. Note that (2.8) can be formulated using only the voltage variables Vk,

nonetheless, we keep the other variables to simplify expressions.

Additionally, one can include limits on the flow over a line (given by the material proper-

ties of the line). These are typically convex constraints of the type ‖Pkm + jQkm‖ ≤ U{k,m}.

We omit these to simplify the discussion, but they can easily be added to all results.

The non-convexity of this problem comes mainly from constraints (2.8f), (2.8g) and (2.8h)

(also from (2.8d)), which we will see can be very complicated quadratic expressions. In the

following section we will describe different ways of obtaining convex relaxations to these

non-convex constraints.

2.3 Description of our approach

Here we focus on developing linear relaxations to AC-OPF problems, in lifted spaces, with

the primary goal of quickly proving lower bounds and enabling fast, standard optimization

methodologies, such as branching, to be used in this context. To motivate our approach,

let (P,Q, V (2)) be a vector that includes, for each line {k,m}, the real and reactive power

injections Pkm, Pmk, Qkm and Qmk, and for each bus k the squared bus voltage magnitude

|Vk|2, denoted by V
(2)
k . Using these variables, we first write the AC-OPF (2.8) problem in

the following summarized form

min F (P,Q) (2.9a)

subject to:
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dL ≤ AP + BQ + CV (2) ≤ dU (2.9b)

(P,Q, V (2)) ∈ Ω. (2.9c)

Here,

• In constraints (2.9b), A, B and C are matrices and dL and dU are vectors, all of

appropriate dimension. These constraints describe basic relationships such as generator

output limits, voltage limits, and active and reactive flow balance constraints. Clearly

constraints (2.8d) fit in this category. Constraints (2.8b), (2.8c) and (2.8e) can be

included here as well. Note that (2.8b) and (2.8e) can be combined to obtain a constraint

of the form

PLk ≤
∑
m∈δk

Pkm ≤ PUk ,

where PLk and PUk are given values. We can argue the same for constraints (2.8c).

• Constraints (2.9c) describe the underlying physics, e.g. Ohm’s law. In formulation (2.8)

these correspond to constraints (2.8f), (2.8g) and (2.8h). Note that in (2.9c) we do not

explicitly state the dependency on I, since we can either fully replace these variables

using (2.8h), or alternatively include them in the description of the set Ω.

• In standard OPF problem formulations, the objective F (P,Q) is typically the sum

of active power generation costs (summed over the generators); a separable convex

quadratic function of the generator outputs.

Our basic approach will approximate (2.9c) with linear inequalities obtained by lifting

formulation (2.9) to a higher-dimensional space. By ‘lifting’ we mean a procedure that adds

new variables (with specific interpretations) and then writes inequalities that such variables,

together with (P,Q, V (2)), must satisfy in any feasible solution to the AC-OPF problem.

To fix our language, we view the quantities Pkm, Pmk, Qkm, Qmk (for each line {k,m})

and |Vk|2 (for each bus k) as foundational. All other variables, including those that arise

naturally from constraint (2.9c) as well as those that we introduce, will be called lifted1.

1Occasionally we may view the rectangular voltage coordinates as foundational.
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In Section 2.4 we introduce our lifted variables, as well as the inequalities that we derive

so as to obtain a convex relaxation of (2.9c). The inequalities described here will be of the

following types:

1. ∆ inequalities, (basic form given by (2.18))

2. (active power) loss inequalities, (basic form given by (2.22))

3. Circle inequalities, (basic form given by (2.28))

All these inequalities are convex; some linear and some conic. In the case of conic inequalities

we rely on outer approximation through tangent cutting planes so as to ultimately obtain

linear formulations as desired.

2.4 Valid inequalities for AC-OPF

In this section we derive valid inequalities, first for the simplest case (no shunt, no trans-

former) then for the case with shunts but no transformers, and finally for the most general

case2.

For ease of notation, we will omit the {k,m} subscript in the line-related constants when

the dependency is evident.

2.4.1 ysh = 0 and N = 1

In this case the equations in (2.8h) take the form

Ikm = y(Vk − Vm). (2.10)

Using rectangular coordinates this can be expressed as

Ikm = g(ek − em)− b(fk − fm) + j[ b(ek − em) + g(fk − fm) ] (2.11)

with a symmetric expression for Imk. This implies

Pkm = ekg(ek − em)− ekb(fk − fm) + fkg(fk − fm) + fkb(ek − em)

= (ek − em)(g , b)(ekfk) + (fk − fm)(−b , g)(ekfk) (2.12)

2Bus shunt admittances are omitted, but can be easily incorporated into our inequalities.
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with a symmetric expression for Pmk. Similarly,

Qkm = fkg(ek − em)− fkb(fk − fm)− ekg(fk − fm)− ekb(ek − em)

= (ek − em)(−b , g)(ekfk) + (fk − fm)(−g , −b)(ekfk). (2.13)

To obtain expressions in polar coordinates we write the impedance and admittance in

polar coordinates:

z = |z|ej∠z, y =
1

|z|
e−j∠z.

Then (see e.g. Bergen and Vittal [16], p. 104)

Skm = VkI
∗
km = Vk(V

∗
k − V ∗m)y∗ =

|Vk|2

|z|
ej∠z − |Vk||Vm|

|z|
ej∠zejθkm , (2.14)

where

θkm
.
= θk − θm.

We also can rewrite (2.14) as

Skm = |Vk|2(g − jb)− |Vk||Vm|(g − jb)(cos θkm + j sin θkm)

= |Vk|2g − |Vk||Vm|g cos θkm − |Vk||Vm|b sin θkm

+j
[
−|Vk|2b+ |Vk||Vm|b cos θkm − |Vk||Vm|b sin θkm

]
. (2.15)

Likewise, the power received at m (rather than injected), −Smk, satisfies

−Smk = −|Vm|
2

|z|
ej∠z +

|Vk||Vm|
|z|

ej∠ze−jθkm . (2.16)

We can also obtain an expression for Smk similar to (2.15) by switching the k and m symbols.

For these expressions in polar coordinates in the most general case, see the Appendix A.1.

2.4.1.1 ∆ and loss inequalities, 1

Let µkm and νkm denote known upper bounds on

|(g , b)(ekfk)| and |(−b , g)(ekfk)|,

respectively. For example, from the Cauchy-Schwarz inequality, both quantities are upper-

bounded by ‖(g, b)‖V max
k , where V max

k is an upper bound on |Vk|. Then, using (2.12) we

obtain:

|Pkm| ≤ µkm|ek − em| + νkm|fk − fm|. (2.17)
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Variables |ek − em| and |fk − fm| will be represented using (nonnegative) lifted variables

de,km, and df,km, thus obtaining the inequality

|Pkm| ≤ µkmde,km + νkmdf,km. (2.18)

This is the basic ∆ inequality. Note that the vectors (gb) and (−bg ) are of equal norm

and orthogonal, so further elaborations of the ∆ inequalities are possible. The upper bound

‖(g, b)‖V max
k on µkm and νkm appears loose because, when (g, b) 6= 0 and ‖Vk‖ > 0, it could

not be the case that both bounds are simultaneously tight. However,

Lemma 2.4.1 The ∆ inequality

|Pkm| ≤ ‖(g, b)‖V max
k de,km + ‖(g, b)‖V max

k df,km (2.19)

is the best possible.

Here, by “best possible” what is meant is that one can produce examples such that if the

coefficient of either de,km or df,km is tightened (i.e. decreased from ‖(g, b)‖V max
k to a smaller

value) the resulting inequality becomes invalid – it cuts-off a feasible solution. However, the

result should not be interpreted as saying that the inequality can never be tightened. In

particular, if we consider a set of lines L and apply inequality (2.19) to each line {k,m} ∈ L,

obtaining a system of linear inequalities, it may well be the case that the system itself can be

tightened, that is to say, not all inequalities (2.19) for {k,m} ∈ L can simultaneously hold as

equations.

By adding the expression for Pkm in (2.15) and the corresponding expression for Pmk we

obtain

Pkm + Pmk = g(|Vk|2 + |Vm|2)− 2g|Vk||Vm| cos θkm = g|Vk − Vm|2, (2.20)

which can be relaxed as

g(ek − em)2 + g(fk − fm)2 ≤ Pkm + Pmk, (2.21)

or equivalently, using lifted variables,

gd2
e,km + gd2

f,km ≤ Pkm + Pmk, (2.22)
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We term (2.22) the loss inequality. Note that by definition g ≥ 0 (unless by a modeling

artifact we have r < 0), thus (2.22) is convex and a linear outer-approximation can be used

for it.

The quantity Pkm+Pmk represents the active power loss on line {k,m}. When g ≥ 0 (i.e.

r ≥ 0, the usual setting) it implies that losses are nonnegative. It is important to understand

the connection between the ∆ and the loss inequalities, which is highlighted by Theorem 2.4.4

given below, which may be stated in simplified form as “total active power generation equals

total active power loads plus total losses.” However, in order to obtain a precise statement

(which is also valid in the cases where negative resistances occur) we proceed as follows.

Definition 2.4.2 Let G be an undirected graph. A pseudo-flow is a vector P that assigns to

each edge {k,m} of G two reals, Pkm and Pmk. For any node k of G we write

δk
.
= set of nodes of G adjacent to k

and

ok(P )
.
=

∑
m∈δk

Pkm.

We call ok(P ) the net output of k. We say that k is a source if ok(P ) > 0 and is a sink if

ok(P ) < 0. Likewise, an edge {k,m} is termed a sink-edge (or source-edge) if

Pkm + Pmk > 0 or, respectively Pkm + Pmk < 0.

Remark 2.4.3

1. When P denotes the (standard) vector of active power flows in a transmission system,

ok(P ) = Gk−Dk where Gk is generation at k and Dk is load at k. In general, we expect

that generators will be sources and that sinks will be pure loads, though in principle one

could have a generator bus k with ok(P ) < 0.

2. In the normal case of a transmission line we will have r ≥ 0 and as discussed above

line losses are non-negative. This means that no edge will ever be a source edge, but

could be if negative resistances are used.
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Theorem 2.4.4 Let G be a graph and P be a pseudo-flow on G. Then

∑
k : ok(P )>0

ok(P ) =
∑

k : ok(P )<0

(−ok(P )) +
∑
{k,m}

(Pkm + Pmk).

Furthermore, P can be decomposed into directed flow paths, each originating at a source or

source-edge and terminating at a sink or sink-edge.

A proof following standard flow conservation concepts is given in the Appendix A.2.

We can use this result to understand how the ∆ inequalities work. If a vector P satisfies

flow balance constraints, i.e. constraints at each bus k of the form

∑
km

Pkm = Gk −Dk

some of the individual values Pkm must be large enough (if the active power loads are nonzero).

In the language of Definition 2.4.2, if some values ok(P ) are nonzero we will necessarily have

that some values Pkm are also nonzero. If inequality (2.18) is enforced, it will cause the lifted

variables δe,km and δf,km to be large enough. And in that case (2.22) implies that losses are

appropriately large; hence by Theorem 2.4.4 total generation will (typically) have to be larger

than the sum of loads.

2.4.1.2 Circle inequalities, 1

We can rewrite equation (2.14) as

Skm = Ckm −Bkmejθkm where (2.23)

Ckm
.
=
|Vk|2

|z|
ej∠z and (2.24)

Bkm
.
=
|Vk||Vm|
|z|

ej∠z. (2.25)

Note that Ckm and Bkm are obtained in the complex plane by rotating the real numbers

|Vm|2
|z| and |Vk||Vm||z| (respectively) by the same angle ∠z. As θkm varies, (2.14) indicates that

Skm describes a circle (the “sending circle”) with center Ckm and radius

ρ
.
=
|Vk||Vm|
|z|

.
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Likewise, −Smk describes a circle (the “receiving circle”) with center − |Vm|
2

|z| and radius

ρ. Refer to Bergen and Vittal [16] for more details. Using either circle we can obtain valid

convex inequalities. For example, clearly we have

[Re(Skm − Ckm)]2 + [Im(Skm − Ckm)]2 ≤ ρ2, (2.26)

or in other words,(
Pkm −

r|Vk|2

r2 + x2

)2

+

(
Qkm −

x|Vk|2

r2 + x2

)2

≤ |Vk|
2|Vm|2

r2 + x2
. (2.27)

As discussed in Section 2.3, our formulation has variables used to represent Pkm, Qkm, |Vk|2

and |Vm|2. Using these variables, from (2.27) we obtain a convex system by adding two lifted

variables αkm, βkm and the constraints

Pkm −
rV

(2)
k

r2 + x2
= αkm (2.28a)

Qkm −
xV

(2)
k

r2 + x2
= βkm (2.28b)

α2
km + β2

km ≤
V

(2)
k V

(2)
m

r2 + x2
. (2.28c)

We term (2.28) the circle inequalities. Constraints (2.28a) and (2.28b) are linear, and

constraint (2.28c) is a rotated cone constraint.

Remark 2.4.5 Many other inequalities can be obtained, in particular so as to bound the

ratio Pkm/Qkm, using the geometry of sending- and receiving-circles.

2.4.2 General ysh but N = 1

In this case we have

Ikm = y(Vk − Vm) +
1

2
yshVk, (2.29)

and so in rectangular coordinates

Ikm = g(ek − em)− b(fk − fm) +
1

2
(gshek − bshfk) +

j[ b(ek − em) + g(fk − fm) +
1

2
(bshek + gshfk) ]. (2.30)
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This implies:

Pkm = (ek − em)(g , b)(ekfk) + (fk − fm)(−b , g)(ekfk) +
gsh

2
(e2
k + f2

k ) (2.31)

Qkm = (ek − em)(−b , g)(ekfk) + (fk − fm)(−g , −b)(ekfk)− bsh

2
(e2
k + f2

k ). (2.32)

Note that expressions in (2.31) and (2.32) are obtained from (2.12) and (2.13) by adding the

terms gsh

2 (e2
k + f2

k ) and − bsh

2 (e2
k + f2

k ), respectively. In polar coordinates we will get

Skm = VkI
∗
km = Vk(V

∗
k − V ∗m)y∗ +

1

2
(gsh − jbsh)VkV

∗
k . (2.33)

2.4.2.1 ∆ and loss inequalities, 2

Using (2.31), we obtain

|Pkm| −
gsh

2
V

(2)
k ≤ µkm|ek − em| + νkm|fk − fm|. (2.34)

This is the second version of the ∆ inequality. Since the right-hand side of (2.31) is

obtained by adding gsh

2 (e2
k + f2

k ) to the right-hand side of (2.12), we have the following

analogue of (2.21):

g(ek − em)2 + g(fk − fm)2 ≤ Pkm + Pmk −
gsh

2
(V

(2)
k + V (2)

m ), (2.35)

the second version of our loss inequality, which again is a conic constraint in the space of

lifted variables.

2.4.2.2 Circle inequalities, 2

From (2.33) we get

Skm = |Vk|2
(
ej∠z

|z|
+

1

2
(gsh − jbsh)

)
− |Vk||Vm|

|z|
ej∠zejθkm , (2.36)

which again describes a circle, with center and radius, respectively,

|Vk|2
(
ej∠z

|z|
+

1

2
(gsh − jbsh)

)
and

|Vk||Vm|
|z|

. (2.37)

Using (2.36), (2.37), and since

Re

(
(|Vk|2

(
ej∠z

|z|
+

1

2
(gsh − jbsh)

))
= |Vk|2

(
r

r2 + x2
+
gsh

2

)
and (2.38)

Im

(
(|Vk|2

(
ej∠z

|z|
+ +

1

2
(gsh − jbsh)

))
= |Vk|2

(
x

r2 + x2
− bsh

2

)
, (2.39)
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we obtain the following generalization of the convex lifted system (2.28):

Pkm −
(

r

r2 + x2
+
gsh

2

)
V

(2)
k = αkm (2.40a)

Qkm −
(

x

r2 + x2
− bsh

2

)
V

(2)
k = βkm (2.40b)

α2
km + β2

km ≤
V

(2)
k V

(2)
m

r2 + x2
. (2.40c)

2.4.3 General ysh and N

In this case two approaches are possible.

• Indirect approach. Here we break up line {k,m} into two separate lines, i.e. line {k, k1}

and line {k1,m} (see Figure 2.1). We have that

Vk1 =
1

τ
(ek cosσ + fk sinσ) + j

1

τ
(fk cosσ − ek sinσ). (2.41)

which is an explicit linear inequality. Line {k1,m} can be separately handled using the

approach in Section 2.4.2 so as to obtain ∆, loss and circle inequalities.

• Direct approach. This is the approach followed next.

From the general formula (2.5) we have (see the Appendix A.1 for details)

Pkm =
1

τ

[ek
τ
− em cosσ + fm sinσ

]
(g , b)(ekfk)

+
1

τ

[
1

τ
fk − fm cosσ − em sinσ

]
(−b , g)(ekfk)

+
gsh

2τ2
(e2
k + f2

k ). (2.42)

Similarly,

Pmk =

[
em −

1

τ
ek cosσ − 1

τ
fk sinσ

]
(g , b)(emfm)

+

[
fm −

1

τ
fk cosσ +

1

τ
ek sinσ

]
(−b , g)(emfm)

+
gsh

2
(e2
m + f2

m). (2.43)
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2.4.3.1 ∆ and loss inequalities, 3

In the transformer case there will be two ∆ inequalities. The first is obtained by from (2.42)

by taking absolute values:

|Pkm| −
gsh

2τ2
|Vk|2 ≤

µkm
τ

∣∣∣∣1τ ek − em cosσ + fm sinσ

∣∣∣∣ +
νkm
τ

∣∣∣∣1τ fk − fm cosσ − em sinσ

∣∣∣∣ . (2.44)

Here as before µkm and νkm are known upper bounds on |(g , b)(ekfk)| and |(−b , g)(ekfk)|,

respectively. Similarly, we obtain a second ∆ inequality from (2.43):

|Pmk| −
gsh

2τ2
|Vm|2 ≤

µmk

∣∣∣∣em − 1

τ
ek cosσ − 1

τ
fk sinσ

∣∣∣∣ + νmk

∣∣∣∣fm − 1

τ
fk cosσ +

1

τ
ek sinσ

∣∣∣∣ . (2.45)

Thus in order to represent these inequalities we need to introduce additional lifted vari-

ables used to model the expressions∣∣∣∣1τ ek − em cosσ + fm sinσ

∣∣∣∣ ,

∣∣∣∣em − 1

τ
ek cosσ − 1

τ
fk sinσ

∣∣∣∣∣∣∣∣1τ fk − fm cosσ − em sinσ

∣∣∣∣ ,

∣∣∣∣fm − 1

τ
fk cosσ +

1

τ
ek sinσ

∣∣∣∣ .
In the no-transformer case the first two variables are equal to |em − ek| and the last two

are equal to |fm − fk|. Replacing, in (2.44) and (2.45), |Vk|2 and |Vm|2 with V
(2)
k and V

(2)
m

respectively, we obtain the most general form of the ∆ inequalities.

Since all losses are incurred in the section of the line between k1 and m, applying (2.35)

and (2.41) we obtain:

g

(
em −

1

τ
ek cosσ − 1

τ
fk sinσ

)2

+ g

(
fm −

1

τ
fk cosσ +

1

τ
ek sinσ

)2

≤ Pkm + Pmk −
gsh

2

(
V

(2)
k

τ2
+ V (2)

m

)
. (2.46)

In this form we obtain a convex inequality that employs the lifted variables introduced in

(2.45). A similar construction yields an inequality using the lifted variables in (2.44), since(
em −

1

τ
ek cosσ − 1

τ
fk sinσ

)2

+

(
fm −

1

τ
fk cosσ +

1

τ
ek sinσ

)2

=

(
1

τ
ek − em cosσ + fm sinσ

)2

+

(
1

τ
fk − fm cosσ − em sinσ

)2

.
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These inequalities represent a generalized version of the loss inequalities. For a complete

and detailed derivation of (2.46) see Appendix A.1.

2.4.3.2 Circle inequalities, 3

In the transformer case the structure of the circle inequalities differs due to the asymmetry

caused by the transformer. First, the system (2.40) applied at m is unchanged (i.e. system

(2.40) with k and m interchanged). To obtain a system at k we again consider point k1 in

Figure 2.1 and we now obtain:

Pkm −
(

r

r2 + x2
+
gsh

2

)
V

(2)
k

τ2
= αkm (2.47a)

Qkm −
(

x

r2 + x2
− bsh

2

)
V

(2)
k

τ2
= βkm (2.47b)

α2
km + β2

km ≤
V

(2)
k V

(2)
m

τ2(r2 + x2)
. (2.47c)

2.5 Tightening inequalities through reference angle fixings

Above we introduced a family of inequalities for each line of the underlying network. Here

we will describe a tightening procedure that can render significant improvements.

Recall the discussion in Section 2.4 regarding foundational and lifted variables. The lifted

variables include e.g. a variable used to represent
∣∣em − 1

τ ek cosσ − 1
τ fk sinσ

∣∣ introduced in

equation (2.45).

We can express these facts in compact form as follows. As in Section 2.4, let (P,Q, V (2))

indicate the vector of all foundational variables. Here, for each bus k variable V
(2)
k is used to

represent the quantity |Vk|2. If N and M indicate the number of buses and lines, respectively,

then (P,Q, V 2) ∈ R2M+N . Let W indicate the vector of all lifted variables, say with H

components, and let K ⊆ R2M+N+H indicate the convex set described by all inequalities

introduced in Section 2.4. Then we can represent (P,Q, V (2),W ) ∈ K more compactly by

stating that

(P,Q, V (2)) ∈ K̂
.
= projR2M+NK (2.48)

where projR2M+N K is the projection of K to the subspace of the first 2M +N variables.
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We now describe a procedure for tightening (2.48). As is well known, fixing an arbitrary

bus at an arbitrary angle does not change the set of feasible solutions to a standard AC-OPF

problem. Thus, let k̂ be a particular bus, and let θ̂k̂ be a particular angle; we can therefore

without loss of generality fix θk̂ = θ̂k̂. How can we take advantage of this fact so as to obtain

stronger constraints? Trivially, we can of course enforce fk̂ = tan θ̂k̂ek̂.

Moreover, consider for example the ∆ inequality (2.18) for a line k̂m (for simplicity we

assume the line has zero shunt admittance and no transformer). We repeat the constraint

here for convenience:

|Pk̂m| ≤ µk̂m|ek̂ − em| + νk̂m|fk̂ − fm|, (2.49)

where µk̂m and νk̂m are valid upper bounds on

|(g , b)(ek̂fk̂)| and |(−b , g)(
ek̂
fk̂

)|,

respectively. As stated above, both b and g depend on the line but we omit the dependency

for simplicity of notation. Given that we know θk̂ = θ̂k̂ we can tighten the estimates on µk̂m

and νk̂m, thereby obtaining a tighter inequality from (2.49). We can likewise tighten many

of the inequalities introduced above.

More generally, suppose that rather than fixing θk̂ to a fixed value, we insist that it is

contained in a known set I(k̂) (in particular an interval), i.e.

θk̂ ∈ I
(k̂)

As just argued we can therefore without loss of generality, tighten the valid inequalities

we described in previous section. This tightening is easiest in the case where the set is in fact

an interval.

Let K
(
k̂, I(k̂)

)
⊆ R2M+N+H denote the resulting convex body, and let

Π
(
k̂, I(k̂)

)
.
= projR2M+NK

(
k̂, I(k̂)

)
.

As a consequence of the above observations, we now formally have:

Lemma 2.5.1 Suppose (P̃ , Q̃, Ṽ (2)) is feasible for the AC-OPF problem. Then for any bus

k̂, and any set I(k̂),

(P̃ , Q̃, Ṽ (2)) ∈ Π
(
k̂, I(k̂)

)
. (2.50)
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Of course one can simply enforce (2.50) by explicitly writing down all the lifted variables

and all the constraints used to describe the set K
(
k̂, I(k̂)

)
. Alternatively, one can separate

from the convex set Π
(
k̂, I(k̂)

)
and use such cuts as cutting planes. From this perspective,

the following result is important:

Corollary 2.5.2 Suppose (P̃ , Q̃, Ṽ (2)) is feasible for the AC-OPF problem. Then for any

family of buses ki (i ∈ F ) and sets I(ki) we have

(P̃ , Q̃, Ṽ (2)) ∈
⋂
i∈F

Π
(
ki, I(ki)

)
. (2.51)

In other words, in particular, we can separate a given vector (P̃ , Q̃, Ṽ (2)) from sets ob-

tained from our original family of valid inequalities by e.g. fixing one arbitrary bus to an

arbitrary angle, and tightening.

2.6 Computational experiments

In the experiments reported here, we implemented the ∆, loss and circle inequalities in their

most general form. To solve conic and linear programs, we used Gurobi 5.6.3 [58]. To solve

semidefinite programs, we used the system due to Lavaei et al. [80], which also includes a

procedure for extracting a feasible rank-one solution from the SDP. All runs were performed

on a current workstation with ample physical memory. All running times are in seconds

unless indicated.

In Table 2.1, “SDP time” is the time taken to solve the SDP relaxation of the OPF

problem, “SDP gap” is the percentage gap between the value of the SDP relaxation and

the upper bound (value of feasible solution) obtained by the SDP system. “SOCP time” and

“LP time”, are, respectively, the time required to solve our conic relaxation and its first-order

(outer) relaxation through a cutting-plane algorithm. “SOCP gap” and “LP gap” are the

percentage gaps relative to the SDP upper bound.

From Table 2.1 we can see the big potential of using LP technology. We are able to obtain

competitive gaps in reduced time. In the smaller instances we are not able to improve on

the SOCP time; this behavior was expected, as commercial optimization software sometimes

follow the same approach we used for dealing with SOCP constraints (using linear approx-
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SDP time SDP gap SOCP time SOCP gap LP time LP gap

case9 1.04 0.0002 % 0.05 0.7899 % 0.04 0.7899 %

case30 3.40 0.0185 % 0.23 1.3808 % 0.35 1.3964 %

case57 4.23 0.0000 % 0.62 0.9954 % 1.41 0.9954 %

case118 8.73 0.0045 % 0.98 1.4645 % 5.12 1.4642 %

case300 20.29 0.0018 % 4.62 1.0585 % 49.61 1.0559 %

case2383wp 13 min 0.6836 % 2 min 3.6134 % 1.63 5.6489 %

case2746wp 16 min 0.0375 % 79.10 1.8593 % 1.88 3.1235 %

Table 2.1: Comparison of different relaxations of AC-OPF.

imations). For large instances we are able to obtain a much smaller running time, to the

expense of a slightly weaker gap.

The results are nevertheless encouraging, as they provide indications that LPs can still

be used in challenging non-convex settings such as the AC-OPF problem.

2.7 AC transmission switching problem

We now turn to a different power-grid-based problem, where the aforementioned relaxations

can be used with promising results. This is the so-called AC transmission switching problem.

In the AC transmission switching problem (ACTS for short) a planner seeks to switch off

transmission lines with the goal of reducing transmission cost, improving congestion, carrying

out line maintenance, or a number of other reasons. In addition, the planner may seek to

enforce additional constraints on the set of switched off lines, such as only allowing a specific

subset of lines to be switched off and placing upper or lower bounds on the quantity of

switched off lines. See [45], [55] for results and background. Network modeling relies on an

AC power flow model; thus ACTS is a nonlinear, non-convex, mixed-integer optimization

problem.

In the following sections we describe a methodology for addressing ACTS problems that

borrows from ideas in traditional mixed-integer optimization methods. In designing an al-

gorithm for ACTS along these lines, one would start with an effective convex relaxation
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for ACTS that yields good (lower) bounds. However, care needs to be exercised in design-

ing such a relaxation so that it can be leveraged by the standard set of tools for solving

non-continuous optimization problems: disjunctions, branching, formulation tightening (e.g.

dynamically developed cutting planes) and repeated solutions. In this context, it is im-

portant to stress that when addressing truly difficult non-continuous optimization problems

one often needs iterative algorithms that require repeated solutions of progressively modi-

fied relaxations, as opposed to feeding a single, static problem formulation to a generic solver.

In what follows, we introduce an iterative method for tackling ACTS, at the core of which

is the lightweight relaxation of AC-OPF presented above. In order to handle a simplified

version of our relaxation to the AC-OPF problem for ease of notation, we will assume no

transformer is present and that ysh = 0. The general case follows directly.

2.8 Formulation and algorithm for ACTS

The ACTS problem has a similar structure as AC-OPF; however for each line will we have a

binary variable used to model the decision to switch off that line. We model line switching

using a binary variable s{k,m} for each line {k,m}. We include the constraints

‖Pkm + jQkm‖ ≤M{k,m}(1− s{k,m})

where M{k,m} is either the line’s limit U{k,m} (if present), or a large number. We also modify

the last constraint of the circle system (2.28) to state

−
[V max
k ]4 − [V min

k V min
m ]2

r2 + x2
s{k,m} + α2

km + β2
km ≤

V
(2)
k V

(2)
m

r2 + x2
. (2.52)

When s{k,m} = 0 (line not switched) (2.52) coincides with (2.28c). When s{k,m} = 1,

equations (2.28a)-(2.28b) and Pkm = Qkm = 0 give

α2
km + β2

km =

(
V

(2)
k

)2

r2 + x2
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which shows the validity of (2.52). The following is a valid relaxation for ACTS:

minF (P,Q) (2.53a)

subject to:

∀bus k : PLk ≤
∑
m∈δk

Pkm ≤ PUk (2.53b)

QLk ≤
∑
m∈δk

Qkm ≤ QUk (2.53c)

(
V min
k

)2 ≤ V
(2)
k ≤ (V max

k )2 (2.53d)

∀ line {k,m} : s{k,m} ∈ {0, 1} (2.53e)

‖Pkm + jQkm‖ ≤Mkm(1− s{k,m}) (2.53f)

∆ inequality (2.19), loss inequality (2.22) (2.53g)

(2.28a), (2.28b), (2.52), (2.53h)

side-constraints on the s{k,m} variables. (2.53i)

Constraint (2.53i) will be defined from the extra requirements of the line switching in-

stance, e.g, it can represent the maximum number of lines that can be switched off, or a

particular set of lines from where to choose from. Note that the ∆ and loss constraints are

enforced even when line {k,m} is switched off. For convenience of the reader, we restate

these constraints:

|Pkm| ≤ ‖(g, b)‖V max
k de,km + ‖(g, b)‖V max

k df,km (2.54)

g d2
e,km + g d2

f,km ≤ Pkm + Pmk. (2.55)

The critical observation is that, even though in our lifted relaxation for AC-OPF the

variables de,km and df,km modeled the rectangular voltage deviations |ek− em| and |fk− fm|,

variables de,km and df,km appear only in the two inequalities listed above. Hence, subject

to satisfying (2.54) and (2.55), de,km and df,km can take arbitrary values. In particular,

when s{k,m} = 1 (line switched off), setting de,km = df,km = 0 will satisfy (2.54)-(2.55). In

summary:

Theorem 2.8.1 Formulation (2.53) is a valid relaxation for ACTS, and as a consequence

its value is a lower bound on the value of ACTS.
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2.8.1 Non-standard branching for ACTS

Formulation (2.53) only proves a lower bound on the value of ACTS. To obtain upper bounds,

we use a non-standard branch-and-bound procedure which relies on any fast algorithm for

computing upper bounds for AC-OPF; see e.g. [32]. The root node for our branching method

is given by formulation (2.53). A typical node will be endowed with an extension of formu-

lation (2.53), and is processed by the following template (L is the set of all lines):

PROCESSING NODE v OF BRANCH-AND-BOUND

1. Solve the formulation at v. Let Kv the set of lines switched off in the solution.

2. Run the AC-OPF upper bounding procedure with set Kv switched off. If

feasible, we obtain an upper bound for ACTS as well.

3. If not, add to the branch-and-bound tree two nodes:

→ The first extends the formulation at v with:

∑
{k,m}∈Kv

s{k,m} ≤ |Kv| − 1.

→ The second extends the formulation at v with:

∑
{k,m}∈Kv

s{k,m} = |Kv|.

∑
{k,m}∈L

s{k,m} ≥ |Kv|+ 1.

The two nodes added to the branch-and-bound tree in Step 3 guarantee correct enumeration;

the second one is justified by the observation that switching off a set K of lines may prove

infeasible, but a super-set of K could prove feasible. As branch-and-bound iterates it will

produce both upper bounds and rigorous lower bounds for ACTS3. Any feasible solution

(Step 2) will furnish an upper bound for ACTS and a corresponding set of lines to switch off.

3Subject to round-off errors by the solver.
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H MIP time MIP value Nodes Feas. value

5 192 s 1804930.39 1 1868524.14

6 265 s 1804981.21 1 1868585.69

10 190 s 1805024.07 1 1868760.04

Table 2.2: ACTS algorithm on case2383wp

2.9 Computational experiments for ACTS

In our numerical experiments with the above algorithm we consider ACTS with a side-

constraint (2.53i) stating that for some given value H, a minimum of H lines must be switched

off, indicating a maintenance or testing schedule. This constraint can be expressed as

∑
{k,m}∈L

s{k,m} ≥ H.

We ran branch-and-bound until the first feasible solution was found.

Table 2.2 shows results using case2383wp, using Gurobi to solve the mixed-integer program

in Step 1. These experiments required a single node of branch-and-bound to terminate. In

the Table, “MIP time” and “MIP value” indicate the time needed to solve the problem in

Step 1 and its value (i.e., K1). “Nodes” is the number of iterations taken by the cutting-plane

method. “Feas. value” is the value of the AC-OPF problem reported by MATPOWER [111],

which we used to handle Step 2 of the algorithm, typically taking just a few seconds of CPU

time.

Note that case2383wp has more than 2800 lines; and thus, even in the case H = 5,

complete enumeration of all subsets with exactly |H| lines is impractical.

Table 2.3 concerns case2746wp with H = 5. The column headed “Status” displays INF

when the AC-OPF problem in Step 2 of the template above is infeasible; and otherwise it

shows the solution value.

In this case two nodes of branch-and-bound are needed. Some round-off error from the

MIP solver is noted in the sixth digit of the solution obtained in the second node.
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Node 1 (the root)

MIP time MIP value Lines Status

114 s 1601139.20 270, 1246, 1262 INF

1517, 3016

Node 2

MIP time MIP value Lines Status

135 s 1601085.68 3163, 3374, 3439 1631760.80

3492, 3500

Table 2.3: ACTS algorithm on case2746wp with ≥ 5 switched lines
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Chapter 3

Binary Optimization with small

tree-width

In the following chapters we will focus on obtaining tractable methods to structurally sparse

optimization problems. Motivated by the AC-OPF problem discussed in the previous chapter

and the tree-like topology typically observed in transmission networks, tractability will be

measured by tree-width; a graph theoretical parameter used to roughly measure how “tree-

like” a given graph is.

In this chapter we begin by introducing the tree-width concept to the reader, along with

key notions surrounding it in order to cement the foundations for this chapter. Next, we

will study a general class of binary optimization problems and prove how tree-width-based

sparsity can be used to tackle them effectively. The pure binary case will be the building

block toward the other more general results in the subsequent chapters.

3.1 A brief tutorial on tree-width

In what follows, given an undirected graph H, we will use V (H) and E(H) to denote the

vertex-set and edge-set of H, respectively, and δH(u) will be the set of edges incident with

vertex u.

Definition 3.1.1 Let G be an undirected graph. A tree-decomposition [95, 96] of G is a

pair (T,Q) where T is a tree and Q = {Qt : t ∈ V (T )} is a family of subsets of V (G) (the
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vertices of G) such that

(i) For all v ∈ V (G), the set {t ∈ V (T ) : v ∈ Qt} forms a subtree Tv of T , and

(ii) For each {u, v} ∈ E(G) there is a t ∈ V (T ) such that {u, v} ⊆ Qt, i.e. t ∈ Tu ∩ Tv.

(iii)
⋃
t∈V (T )Qt = V (G).

The width of the decomposition is defined as max {|Qt| : t ∈ V (T )} − 1. The tree-width of

G is the minimum width over all tree-decompositions of G.

Example 3.1.2 Let G be defined as

1 2 3

4 5

6 7 8

A valid tree-decomposition, with the sets Qt indicated inside each node of the tree, is as

follows:

1 2

4

4 6

7
2 4

7

2 5

7
2 3

5

5 7

8

The width of this tree-decomposition is 2.

In some cases we will refer to the sets Qt as “bags”, as they consists on sets of nodes of

the original graph.
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1 · · ·

2 · · ·

...
...

...
...

...

k
1 2 3

· · ·
k − 1 k

Figure 3.1: Square grid formed by k colums and k rows of nodes.

Tree-width, roughly speaking, indicates how “tree-like” a graph is. Trees are the graphs

with tree-width 1, cycles have tree-width 2 and cliques on n nodes have tree-width n− 1, to

mention a few. It can be shown that a graph with tree-width ω and n vertices has O(ωn)

edges, and so graphs of small tree-width are sparse. However, not all sparse graphs have

small tree-width. One well known example of this is the k× k grid given in Figure 3.1. This

graph is sparse in the usual sense, i.e, it posseses a low number of edges (they scale linearly

with the number of nodes), however its tree-width is k.

An alternative definition of tree-width the reader might find useful is the following:

Definition 3.1.3 A graph G is said to have tree-width at most ω if and only if G has a

chordal super-graph with clique number ω + 1.

A chordal super-graph of G is sometimes referred to as chordal completion of G.

Determining if a given graph has tree-width at most ω, with ω variable, is NP-hard [7].

For ω fixed, however, tree-width ω can be recognized in linear time [25]. In terms of finding

approximations to the tree-width of a graph, please see the recent work [26] and references

therein. We also refer the reader to [19, 24, 5, 44] for additional background.

Besides its width, another important feature of a tree-decomposition (T,Q) we will use

is the size of the tree-decomposition, given by |V (T )|. It was recently proven that, given

a graph H of width at most ω, computing a tree-decomposition (T,Q) of width ω that

minimizes |V (T )| is NP-hard in the class of graphs with tree-width at most ω [75]. However,

for our purposes the following well known result will suffice.
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Proposition 3.1.4 Given a graph G with tree-width at most ω, then there exists a tree-

decomposition (T,Q) of G of width ω such that

|V (T )| = O(|V (G)|)

Another important tree-decomposition result we will use is given in the following Remark.

Remark 3.1.5 Suppose (T,Q) is a tree-decomposition of some graph G, and let H be a

connected subgraph of G. Then the set of vertices t of T such that Qt intersects V (H) forms

a subtree of T .

Remark 3.1.5 follows directly from property (i) in Definition 3.1.1. And finally, a key

property relating cliques to the bags in a given tree-decomposition is given by:

Proposition 3.1.6 Consider a graph G and a tree-decomposition (T,Q) of G. Then for

every clique K ∈ V (G), there exists t ∈ T such that

K ⊆ Qt.

Proposition 3.1.6 is a standard result of graph theory, and not only it provides a condition

bags must satisfy, it also shows a direct lower bound for the tree-width of a graph.

We now move to the optimization context, where the graph-theoretical tools we just

introduced will be used to measure how sparse a problem is.

3.2 Problem description

We will study “general” binary problems, or GB for short, defined as follows.

(GB): min cTx (3.1a)

subject to: xKi ∈ Si 1 ≤ i ≤ m (3.1b)

x ∈ {0, 1}n. (3.1c)
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1 6 5 3

2

4

Figure 3.2: Intersection Graph for system 3.2

For 1 ≤ i ≤ m, constraint i is characterized by a subset Ki ⊆ {1, . . . , n} and a set

Si ⊆ {0, 1}Ki . Set Si is implicitly given by a membership oracle, that is to say a mechanism

that upon input y ∈ {0, 1}Ki , truthfully reports whether y ∈ Si or not.

Any linear-objective, binary optimization problem whose constraints are explicitly stated

can be recast in the form GB; e.g., each set Si could be described by a system of algebraic

equations in the variables xj for j ∈ Ki. GB problems are related to classical constraint

satisfaction problems, however the terminology above will prove useful later.

The link between problems of the form GB and the sparsity structure defined in Section

3.1, i.e tree-width, will be given by the concept of intersection graph, which provides a way

of using this graph-theoretical parameter in an optimization context.

Definition 3.2.1 The intersection graph [48] for a system of constraints is the undirected

graph which has a vertex for each variable and an edge for each pair of variables that appear

in any common constraint.

Example 3.2.2 Consider the following system of constraints on variables x1, . . . , x6:

3x2
1 − x2 ≥ 0, −2x2

2 + x3
3 ≥ 1, x2 + x6 = 1, x4 − x3

5 ≤ 0, (3.2a)

x3
3 − x2

4 ≤ 2, x1 + x4 ≤ 0, x2 + x5 ≥ 0, x2
5 − x2

4 = 0. (3.2b)

The intersection graph is shown in Figure 3.2, where vertex j represents xj for 1 ≤ j ≤ 6.

The intersection graph depicts the complexity of relationships among variables. If the

intersection graph is dense then, potentially, problem GB could prove difficult. However, as

we will see in what follows, when the intersection graph presents low tree-width (hence, it
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is sparse) there exists tractable ways to approach GB. The main theorem we prove in this

chapter is the following:

Theorem 3.2.3 Consider a GB problem whose intersection graph has tree-width ≤ ω.

(a) There is an exact linear programming formulation with O(2ωn) variables and con-

straints, with {0, 1,−1}-valued constraint coefficients.

(b) The formulation can be constructed by performing O(2ωm) oracle queries and with

additional workload Õ(ωn2ω(m + ω)), where the “Õ” notation indicates logarithmic

factors in m or n.

Note that the size of the formulation is independent of the number constraints in the

given instance of GB. And even though we use the general setting of membership oracles,

this theorem gives an exact reformulation.

A proof of part (a) in Theorem 3.2.3 can be obtained using techniques in [70] (Section 8)

although not explicitly stated there. We will outline this proof, which relies on the “cone of

set-functions” approach of [77] and also present a new proof.

Regarding part (b) of the theorem, it can be easily seen that 2ωm is a lower bound on

the number of oracle queries that any algorithm for solving GB must perform.

Of course, Theorem 3.2.3 also implies the existence of an algorithm for solving GB in time

polynomial in (2ω, n,m). However one can also derive a direct algorithm of similar complexity

using well-known, prior ideas on polynomial-time methods for combinatorial problems on

graphs of bounded tree-width.

In the rest of this chapter we work on the context of Theorem 3.2.3. Before proving the

Theorem, we begin by showing some examples for problem GB in order to emphasize its

potential and further analyze different angles of it.

3.3 Examples of GB

Example 3.3.1 (Linear binary integer programming). Let A be an m× n matrix, and con-

sider a problem min{cTx : Ax ≥ b, x ∈ {0, 1}n}. To view this problem as a special case
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of GB, we set for 1 ≤ i ≤ m, Ki = {1 ≤ j ≤ n : aij 6= 0} and Si = {x ∈ {0, 1}Ki :∑
j∈Ki aijxj ≥ bi}.

In this special case, problem GB can be addressed by a variety of methods. Of particular

interest in this work are the reformulation or lifting methods of [77] and [99]. Next we consider

a more complex example, chosen to highlight the general nature of the problem.

Example 3.3.2 Let d, r, p be positive integers. Consider a constrained semidefinite program

over binary variables of the form

min
r∑

k=1

d∑
i=1

d∑
j=1

ckijX
k
i,j (3.3a)

subject to: Mk •Xk = bk, 1 ≤ k ≤ r, (3.3b)

Xk ∈ Sd×d+ , 1 ≤ k ≤ r, (3.3c)∑
i,j

Xk
i,j ≡ 0 mod p, 1 ≤ k ≤ r, (3.3d)

Xk
i,1 = Xk−1

i,d , 1 ≤ i ≤ d, 2 ≤ k ≤ r, (3.3e)

Xk
i,j ∈ {0, 1}, ∀i, j, k. (3.3f)

Here M1, . . . ,Mr are symmetric d×d matrices, and b and c are vectors. Constraint (3.3e)

states that the first column of matrix Xk is identical to the last column of matrix Xk−1.

We obtain an instance of problem GB with m = 2r − 1, as follows. First, for each

1 ≤ k ≤ r we let Kk be the set of triples (i, j, k) with 1 ≤ i, j ≤ r, and Sk to be the set of

binary values Xk
i,j that satisfy (3.3b)-(3.3d). Next, for each 2 ≤ k ≤ r we let Kr+k−1 be the

set of all triples (i, 1, k − 1) and all triples (i, d, k) and Sr+k−1 to be the set of binary values

(indexed by Kr+k−1) such that (3.3e) holds.

In the case of this last example, a direct application of standard integer programming

methods appears difficult. Moreover, we stress that the sets Si in problem GB are completely

generic and that the membership oracle perspective can prove useful as we discuss below.

Theorem 3.2.3 concerns the tree-width of the intersection graph of a problem of type GB.

Recall that as per Definition 3.2.1, given a problem instance I of GB, the intersection graph

for I has a vertex for each 1 ≤ j ≤ n, and an edge {j, k} whenever there exists 1 ≤ i ≤ m
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such that {j, k} ⊆ Ki, that is to say, j and k appear in a common constraint in problem

GB.

Example 3.3.3 (Example 3.3.2, continued). Here the set of variables is given by

{(i, j, k) : 1 ≤ k ≤ r and 1 ≤ i, j ≤ d}.

The intersection graph of the problem will have

(a) the edge {(i, j, k), (i′, j′, k)} for all 1 ≤ k ≤ r and 1 ≤ i, j, i′, j′ ≤ d, arising from

constraints (3.3b)-(3.3d)

(b) the edge {(i, 1, k), (i, d, k−1)} for each 1 ≤ k < r and 1 ≤ i ≤ d, arising from constraints

(3.3e).

A tree-decomposition (T,Q) of the intersection graph, of width O(d2), is obtained as follows.

Define T as a path with vertices v1, u2, v2, u3, . . . , vr−1, ur, vr. For 1 ≤ k ≤ r we set Qvk =

{(i, j, k) : 1 ≤ i, j ≤ d} and for 2 ≤ k ≤ r we set Quk = {(i, 1, k), (i, d, k − 1) : 1 ≤ i ≤ d}.

Sets Qvk account for all edges of type (a), whereas the sets Quk cover all edges of type (b).

Thus Theorem 3.2.3 states that there is an LP formulation for problem (3.3) with O(2d
2
d2r)

variables and constraints.

3.4 Reduction to the linear case

Consider a problem instance of GB. An apparently simpler alternative to the general ap-

proach we follow would be to construct, for 1 ≤ i ≤ m, the polyhedron

Pi
.
= conv

{
x ∈ {0, 1}Ki : x ∈ Si

}
⊆ RKi .

Thus we can write Pi as the projection onto RKi of a polyhedron {x ∈ [0, 1]n : Aix ≥ bi}

where each row of Ai has zero entries on any column not in Ki. Thus, the GB problem can

be restated as the equivalent linear integer program

min cTx (3.4a)

subject to: Aix ≥ bi, 1 ≤ i ≤ m (3.4b)

x ∈ {0, 1}n. (3.4c)
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Switching to this formulation makes it possible to apply general integer programming

methods to problem GB. However, this analysis ignores the size of formulation (3.4). In

particular, for any integer d ≥ 1 large enough there exist examples of 0/1-polytopes in Rd

with at least (
d

log d

)d/4
facets (up to constants). See [13], [49], [64]. Using this observation, one can construct

examples of problem GB where the tree-width of the intersection graph is ω = d − 1 and

each of the matrices Ai has more than ωω/4 rows (see Example 3.4.1, below). This dependence

on ω makes any classical integer programming method more computationally expensive than

using the method we will present.

Example 3.4.1 Choose d ≥ 2 large enough so that there is a 0/1-polyhedron P ⊆ Rd with

more than (cd/ log d)d/4 facets for some c. Let P be given by the system Ax ≥ b, where A

is M × d (M ≥ (cd/ log d)d/4). Choose N ≥ 1, and consider the system of inequalities over

binary variables xij, for 1 ≤ i ≤ N and 1 ≤ j ≤ d:

Axi ≥ b, 1 ≤ i ≤ N, (3.5a)

x1
j = xij 2 ≤ i ≤ N, 1 ≤ j ≤ bd/2c. (3.5b)

xij ∈ {0, 1} ∀ i, j. (3.5c)

Constraint (3.5a) indicates that this system includes N copies of polyhedron P , with each

copy described using a different coordinate system. Constraint (3.5b) states that the first

bd/2c coordinates take equal value across all such systems.

Any linear program over (3.5) is can be viewed as an example of problem GB with m =

2N − 1; for 1 ≤ i ≤ N , Ki is used to represent the d variables xij (1 ≤ j ≤ d) and Si is a

copy of the set of binary points contained in P (i.e. the extreme points of P ).

The intersection graph of this instance of GB will be the union of N cliques (one for each

set of variables xi) plus the set of edges {x1
1, x

i
1} for 2 ≤ i ≤ N . A tree-decomposition (T,Q)

of this graph, of width d− 1, is as follows:

• T has vertices u(0), as well as u(i) and v(i), for 1 ≤ i ≤ N .
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• Let Qu(0) =
{
x1
j : 1 ≤ j ≤ bd/2c

}
, for 1 ≤ i ≤ N

Qu(i) = Qu(0) ∪
{
xij : 1 ≤ j ≤ bd/2c

}
and Qv(i) = {xij , 1 ≤ j ≤ d}.

Thus, ω = d−1 and Theorem 3.2.3 states that any linear objective problem over constraints

(3.5) can be solved as a continuous LP with O(2ddN) variables and constraints. In contrast,

system (3.5) has more than (cd/ log d)d/4N constraints.

As the example shows, formulation (3.4) may be exponentially larger than the linear program

stated in Theorem 3.2.3.

We will now proceed with the proof of Theorem 3.2.3, which we recall for convenience of

the reader:

Theorem 3.2.3 Consider a GB problem whose intersection graph has tree-width ≤ ω.

(a) There is an exact linear programming formulation with O(2ωn) variables and con-

straints, with {0, 1,−1}-valued constraint coefficients.

(b) The formulation can be constructed by performing O(2ωm) oracle queries and with

additional workload Õ(ωn2ω(m + ω)), where the “Õ” notation indicates logarithmic

factors in m or n.

We will provide 2 formulations that prove part (a) of the Theorem. The first formulation

is obtained using techniques in [70]. We outline this proof in Section 3.6, which relies on the

“cone of set-functions” approach of [77]. The second and new formulation is presented in

Section 3.7, and it is based on techniques presented in [21]. For part (b) please see Appendix

B.1.

3.5 Preliminary definitions for LP reformulations

For the next sections we consider a problem of the form GB and we assume that we have a tree

decomposition (T,Q) of width ω of the intersection graph of constraints (3.1b). Furthermore,

we recall and define useful notation:
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• As per the definition of GB, for 1 ≤ i ≤ m we let Ki be the set of variables xj that

explicitly appear in i-th constraint.

• Whenever we have values vj for all j in some superset of Ki, we will write vKi to indicate

the sub-vector of v with indices in Ki.

Definition 3.5.1 Let t ∈ V (T ).

(a) We say that v ∈ {0, 1}Qt is Qt-feasible if vKi ∈ Si for every 1 ≤ i ≤ m such that

Ki ⊆ Qt.

(b) Write Ft = {v ∈ {0, 1}Qt : v is Qt-feasible}.

Roughly speaking, the set Ft collects all vectors that are partially or locally feasible. Note

that such vectors do not posses full support, and, moreover, they might not even sub-vectors

of fully feasible vectors. We will see, however, that this local information can be merged

through an LP in order to form fully feasible solutions using the tree-decomposition of the

intersection graph.

3.6 Lovász-Schrijver-based reformulation

In this first formulation, which proves Theorem 3.2.3 (a), we use:

• A variable λtv, for each t ∈ V (T ) and each vector v ∈ Ft.

• A variable ZS , for each S such that S ⊆ Qt for some t ∈ T .

The formulation is as follows:

(LPz) : min

n∑
j=1

cjZ{j} (3.6a)

s.t. ∀t ∈ V (T ) :

ZS =
∑
{λtv : v ∈ Ft, vj = 1 ∀j ∈ S} ∀S ⊆ Qt (3.6b)∑

v∈Ft

λtv = 1, λt ≥ 0. (3.6c)
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Constraints (3.6b) enforce consistency across different t ∈ V (T ) in the following sense.

When a set S is a subset of at least two different sets Qt, Qt′ then we will have two constraints

(3.6b) used to define the same value ZS but with different right-hand sides; thus imposing a

relationship between the λt and the λt
′

variables. Additionally, when S is a singleton then

ZS appears in the objective of LPz. But in all remaining cases for variable ZS (i.e., |S| 6= 1

and S contained in a single set Qt) the constraint (3.6b) is redundant because ZS does not

appear anywhere else in the formulation.

Formulation LPz was built using the given tree-decomposition (T,Q) as an input. We

know that this is a tree-decomposition for a graph on n vertices and as a result, it can be

assumed that T has at most O(n) vertices (see Proposition 3.1.4). Using this observation,

since each set Qt has cardinality at most ω+ 1, it is easily derived that formulation LPz has

O(2ωn) variables and constraints.

3.6.1 Correctness of formulation LPz

Constraint (3.6b) can be restated in a more familiar way. Given t ∈ T , (3.6b) states:

ZS =
∑
v∈F (t)

λtvζ
supp(v,Qt)
S , ∀S ∈ 2Qt . (3.7)

Here, given a set Y and a vector w ∈ RY , supp(w, Y ) = {j ∈ Y : wj 6= 0}, and for any

set Y and p ⊆ Y the vector ζp ∈ {0, 1}2Y is defined by setting, for each q ⊆ Y ,

ζpq =

 1 if q ⊆ p

0 otherwise.

Constraints (3.6b)-(3.6c) then describe the Lovász-Schrijver approach to lifted formula-

tions, restricted to a given set Qt. It is clear that LPz amounts to a relaxation for the given

problem GB, in the sense that given x̂ feasible for GB then there is a vector (Ẑ, λ̂) feasible

for LPz where Ẑ{j} = x̂j for 1 ≤ j ≤ n. To do so, let t ∈ V (T ) and denote by x̂t the

restriction of x̂ to Qt. Then by definition we have that x̂t ∈ Ft. Thus we can set λ̂tx̂t = 1 and

λ̂tv = 0 for any other v ∈ Ft, and for any S ⊆ Qt ẐS = ζ
supp(x̂t,Qt)
S . The last equation simply

states that ẐS = 1 iff S ⊆ supp(x̂, [n]), a consistent definition across t ∈ V (T ). Hence indeed

(Ẑ, λ̂) is feasible for LPz and attains Ẑ{j} = x̂j for each j = 1, . . . , n, as desired. Note that,
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effectively, we have argued that the restriction of ζsupp(x̂,[n]) to R2Qt for t ∈ V (T ) yields a

feasible solution to LPz.

Next we argue that (3.6b)-(3.6c) defines an integral polyhedron. This is a consequence of

the following result, which can be obtained from Lemma 8.18 of [70].

Lemma 3.6.1 Suppose that (Z, λ) is a feasible solution to (3.6b)-(3.6c). Then there exists

a vector W ∈ R2n, nonnegative values θ1, . . . , θk and vectors y1, . . . , yk in Rn+ such that:

(1) ZS = WS, for all S ∈ ∪t∈V (T )2
Qt.

(2)
∑k

i=1 θi = 1.

(3) yi is feasible for GB, for 1 ≤ i ≤ k.

(4) W =
∑k

i=1 θi ζ
supp(yi,[n]).

As a consequence of (2)-(4), the vector W is a convex combination of the vectors ζsupp(y
i,[n])

which as argued above yield feasible solutions to LPz, thus proving the desired result. We

remark that the proof of Lemma 8.18 of [70] is related to that of the tree-junction theorem;

this technique, evocative of dynamic programming, was also used in [20] in a closely related

setting.

3.7 Alternative reformulation

We now construct a formulation that yields Theorem 3.2.3 (a), as an alternative to the proof

outlined in [70] and developed in Section 3.6.

As before, we assume a tree-decomposition (T,Q) with width ω of the intersection graph

for formulation (3.1). We use the notation introduced in Definition 3.5.1, and additionally

Definition 3.7.1 Let t ∈ V (T ). We let Ωt denote the set of pairs (Y,N) with Y ∩ N =

∅, Y ∪N ⊆ Qt, and such that

1. |Y | ≤ 1 and |N | = 0, or

2. (Y,N) partition Qt ∩Qt′, for some t′ ∈ V (T ) with {t, t′} ∈ E(T ).
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The variables of this formulation are:

• A variable λtv, for each t ∈ V (T ) and each vector v ∈ Ft.

• A variable X[Y,N ], for each pair (Y,N) ∈ 2n× 2n with (Y,N) ∈ Ωt for some t ∈ V (T ).

And the formulation is as follows.

(LP-GB) : min

n∑
j=1

cjX[{j}, ∅] (3.8a)

s.t. ∀t ∈ V (T ) :

X[Y,N ] =
∑
v∈Ft

λtv
∏
j∈Y

vj
∏
j∈N

(1− vj) ∀ (Y,N) ∈ Ωt (3.8b)

∑
v∈Ft

λtv = 1, λt ≥ 0. (3.8c)

A similar counting argument to the one above can be used to prove that LP-GB has size

O(2ωn).

3.7.1 Correctness of formulation LP-GB

In this section we will show that LP-GB is a relaxation of GB, that the relaxation is exact

and that the polyhedron defined by (3.8b)-(3.8c) is integral in the X[Y,N ] variables.

Remark 3.7.2

(f.1) When (Y,N) partition Qt ∩Qt′ for some edge {t, t′} then variable X[Y,N ] will appear

in the constraint (3.8b) arising from t and also that corresponding to t′. This implies

an equation involving λt and λt
′
.

(f.2) The sum on the right-hand side of constraint (3.8b) could be empty. This will be the

case if for any v ∈ {0, 1}Qt with vj = 1 for all j ∈ Y and vj = 0 for all j ∈ N there

exists 1 ≤ i ≤ m with Ki ⊆ Qt and yet vKi /∈ Si. Then (3.8b) states X[Y,N ] = 0.

(f.3) When Y = N = ∅ the right-hand side of (3.8b) is
∑

v∈Ft λ
t
v. Hence we will have

X[∅, ∅] = 1.
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(f.4) The λ variables are the same as those in formulation LPz. For any edge {t, t′} ∈ E(T )

and Y ⊆ Qt ∩ Qt′ the terms on the right-hand side of the row (3.8b) are a subset

of the terms on the right-hand side of the row (3.6b) corresponding to Y (additional

statements are possible).

First we show that LP-GB is a relaxation for GB, in a strong sense.

Lemma 3.7.3 Let x̃ be a feasible solution to an instance for GB.

(i) There is a feasible, 0/1-valued solution (X̃, λ̃) to LP-GB such that for each variable

X[Y,N ] in LP-GB we have X̃[Y,N ] =
∏
j∈Y x̃j

∏
j∈N (1− x̃j).

(ii) As a corollary
∑n

j=1 cjX̃[{j}, ∅] = cT x̃.

Proof:

(i) For each variable X[Y,N ] in problem LP-GB we set X̃[Y,N ] =
∏
j∈Y x̃j

∏
j∈N (1−x̃j).

Further, for each t ∈ V (T ) let ṽ(t) ∈ {0, 1}Qt be the restriction of x̃ to Qt, i.e. ṽ(t)j = x̃j

for each j ∈ Qt. Since x̃ is feasible, ṽ(t) ∈ Ft. Then we set λ̃tṽ(t) = 1 and λ̃tv = 0 for

every vector v ∈ Ft with v 6= ṽ(t). By construction for every t ∈ V (T ) and (Y,N) ∈ Ωt

we have X̃[Y,N ] = 1 iff ṽ(t)j = 1 for all j ∈ Y and ṽ(t)j = 0 for all j ∈ N ; in other

words (3.8b) is satisfied.

(ii) This follows from (i).

As a consequence of Lemma 3.7.3, Theorem 3.2.3 will follow if we can prove that the

constraint matrix in LP-GB defines an integral polyhedron in the X[Y,N ] variables. This

will be done in Lemma 3.7.7 given below. In what follows, we will view T as rooted, i.e. all

edges are directed so that T contains a directed path from an arbitrarily chosen leaf vertex

r (the root of T ) to every other vertex. If (v, u) is an edge thus directed, then we say that v

is the parent of u and u is a child of v.

Definition 3.7.4 A rooted subtree T̃ is a subtree of T , such that there exists a vertex u of

T̃ so that T̃ contains a directed path from u to every other vertex of T̃ . We then say that T̃

is rooted at u.
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Definition 3.7.5 Let T̃ be a rooted subtree of T .

(a) We denote by Ω(T̃ ) the set
⋃
t∈T̃ Ωt.

(b) We denote by V(T̃ ) the set {j : j ∈ Qt for some t ∈ T̃}.

Below we will prove the following result:

Theorem 3.7.6 Let (X̂, λ̂) be a feasible solution to the LP-GB problem. Then for every

rooted subtree T̃ there is a family of vectors

pk,T̃ ∈ {0, 1}Ω(T̃ ),

vectors

xk,T̃ ∈ {0, 1}V(T̃ )

and reals

0 < µk,T̃ ≤ 1,

(k = 1, 2, . . . , n(T̃ )) satisfying the following properties:

(a) For each 1 ≤ k ≤ n(T̃ ) and each constraint 1 ≤ i ≤ m of problem GB, if Ki ⊆ Qt for

some t ∈ T̃ , then xk,T̃ ∈ Si.

(b) For 1 ≤ k ≤ n(T̃ ) and each pair (Y,N) ∈ Ω(T̃ ),

pk,T̃ [Y,N ] =
∏
j∈Y

xk,T̃j
∏
j∈N

(
1− xk,T̃j

)
.

As a result, for each 1 ≤ k ≤ n(T̃ ) and j ∈ V(T̃ ), xk,T̃j = pk,T̃ [{j}, ∅].

(c)
∑n(T̃ )

k=1 µ
k,T̃ = 1.

(d) For each (Y,N) ∈ Ω(T̃ ),

X̂[Y,N ] =

n(T̃ )∑
k=1

µk,T̃ pk,T̃ [Y,N ].

The family of vectors pk,T̃ and reals µk,T̃ will be called a decomposition of (X̂, λ̂) over T̃ .

Pending a proof of Theorem 3.7.6, we can show that the polyhedron defined by the

constraints in LP-GB is integral.
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Lemma 3.7.7 The polyhedron defined by (3.8b)-(3.8c) is integral in the X[Y,N ] variables

and problems GB and LP-GB have the same value.

Proof: Let (X̂, λ̂) be a feasible solution to LP-GB. We apply Theorem 3.7.6 with T̃ = T ob-

taining a family of vectors pk ∈ {0, 1}Ω(r), vectors xk ∈ {0, 1}n and reals µk, for 1 ≤ k ≤ n(r),

satisfying conditions (a)-(d) of the theorem. By (a) each vector xk is feasible for GB, since

each Ki induces a clique in the corresponding intersection graph and by Proposition 3.1.6 we

can conclude. By (d), the vector X̂ is a convex combination of the vectors pk. From this we

conclude.

This result completes the proof of Theorem 3.2.3, pending Theorem 3.7.6.

3.7.2 Proof of Theorem 3.7.6

Assume we have a feasible solution (X̂, λ̂) to LP-GB. The proof of Theorem 3.7.6 will be

done by induction on the size of T̃ . First we handle the base case.

Lemma 3.7.8 If T̃ consists of a single vertex u, there is a decomposition of (X̂, λ̂) over T̃ .

Proof: We have that Ω(T̃ ) = Ωu (see Definition 3.7.5). By (3.8c) we have
∑

v∈Fu λ̂
u
v = 1.

Let n(T̃ ) > 0 be the number of elements v ∈ Fu with λ̂uv > 0 and denote these vectors by

{w(1), . . . , w(n(T̃ ))}. Then, for 1 ≤ k ≤ n(T̃ ) let xk,T̃ = w(k) and µk,T̃ = λ̂uw(k). Finally, for

1 ≤ k ≤ n(T̃ ) we define the vector pk,T̃ ∈ Ωu by setting

pk,T̃ [Y,N ] =
∏
j∈Y

xk,T̃j
∏
j∈N

(
1− xk,T̃j

)
for each pair (Y,N) ∈ Ωu. Now we will verify that conditions (a)-(d) of Theorem 3.7.6 hold.

Clearly (a)-(c) hold by construction. To see that (d) holds, note that (X̂, λ̂) satisfies (3.8b):

X̂[Y,N ] =
∑
v∈Fu

λ̂uv
∏
j∈Y

vj
∏
j∈N

(1− vj)

=

n(T̃ )∑
k=1

µk,T̃
∏
j∈Y

xk,T̃j
∏
j∈N

(
1− xk,T̃j

)

=

n(T̃ )∑
k=1

µk,T̃ pk,T̃ [Y,N ]



CHAPTER 3. BINARY OPTIMIZATION WITH SMALL TREE-WIDTH 53

which is condition (d), as desired.

Next we prove the general inductive step needed to establish Theorem 3.7.6. The tech-

nique used here is related to the junction tree theorem, is similar to one used in [20] and is

reminiscent of Lemma L of [70].

Consider a vertex u of T and a subtree T̃ rooted at u with more than one vertex. Let

v be a child of u. We will apply induction by partitioning T̃ into two subtrees: the subtree

L consisting of v and all its descendants in T̃ , and the subtree H = T̃ \ L. Consider a

decomposition of (X̂, λ̂) over L given by the vectors pk,L ∈ {0, 1}Ω(L) and the positive reals

µk,L for k = 1, 2, . . . , n(L), and a decomposition of (X̂, λ̂) over H given by the vectors

pk,H ∈ {0, 1}Ω(H) and the positive reals µk,H for k = 1, 2, . . . , n(H).

Denote by P̃ the set of partitions of Qu ∩Qv into two sets. Thus, by Definition 3.7.1, for

each (α, β) ∈ P̃ we have a variable X[α, β]. Note that Ω(T̃ ) = Ω(H)∪Ω(L). We construct a

family of vectors and reals satisfying (a)-(d) Theorem 3.7.6 for T̃ , as follows.

For each (α, β) ∈ P̃ such that X̂[α, β] > 0, and each pair i, h such that 1 ≤ i ≤ n(L),

1 ≤ h ≤ n(H), and ph,H [α, β] = pi,L[α, β] = 1 we create a vector qα,βih and a real γα,βih using

the following rule. For any vertex t in T̃ and (Y,N) ∈ Ωt:

(r.1) If t ∈ V (L) we set qα,βih [Y,N ] = pi,L[Y,N ].

(r.2) If t ∈ V (H) we set qα,βih [Y,N ] = ph,H [Y,N ].

Further, we set

γα,βih =
µi,L µh,H

X̂[α, β]
.

To argue that this construction is valid we note that since X̂[α, β] > 0, pairs of indices

i, h as listed above must exist, by (d) of the inductive assumption applied to H and L.

Furthermore, we have γα,βih > 0.

Now we will prove that the qih and the γih provide a decomposition of (X̂, λ̂) over T̃ . Let

i and h be given. Since the restriction of pi,L (and ph,H) to L (resp., H) satisfy (a) and (b)

of the inductive assumption, so will qih. Thus, there remains to prove (c) and (d).
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First, consider (d). Let (Y,N) ∈ Ω(T̃ ), say (Y,N) ∈ Ω(H). We claim that∑
α,β,i,h

γα,βih qα,βih [Y,N ]

=
∑

(α,β)∈P̃ : X̂[α,β]>0

n(L)∑
i=1

n(H)∑
h=1

µi,L µh,H

X̂[α, β]
pi,L[α, β]ph,H [α, β]ph,H [Y,N ]. (3.9)

This equation holds because in any nonzero term in either expression we must have pi,L[α, β] =

ph,H [α, β] = 1 and since (Y,N) ∈ Ω(H) we also have that qα,βih [Y,N ] = ph,H [Y,N ].

Now the right-hand side of (3.9) equals

∑
(α,β)∈P̃ : X̂[α,β]>0

n(L)∑
i=1

µi,Lpi,L[α, β]

X̂[α, β]

n(H)∑
h=1

µh,Hph,H [α, β]ph,H [Y,N ]


=

∑
(α,β)∈P̃ : X̂[α,β]>0

n(H)∑
h=1

µh,Hph,H [α, β]ph,H [Y,N ]

 , (3.10)

by the inductive assumption (d) applied to subtree L. The expression in (3.10) equals

n(H)∑
h=1

 ∑
(α,β)∈P̃ : X̂[α,β]>0

ph,H [α, β]

µh,Hph,H [Y,N ]

 . (3.11)

By inductive property (b) applied to subtree H, given 1 ≤ h ≤ n(H) we have that ph,H [α, β] =

1 for exactly one partition (α, β) ∈ P̃, and so expression (3.11) equals

n(H)∑
h=1

µh,Hph,H [Y,N ]. (3.12)

In summary, ∑
α,β,i,h

γα,βih qα,βih [Y,N ] =

n(H)∑
h=1

µh,Hph,H [Y,N ].

and by induction applied to the subtree H this quantity equals X̂[Y,N ]. Thus property (d)

does indeed hold.

Finally we turn to (c). Inductively, (c) and (d) hold for trees L and H. Thus, as noted

in Remark 3.7.2 (f.3), X[∅, ∅] = 1. But we have just shown that (d) holds for T̃ , and in

particular that it holds for Y = N = ∅. Using Remark 3.7.2 (f.3) we obtain that (c) holds

for T̃ , as desired.
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Chapter 4

Mixed-Integer Polynomial

Optimization with small tree-width

In Chapter 3 we discussed how to exploit tree-width-based sparsity in pure binary optimiza-

tion problems. We showed how to obtain an LP reformulation of these problems whose size

is parametrized by the tree-width of the problem.

In this chapter we will show how to use these results in order to obtain tractable ap-

proaches to mixed-integer polynomial optimization problems. Due to the inclusion of con-

tinuous variables, in this case we will obtain linear programming approximations instead of

exact reformulations. We begin by stating the setting of this chapter, as well as the main

theorem to be proved.

4.1 Problem description

Our main goal will be the study of optimization problems of the form

(PO) : min cTx (4.1a)

subject to : fi(x) ≥ 0 1 ≤ i ≤ m (4.1b)

x ∈ {0, 1}p × [0, 1]n−p, (4.1c)

where each fi is a polynomial. Any linear-objective polynomial optimization problem where

explicit upper and lower bounds are known for all variables can be brought into this form by
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appropriately translating and scaling variables, and restating any equation as two inequal-

ities. We focus on obtaining linear programming approximations to PO that attain any

desired tolerance (both feasibility and optimality). Our goal is to obtain linear programming

approximation of polynomial size when problem PO is appropriately sparse. As in the pre-

vious chapter, we will make use of tree-width-based sparsity of the intersection graph of PO,

defined in 3.2.1.

We represent the polynomial of the i-th constraint of PO, fi(x) ≥ 0, as

fi(x) =
∑
α∈I(i)

fi,αx
α, (4.2)

where I(i) ⊆ Zn+. Recall that, given α ∈ Zn+

xα
.
=

n∏
j=1

x
αj
j .

and ‖fi‖1 =
∑

α∈I(i) |fi,α|.

Definition 4.1.1 Given a set of polynomial constraints fi(x) ≥ 0 i = 1, . . . ,m, and ε ≥ 0,

we say a vector x̂ is ε-scaled feasible if fi(x̂) ≥ −ε‖fi‖1 ∀ i = 1, . . . ,m.

The main result we will show in this chapter is as follows:

Theorem 4.1.2 Consider an instance of problem PO and any 0 < ε < 1. Let ρ the

maximum degree of any of the polynomials fi. Given a tree-decomposition of the intersec-

tion graph of the constraints of width ω, there is a linear programming formulation with

O
(
(2ρ/ε)ω+1 n log(ρ/ε)

)
variables and constraints, such that any optimal solution x̂ for the

LP satisfies:

1. x̂ is ε-scaled feasible for (4.1b),

2. cT x̂ ≤ P ∗ + ‖c‖1ε, where P ∗ is the value of PO.

The statement in Theorem 4.1.2 is indicative of the fact that as ε→ 0 we converge to an

optimal solution.
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In what follows we will provide a proof for Theorem 4.1.2 together with some of our core

constructions. Toward this goal, we begin by formally developing an approximation technique

for PO.

4.2 Binary approximations of polynomial optimization prob-

lems

The general approximation scheme we will use for PO is based on a discretization method

originally proposed in [51]; also see [22, 39, 54] and citations therein for more insight. Let r

be a real with 0 ≤ r ≤ 1. Then, given 0 < γ < 1 we can approximate r as a sum of inverse

powers of 2, within additive error γ, by making use of the following. Let

Lγ
.
= dlog2 γ

−1e,

then there exist 0/1-values zh, 1 ≤ h ≤ Lγ , so that

Lγ∑
h=1

2−hzh ≤ r ≤
Lγ∑
h=1

2−hzh + 2−Lγ ≤
Lγ∑
h=1

2−hzh + γ ≤ 1. (4.3)

To apply this idea to problem PO, let 0 < ε < 1 and as before let ρ denote the maximum

degree of any polynomial in PO. Choose γ so that

ε = 1− (1− γ)ρ, (4.4)

then for each j = p+ 1, . . . , n (i.e, the indices of continuous variables) we will approximately

represent xj as
∑Lγ

h=1 2−hzj,h where each zj,h is a (new) binary variable.

For each 1 ≤ i ≤ m and α ∈ I(i) we write

Z(i, α) = {j : αj 6= 0, 1 ≤ j ≤ p},

in other words, set Z(i, α) is the set given by the indices of the binary variables for PO that

appear explicitly in monomial xα. We consider the following replacement for problem PO:
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(GB(γ)) : min

p∑
j=1

cjxj +

n∑
j=p+1

cj

 Lγ∑
h=1

2−hzj,h


s.t.

∑
α∈I(i)

fi,α

 ∏
j∈Z(i,α)

xj

n∏
j=p+1

 Lγ∑
h=1

2−hzj,h

αj ≥ −ε‖fi‖1, 1 ≤ i ≤ m (4.5a)

xj =

Lγ∑
h=1

2−hzj,h, p+ 1 ≤ j ≤ n (4.5b)

xj ∈ {0, 1}, 1 ≤ j ≤ p (4.5c)

zj,h ∈ {0, 1}, p+ 1 ≤ j ≤ n, 1 ≤ h ≤ Lγ (4.5d)

where ε = 1− (1− γ)ρ. Note that the dependency of ε and γ can be swapped, as they are

linked through a bijection.

Next we prove a series of results describing the quality of the approximation to problem

PO provided by GB(γ). Toward this goal first we establish a technical property.

Lemma 4.2.1 Suppose that for j = 1, . . . s we have values uj ≥ 0, vj ≥ 0, qj ∈ Z+ with

uj + vj ≤ 1. Then
s∏
j=1

(uj + vj)
qj −

s∏
j=1

u
qj
j ≤ 1 −

s∏
j=1

(1− vj)qj .

Proof: Take any fixed index 1 ≤ i ≤ s. The expression
s∏
j=1

(uj + vj)
qj −

s∏
j=1

(uj)
qj

is a non-decreasing function of ui when all uj and vj are non-negative, and so in the range

0 ≤ ui ≤ 1− vi it is maximized when ui = 1− vi.

Next we establish our approximation result.

Lemma 4.2.2 (a) Suppose x̄ is feasible for PO. Then there is a feasible solution (x̃, z̃) for

GB(γ) with objective value at most cT x̄+ ε‖c‖1.

(b) Suppose (x̂, ẑ) is feasible for GB(γ). Then x̂ is ε-scaled feasible for (4.1b) and

cT x̂ =

p∑
j=1

cj x̂j +
n∑

j=p+1

cj

 Lγ∑
h=1

2−hẑj,h

 .
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Proof:

(a) For each j ∈ {1, . . . , p} define x̃j = x̄j . For j ∈ {p + 1, . . . , n} choose binary values

z̃j,h = z̃j,h(x̄j) h = 1, . . . , Lγ so as to attain the approximation for x̄j as in (4.3). We

define x̃j for j ∈ {p+ 1, . . . , n} from z̃ according to (4.5b).

We claim that for each 1 ≤ i ≤ m and α ∈ I(i)

n∏
j=p+1

 Lγ∑
h=1

2−hz̃j,h

αj

≤
n∏

j=p+1

x̄
αj
j ≤

n∏
j=p+1

 Lγ∑
h=1

2−hz̃j,h

αj

+ ε. (4.6)

The left-hand inequality follows from (4.3). To obtain the right-hand inequality we

apply Lemma 4.2.1 with s = n and for p+ 1 ≤ j ≤ n, qj = αj , uj =
∑Lγ

h=1 2−hz̃j,h, and

vj = x̄j − uj . Using (4.3) and the definition (4.4) of ε, Lemma 4.2.1 yields

n∏
j=p+1

x̄
αj
j −

n∏
j=p+1

 Lγ∑
h=1

2−hz̃j,h

αj

≤ 1−
n∏

j=p+1

(1− vj)αj

≤ 1−
n∏

j=p+1

(1− γ)αj

≤ 1− (1− γ)ρ

= ε

as desired. Therefore, (x̃, z̃) is feasible for GB(γ) and the second assertion in (a) is

similarly proved.

(b) By definition of x̂, for each 1 ≤ i ≤ m we have

fi(x̂) =
∑
α∈I(i)

fi,α

n∏
j=1

x̂
αj
j

=
∑
α∈I(i)

fi,α

 ∏
j∈Z(i,α)

x̂j

n∏
j=p+1

 Lγ∑
h=1

2−hẑj,h

αj
≥ −ε ‖fi‖1

as (x̂, ẑ) is feasible for GB(γ). The second assertion holds by definition of x̂.
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Corollary 4.2.3 Let P ∗ be the optimal value of problem PO, and let (x̂(γ), ẑ(γ)) be optimal

for GB(γ). Then cT x̂(γ) ≤ P ∗ + ε‖c‖1 and x̂(γ) is ε-scaled feasible for (4.1b).

Remark 4.2.4 As per the corollary, x̂ achieves feasibility and optimality tolerance propor-

tional to ε for problem PO. However, x̂ may actually be super-optimal for PO. Nevertheless

for any sequence γk → 0+, the vectors x̂(γk) will have an accumulation point x∗, and this

point necessarily must be feasible and thus optimal for PO.

The reader may also notice in the proof of Lemma 4.2.2 (b) that the error bound −ε‖fi‖1

is conservative, because an approximation error is only incurred on terms of fi(x) that are

non-constant and that involve at least one continuous variable. Accounting for this fact will

provide a tighter approximation estimate, which we skip to simplify notation.

Additionally, note that in the proof of Lemma 4.2.1, the only property that each qj is

actually required to satisfy is that either qj = 0 or qj ≥ 1. One can use this observation to

generalize Theorem 4.1.2 beyond polynomials. However this produces additional complica-

tions such as the approximation of rational powers. We will take up these and related issues

in future work.

Corollary 4.2.3 implies that given any ε > 0, problem GB(γ) with

γ = 1− (1− ε)1/ρ

provides an “ε-scaled” approximation to PO. Replacing the equality constraints (4.5b), prob-

lem GB(γ) becomes a pure binary problem, with m constraints and at most

nLγ = O(n log2(ρ/ε)) variables.

Henceforth we refer to GB(γ) as a pure binary problem. However, for the sake of notation,

in the solution vectors of GB(γ) we will include the continuous components when referring

to the x variables.

In the next section we will reformulate this problem as a linear program, thus yielding an

LP approximation to PO and completing the proof of Theorem 4.1.2.
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4.3 Linear reformulation of the binary approximation

4.3.1 Sparsity of the approximation

We already established that the pure binary problems GB(γ) provides an approximation to

PO within guaranteed tolerance. This result holds for all problems PO regardless of sparsity.

In this section we will show how to use structural sparsity to reformulate the pure binary

problems as equivalent LPs of moderate size.

To this effect, suppose that (T,Q) is a tree-decomposition for the intersection graph of an

instance of problem PO and choose γ as in (4.4) in order to obtain the desired tolerance ε.

We will now construct a tree-decomposition for the intersection graph for the corresponding

instance of problem GB(γ). This tree-decomposition will be of the form (T,Q′) (note: same

tree T ) where for any vertex t of T we set

Q′t = {xj : xj ∈ Qt, j = 1, . . . , p} ∪ { zj,h : xj ∈ Qt, j = p+ 1, . . . , n and 1 ≤ h ≤ Lγ }.

Lemma 4.3.1

(a) (T,Q′) is a tree-decomposition of the intersection graph for problem GB(γ).

(b) Further, if (T,Q) has width w then (T,Q′) has width at most Lγ(w + 1)− 1.

Proof:

(a) We need to establish properties (i)-(iii) of Definition (3.1.1); (iii) is clear. Note that

zj,h ∈ Q′t if and only if xj ∈ Qt. This proves (i). To see that (ii) holds, note that any

edge of the intersection graph for GB(γ) arises from some constraint (4.1b).

(b) The width statement is true by construction of the sets Q′t and the fact that every

|Qt| ≤ w + 1.

Remark 4.3.2 As a consequence of this result, not only does problem GB(γ) provide a close

approximation to problem PO, but when PO is structurally sparse (small tree-width of the

intersection graph) then so is GB(γ), modulo the O(Lγ) multiplicative increase in tree-width.
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Recall that Theorem 3.2.3 yields an LP reformulation of pure binary problems whose size

is parametrized by the tree-width of the intersection graph. Therefore, an application of

Theorem 3.2.3 along with Lemma 4.3.1 to GB(γ) will provide the desired result. We put

together these parts next.

4.3.2 From sparse PO to small LP approximations

Here we use the above results to prove Theorem 4.1.2. Consider an instance of PO on

n variables. As before, let ρ represent the maximum degree of any of the polynomials fi.

Suppose we have a tree-decomposition of width ω of the intersection graph of the constraints.

Given 0 < ε < 1 we proceed as follows:

1. We choose

γ = 1− (1− ε)1/ρ,

so that ε = 1 − (1 − γ)ρ as per (4.4). Note that without loss of generality ε is small

enough so that γ > ε
2ρ .

2. We apply Theorem 3.2.3 to construct the linear programming reformulation of the

all-binary problem GB(γ) (formulation (4.5)). Let us call this linear program LP(γ).

3. As per Corollary 4.2.3, GB(γ) and thus, LP(γ), yields a vector x̂(γ) that is ε-scaled

feasible for (4.1b) and cT x̂(γ) ≤ P ∗ + ε‖c‖1.

Next we analyze the size of LP(γ).

1. By Lemma 4.3.1, there is a tree-decomposition of the intersection graph for GB(γ) of

width at most Lγ(ω + 1)− 1, where

Lγ = dlog2 γ
−1e < log2(2ρ/ε) + 1

for ε small enough.

2. Further, GB(γ) has at most nLγ = O(n log2(ρ/ε)) variables.

3. Thus, since the tree-width of the intersection graph of GB(γ) is at most Lγ(ω+1)−1,

by Theorem 3.2.3, the number of variables and constraints in LP(γ) is

O((2ρ/ε)ω+1n log2(ρ/ε))
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The proof of Theorem 4.1.2 is now complete.

4.4 Final comments

To conclude this chapter, we discuss additional aspects of the approximations we just intro-

duced. We will discuss if an improvement on the dependency of ε in Theorem 4.1.2 is possible,

and provide a complete example on the resulting LP approximation we obtain applying the

technique outlined in Section 4.3.2.

4.4.1 Can the dependence on ε be improved upon?

The approximation scheme given by Theorem 4.1.2 has two characteristics: first, it allows a

violation of each constraint by ε times the 1-norm of the constraint, and second, the running

time is pseudo-polynomial in ε−1. One may wonder if either characteristic can be improved.

For example, one might ask for constraint violations that are at most ε, independent of the

1-norm of the constraints. However this is not possible even for a fixed value of ε, unless

P=NP. For completeness, we include a detailed analysis of this fact in Section C.1 of the

Appendix. Intuitively, if we were allowed to approximately satisfy every constraint with an

error that does not depend on the data, we could appropriately scale constraint coefficients

so as to obtain exact solutions to NP-hard problems.

Similarly, it is not possible to reduce the pseudo-polynomial dependency on ε−1 in general.

The precise statement is given in Section C.2 of the Appendix, and the intuitive reasoning is

similar: if there was a formulation of size polynomially dependent on log(ε−1) (and not on

ε−1) we could again solve NP-hard problems in polynomial time.

4.4.2 Example of LP approximation to PO

We now give a full detailed example with the explicit formulation we will obtain when ap-

proximating a problem PO with the pure binary problem GB(γ), and then reformulating

the latter as an LP. Consider the following low-dimensional example for problem PO:

min{x1 + x2 + x3 : x2
1 + x2

2 ≥ 1.95, x2
3 + x2

2 ≥ 1.95, x ∈ [0, 1]3 }.
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Suppose we build our binary powers approximation using γ = 1/8 = 0.125 (and as per

(4.4) ε = 0.234375), thus Lγ = 3. We obtain the pure binary approximation with N = 9

variables:

GB(1
8) : min

3∑
h=1

2−hz1,h +

3∑
h=1

2−hz2,h +

3∑
h=1

2−hz3,h (4.7a)

s.t.

(
3∑

h=1

2−hz1,h

)2

+

(
3∑

h=1

2−hz2,h

)2

≥ 1.95− 3.95ε ≈ 1.024 (4.7b)

(
3∑

h=1

2−hz3,h

)2

+

(
3∑

h=1

2−hz2,h

)2

≥ 1.95− 3.95ε (4.7c)

zj,h ∈ {0, 1}, 1 ≤ j ≤ 3, 1 ≤ h ≤ 3. (4.7d)

A tree-decomposition of the intersection graph is (T,Q) where

• T is the tree with vertices α and β and the single edge {α, β}, and

• Qα = {z1,1, z1,2, z1,3, z2,1, z2,2, z2,3}

• Qβ = {z3,1, z3,2, z3,3, z2,1, z2,2, z2,3}

Next, in order to construct an LP formulation of (4.7) using Theorem 3.2.3, we construct

the set Fα, i.e. the set of assignments of binary values to the members of Qα such that

constraint (4.7b) holds. We will argue that there are six such assignments, which we indicate

as binary vectors using the same ordering as in the definition of Qα:

(a) (1, 0, 1, 1, 1, 1), (b) (1, 1, 0, 1, 1, 0), (c) (1, 1, 0, 1, 1, 1)

(d) (1, 1, 1, 1, 0, 1), (e) (1, 1, 1, 1, 1, 0), (f) (1, 1, 1, 1, 1, 1).

To show that (a)-(d) are the only feasible vectors, we first note that if either z1,1 = 0 or

z2,1 = 0 then (4.7b) is violated. Also, if z1,u = 0 and z2,v = 0 for some u, v then u = v = 3 and

all other z1,w and z1,w must equal 1. Likewise there are six similar assignments corresponding

to the members of Qβ; we denote these (g), (h), (i), (j), (k), (l). We assume these are

constructed in the same way as (a)-(f).

Now we turn to the construction of LPz (formulation (3.6)). As discussed there, we need

to add constraints (3.6b) in just two kinds of cases: singletons S, and S which are common
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subsets of Qα and Qβ. In this latter case we have all S ⊆ {z2,1, z2,2, z2,3}. We can now write

the LP (3.6) for our example. In this LP we will abbreviate a variable zj,h as the pair (j, h).

min
3∑
j=1

3∑
h=1

2−hZ{(j,h)} (4.8a)

s.t. Z{(1,1)} = λαa + λαb + λαc + λαd + λαe + λαf (4.8b)

Z{(1,2)} = λαb + λαc + λαd + λαe + λαf (4.8c)

Z{(1,3)} = λαa + λαd + λαe + λαf (4.8d)

Z{(2,1)} = λαa + λαb + λαc + λαd + λαe + λαf (4.8e)

Z{(2,2)} = λαa + λαb + λαc + λαe + λαf (4.8f)

Z{(2,3)} = λαa + λαc + λαd + λαf (4.8g)

Z{(2,1)} = λβg + λβh + λβi + λβj + λβk + λβl (4.8h)

Z{(2,2)} = λβg + λβh + λβi + λβk + λβl (4.8i)

Z{(2,3)} = λβg + λβi + λβk + λβl (4.8j)

Z{(3,1)} = λβg + λβh + λβi + λβj + λβk + λβl (4.8k)

Z{(3,2)} = λβh + λβi + λβj + λβk + λβl (4.8l)

Z{(3,3)} = λβg + λβj + λβk + λβl (4.8m)

Z{(2,1),(2,2)} = λαa + λαb + λαc + λαe + λαf (4.8n)

Z{(2,1),(2,2)} = λβg + λβh + λβi + λβk + λβl (4.8o)

Z{(2,1),(2,3)} = λαa + λαc + λαd + λαf (4.8p)

Z{(2,1),(2,3)} = λβg + λβi + λβj + λβl (4.8q)

Z{(2,2),(2,3)} = λαa + λαc + λαf (4.8r)

Z{(2,2),(2,3)} = λβg + λβi + λβl (4.8s)

Z{(2,1),(2,2),(2,3)} = λαa + λαc + λαf (4.8t)

Z{(2,1),(2,2),(2,3)} = λβg + λβi + λβl (4.8u)

λαa + λαb + λαc + λαd + λαe + λαf = λβg + λβh + λβi + λβj + λβk + λβl = 1 (4.8v)

λ ≥ 0.

The above LP (4.8) produces the solution x1 = x3 = .625 and x2 = .875 with value 2.15.
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The optimum solution for the original problem is on the other hand attained by x1 = x3 ≈

0.9747, x2 = 1.0, with objective value ≈ 2.9494.

Remark 4.4.1 The goal of this example is to illustrate our techniques with an instance that

yields a small LP formulation. Should we use γ = 1/16 (Lγ = 4) for example, we would

obtain ε ≈ 0.12 which would reduce our approximation error by a factor of approximately two

at the cost of a larger LP.
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Chapter 5

Network Polynomial Optimization

In this chapter we focus on polynomial optimization problems PO where there is network

structure as an explicit element of the problem description. In these problems we are given

a network1, as in the AC-OPF problem, and both variables and constraints are associated

with the network structure directly. We will study how low tree-width in this underlying

network affects tractability, and show how different this is from assuming low tree-width in

the intersection graph, as in the previous chapters.

5.1 Problem description

We consider problems we term Network Polynomial Optimization problems (NPO); these are

PO problems defined using the structure of a network. As was mentioned in the Introduction,

in an NPO over a network G, for each node u ∈ V (G) there is a set Xu of variables associated

with u and a set Ku of constraints associated with u. The optimization problem is of the

following form:

(NPO): min cTx (5.1a)

subject to:
∑

{u,v}∈δG(u)

p
(k)
(u,v)(Xu ∪ Xv) ≥ 0, k ∈ Ku, u ∈ V (G) (5.1b)

x ∈ {0, 1}p × [0, 1]n−p, (5.1c)

1We use the term ‘network’ to contrast with ‘graph’ which we reserve for intersection graphs. Likewise we

will typically use ‘node’ to refer to a vertex of a network.
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0

1

2 . . .
n

Figure 5.1: Star network witn n+ 1 nodes.

where δG(u) is the set of edges of G incident with u and each p
(k)
(u,v)(Xu ∪Xv) is a polynomial

associated with the ordered pair (u, v). The notation p
(k)
(u,v)(Xu∪Xv) stresses the ordered pair

(u, v) and indicates that the polynomial only involves variables in2 Xu∪Xv. The p
(k)
(u,v) will be

termed the arc polynomials of the problem. We do not assume that the sets Xu are pairwise

disjoint. Rather (for a technical reason) we allow intersections but we assume that for any

variable xj , the set of u ∈ V (G) with xj ∈ Xu induces a connected subgraph of G. For future

reference, we will refer to this assumption as the connectedness requirement.

The definition of NPO can be seen as a direct generalization of the AC-OPF problem,

where the sets Xu correspond to the voltage variables in each node u, and the arc polynomials

are defined using the power flow equations.

We are interested in achieving tractability of NPO when G is appropriately sparse, i.e,

exploting its tree-width. In devising an algorithm for problem NPO parametrized by the

tree-width of G, a direct reliance on Theorem 4.1.2 runs into a difficulty as detailed next.

Example 5.1.1 Consider an NPO where

(i) The network G is a star on n + 1 nodes 0, 1, . . . , n and edge set {0, j} for 1 ≤ j ≤ n.

See Figure 5.1.

(ii) X0 = ∅ and Xj = {xj} for 1 ≤ j ≤ n.

(iii) There is a single constraint (5.1b) and it is associated with node 0. In this constraint

we have p
(1)
(0,j)(X0 ∪ Xj) = jx3

j − 1/n for 1 ≤ j ≤ n.

2Using this notation we allow cases where only variables in Xu or in Xv are actually involved. Without

loss of generality we assume that for a given k, no two p
(k)

(u,v) and p
(k)

(u,v′) use a common monomial.
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Thus the (single) constraint (5.1b) for this example is:
∑n

j=1 jx
3
j ≥ 1. This is a dense

constraint, even though the input network G is a tree. In fact, the intersection graph of this

constraint is a clique on n vertices (with tree-width n − 1), and, as a consequence, if we

directly apply Theorem 4.1.2 we will obtain a formulation of size exponential in n.

Another example of this issue can be given using the well-known kanpsack problem:

Example 5.1.2 Consider a knapsack problem min{ cTx : aTx ≥ b, x ∈ {0, 1}n }. This

can be cast as NPO, using a star network on n + 1 nodes as in Example 5.1.1, which has

tree-width 1. Yet, if aj 6= 0 for all j, the intersection graph is a clique of size n.

In summary: even if an NPO problem arises from a network with small tree-width,

the problem, if viewed directly as an instance of PO, may yield a very dense formulation.

However, we will argue that one can always reformulate any instance of NPO over a small

tree-width network G so as to obtain an equivalent instance which, when viewed as a general

problem PO gives rise to an intersection graph with (still) small tree-width.

For simplicity, in some cases we abbreviate constraint (5.1b) as p
(k)
u (x) ≥ 0. The main

result we will prove in this chapter is as follows.

Theorem 5.1.3 Consider an instance of NPO and any 0 < ε < 1. Let D,∆ and ρ be such

that:

• The network G has at most D edges incident with any node,

• The number of variables plus the number of constraints associated with any node of G

is at most ∆,

• Every polynomial p
(k)
u has maximum degree ≤ ρ

Then there is a linear program of size O((Dρ/ε)O(∆ω) n log(ρ/ε)), such that any optimal

solution x̂ for the LP satisfies:

1. x̂ is ε-scaled feasible for (5.1b),

2. cT x̂ ≤ P ∗ + ‖c‖1ε, where P ∗ is the value of NPO.
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In Example 5.1.1 ω = 1, D = n, ρ = 3 and ∆ = 1. Thus Theorem 5.1.3 yields an LP

formulation of size O((n/ε)O(1) log(1/ε)).

5.2 Impact of node-degrees in an NPO

Let us continue analyzing Example 5.1.1, which illustrates how it is not possible to directly

obtain Theorem 5.1.3 as a consequence of Theorem 4.1.2. In this example the network G

was a “star” with node set 0, 1, . . . , n and center node 0. The NPO had a single constraint

(5.1b), associated with node 0, with arc polynomials p
(1)
(0,j)(X0 ∪Xj) = jx3

j − 1
n for 1 ≤ j ≤ n.

The corresponding constraint (5.1b) reads:
∑n

j=1 jx
3
j ≥ 1. This is a dense constraint and a

direct application of Theorem 4.1.2 will produce a formulation of size exponential in n.

This example illustrates the point that if, in an NPO, a node has high degree, the

intersection graph of the NPO will likely have high tree-width. This observation suggests

that we should try to reformulate an NPO into an equivalent NPO on a network where

every node has small degree. The following construction is a counterpoint to Example 5.1.1

and is a central component in our approach to proving Theorem 5.1.3.

Consider an NPO, P̄, on a network Ḡ all of whose nodes have degree at most three, and

with associated sets of variables X̄u. Let (T̄ , Q̄) be a tree decomposition of Ḡ. Form the pair

(T̄ , Q̄′), where for each t ∈ V (T̄ ) we define

Q̄′t =
⋃
{X̄v : v ∈ Q̄t or {u, v} ∈ E(Ḡ) for some u ∈ Q̄t}. (5.2)

We have that:

Theorem 5.2.1 (T̄ , Q̄′) is a tree-decomposition for the intersection graph of NPO P̄. If

the width of (T̄ , Q̄) is w̄, then the width of (T̄ , Q̄′) is at most 3(w̄ + 1)k̄ − 1, where k̄ =

maxu∈V (Ḡ) |X̄u|.

We will prove this result shortly. The result suggests a way to obtain Theorem 5.1.3.

Namely, given an NPO, P, on a general network of “small” tree-width we reformulate it as

an equivalent NPO, P̄, on a network Ḡ with nodes of degree at most three and such that

Ḡ also has “small” tree-width. If, in addition the parameter k̄ in the statement of Theorem

5.2.1 is also “small”, then our reformulation will be an NPO which, as a general polynomial
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optimization problem, has an intersection graph with small tree-width and thus can be han-

dled using Theorem 4.1.2. Note that, additionally, Theorem 4.1.2 only yields approximately

feasible solutions, and so part of our task will be to guarantee that approximate feasibility

for P̄ carries over to P.

Proof: (Theorem 5.2.1) The width statement follows directly from definition (5.2). Thus

our main task is to show that (a) any pair of variables of P̄ that occur in a common constraint

of P̄ are also found in some common set Q̄′t, and (b) for any variable xj of P̄ the set of vertices

t of T̄ such that Q̄′t contains xj induces a subtree of T̄ .

(a) Consider a pair of variables {xi, xj} that occur a common constraint of P̄, say in a

constraint associated with node u. Then

{xi, xj} ⊆ X̄u ∪ X̄v ∪ X̄w,

where {u, v} and {u,w} are edges of Ḡ (possibly v = w). But in that case for any t ∈ T̄

such that u ∈ Q̄t we will have that {xi, xj} ⊆ Q̄′t by construction of the set Q̄′t in (5.2).

(b) Here we use Remark 3.1.5. Consider any variable xj . Let us define

Cj
.
= {u ∈ V (Ḡ) : xj ∈ X̄u}

and

Nj
.
= Cj ∪ {v ∈ V (Ḡ) : {u, v} ∈ E(Ḡ) for some u ∈ Cj}.

These sets are relevant because we defined Q̄′t such that xj ∈ Q̄′t iff Qt intersects Nj .

But we note that Cj induces a connected subgraph of Ḡ – in Section 5.1 this attribute

was called the connectedness requirement for an NPO. As a result, Nj also induces a

connected subgraph of Ḡ. If we apply the Remark 3.1.5 to Nj we obtain that, indeed,

the set of t such that xj ∈ Q̄′t induces a subtree of T̄ , as desired.

In the following sections we will follow the approach to proving Theorem 5.1.3 suggested

above, beginning with the reformulation of an NPO into an equivalent NPO on a network

with degree ≤ 3 node, aiming toward the use of Theorem 5.2.1.
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5.3 Example of NPO reformulation

As motivation for the general recipe we just outlined, we will argue that the problem in

Example 5.1.1 can be reformulated as an equivalent NPO on network of maximum degree

three (and with small tree-width). And then, using the strategy in Theorem 5.2.1 we will

argue that the intersection graph of such reformulation has small tree-width.

To fix ideas, let us consider the case n = 4. We will first produce the equivalent NPO by

first constructing an extended formulation equivalent to
∑4

j=1 jx
3
j ≥ 1. Later we will show

that this extended formulation amounts to a new NPO.

The extended formulation has additional variables yj (1 ≤ j ≤ 7), and the following

system of constraints whose sum yields
∑4

j=1 jx
3
j ≥ 1.

yj ≤ jx3
j −

1

4
, 1 ≤ j ≤ 4, (5.3a)

y5 ≤ y1 + y2, y6 ≤ y3 + y4, y7 ≤ y5 + y6, (5.3b)

y7 ≥ 0. (5.3c)

Effectively, this system splits the sum
∑4

j=1 jx
3
j into partial sums with two terms each; y5

and y6 are stand-ins for these partial sums and y7 represents the complete sum3.

System (5.3) is equivalent to
∑4

j=1 jx
3
j ≥ 1 in the sense that the projection to x-space

of the set of solutions to (5.3) equals {x ∈ R4 :
∑4

j=1 jx
3
j ≥ 1}. Let us put aside, for the

moment, the issue that this equivalence might require some of the yj to take values outside

of the range [0, 1], which is not allowed in our formal definition (5.1) for an NPO. Modulo

this point, we can argue that (5.3) is the system of constraints for an NPO. To construct

this NPO we use a binary tree with nodes 1, . . . , 7 shown in Figure 5.2.

The variables for this NPO will be all the xj and yj . We associate with node 5 a family of

arc polynomials that will yield (5.3a) for j = 1, 2 and the first inequality in (5.3b). Namely, we

associate with node 5 the set of variables {x1, . . . , x4}∪{y1, y2, y5}, define the arc polynomials

p
(1)
(5,1) = −y1 + x3

1 −
1

4
, p

(1)
(5,2) = 0,

p
(2)
(5,2) = −y2 + 2x3

2 −
1

4
, p

(2)
(5,1) = 0,

3This “splitting” technique is reminiscent of sparsification techniques for linear systems [52].
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6
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Figure 5.2: Binary tree replacement for star with 4 leaves.

p
(3)
(5,1) = −1

2
y5 + y1, p

(3)
(5,2) = −1

2
y5 + y2,

and impose the NPO constraints (associated with node 5):

p
(k)
(5,1) + p

(k)
(5,2) ≥ 0, k = 1, 2, 3. (5.4)

Likewise, we associate with node 6 the set {x1, . . . , x4} ∪ {y3, y4, y6}, define

p
(1)
(6,3) = −y3 + 3x3

3 −
1

4
, p

(1)
(6,4) = 0,

p
(2)
(6,4) = −y4 + 4x3

4 −
1

4
, p

(2)
(6,3) = 0,

p
(3)
(6,3) = −1

2
y6 + y3, p

(3)
(6,4) = −1

2
y6 + y4,

and impose

p
(k)
(6,3) + p

(k)
(6,4) ≥ 0, k = 1, 2, 3, (5.5)

which yields (5.3a) for j = 3, 4 and the second inequality in (5.3b). Finally we associate with

node 7 the variables {x1, . . . , x4} ∪ {y7}, define

p
(1)
(7,5) = y5 −

1

2
y7, p

(1)
(7,6) = y6 −

1

2
y7, (5.6)

and set the constraint

p
(1)
(7,5) + p

(1)
(7,6) ≥ 0. (5.7)

This yields the third inequality in (5.3b). The bound y7 ≥ 0 is already implicit in the defini-

tion of an NPO. Thus, indeed, system (5.3) arises as the constraint set for an NPO.
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x1 x2 x3 x4

y1 y2 y3 y4

y5 y6

y7(a)

x1, y1 x2, y2 x3, y3 x4, y4

y1, y2

y5

y3, y4

y6
y5, y6

y7(b)

Figure 5.3: (a) Intersection graph for reformulation of Ex. 5.1.1. (b) A tree-decomposition.

Next we claim that as a general polynomial optimization problem, the problem with

constraints (5.4)-(5.7) has an intersection graph of tree-width 2.

The intersection graph is shown in Figure 5.3 (a) and a tree decomposition, of width 2, is

given in Figure 5.3 (b). Note that the tree in Figure 5.3 (b) is isomorphic to that in Figure 5.2

– this is not an accidental event and, rather, reflects the structure of constraints (5.4)-(5.7).

It is clear that the above process can be applied to the general case of
∑n

j=1 jx
3
j ≥ 1 so as

to always yield a reformulation as an NPO on a binary tree with n leaves, a yj variable for

each internal node (and so less than n yj variables), and such that the intersection graph has

tree-width 2.

In summary, system (5.3) represents a natural way to rewrite our original NPO as a

problem with structured sparsity. To complete this argument, however, we return to the

aforementioned issue that the equivalence between system (5.3) and
∑4

j=1 jx
3
j ≥ 1 might

require that some yj falls outside [0, 1]. We handle this issue through a further reformulation,

using the familiar trick of representing a real variable as the difference between two nonneg-

ative variables and scaling. System (5.8) implements these ideas; we discuss the choice of

scaling factors below:

(j + 1/4)(πj − µj) ≤ jx3
j − 1/4, 1 ≤ j ≤ 4 (5.8a)

(3 + 1/2)(π5 − µ5) ≤ (1 + 1/4)(π1 − µ1) + (2 + 1/4)(π2 − µ2), (5.8b)

(7 + 1/2)(π6 − µ6) ≤ (3 + 1/4)(π3 − µ3) + (4 + 1/4)(π4 − µ4), (5.8c)

11π7 ≤ (3 + 1/2)(π5 − µ5) + (7 + 1/2)(π6 − µ6), (5.8d)

x ∈ [0, 1]4, π, µ ∈ [0, 1]6, p7 ∈ [0, 1]. (5.8e)
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The scaling constant j+ 1/4 in (5.8a) can intuitively be justified by noting that if 0 ≤ xj ≤ 1

then (5.8a) allows us to assume that πj ≤ 1 and µj ≤ 1. Indeed, we could have used j − 1/4

for this purpose; but the choice of j + 1/4 will simplify language in our proofs later. The

j + 1/4 constants are then carried into the right-hand side of (5.8b) and (5.8c) with e.g. the

coefficients 3+1/2 chosen so that we can argue that without loss of generality 0 ≤ π5, µ5 ≤ 1,

and similarly with π6, µ6. Finally in (5.8d) we use the scaling multiplier of 11 so that π7 ≤ 1.

We can verify that the projection of the feasible set for (5.8) to x-space is {x ∈ [0, 1]4 :∑4
j=1 jx

3
j ≥ 1}: first, summing the inequalities in (5.8a)-(5.8d), and using π7 ≥ 0 yields∑4

j=1 jx
3
j −1 ≥ 0. Conversely, given x such that

∑4
j=1 jx

3
j −1 ≥ 0 we can choose π, µ so that

(5.3) holds using the following procedure. For 1 ≤ j ≤ 4 we set πj = 4
4j+1 max{jx3

j − 1
4 , 0} ∈

[0, 1] and µj = 4
4j+1 max{−jx3

j + 1
4 , 0} ∈ [0, 1], π5 = 2

7 max{(1+1/4)(π1−µ1)+(2+1/4)(π2−

µ2), 0} ∈ [0, 1], and so on.

To complete the switch from the y to the π, µ variables, in the tree-decomposition in

Figure 5.3 (b) we replace each yj by the pair πj , µj for 1 ≤ j ≤ 6 (and y7 with π7), obtaining

a tree-decomposition for the intersection graph of constraints (5.8) of width 5.

In summary, we have verified that the NPO in Example 5.1.1 can be reformulated as an

equivalent NPO whose intersection graph has small tree-width. As a result, Theorem 4.1.2

yields a polynomial-size linear program that approximates the latter NPO.

5.4 NPO reformulation: general case

In the following sections we will construct a proof for Theorem 5.1.3. As Example 5.1.1

shows, given an NPO on a network G it may be difficult to directly apply Theorem 4.1.2

so as to obtain Theorem 5.1.3 if G has nodes of high (graph-theoretic) degree. Our method

for handling Example 5.1.1 effectively splits the high-degree node 0 into a binary tree and

appropriately reformulate the NPO.

Our general methodology builds on these ideas using the following strategy:

(s.1) We will present a general technique for reformulating any NPO as an equivalent NPO

on a network where every node has degree at most three, obtained through a sequence

of node splitting operations. In general, several such reformulations will exist.
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u

. . .

−→
r

u1 u2

. .
. . . .

A1 A2

Figure 5.4: Node splitting

(s.2) If G has small tree-width, we will show that there is a specific reformulation as in

(s.1) where the resulting NPO, as a general polynomial optimization problem, has an

intersection graph of small tree-width.

In Sections 5.4.1 and 5.4.2 we will focus on (s.1); here we will essentially repeat the

technique used above in the reformulation of Example 5.1.1. Section 5.4.3 outlines how the

proof of Theorem 5.1.3 is obtained if (s.2) is assumed, and Section 5.4.4 focuses on (s.2) and

will complete the proof.

5.4.1 Transforming the network and reformulating

In this section we discuss a procedure that, given an NPO on a network G, yields an equivalent

NPO on a new network where every node has degree at most three. This procedure will

operate sequentially, at each step modifying the current network so as to decrease by one the

number of nodes of degree larger than three, while at the same time producing an NPO on

the modified network which is equivalent to the original NPO.

We use the idea of node splitting, which we first discuss informally in a more general

context than Example 5.1.1. Suppose u ∈ V (G) has degree larger than three and consider a

partition of δ(u) into two sets A1, A2. We obtain a new network G′ from G by replacing u

with three new nodes, u1, u2 and r, introducing the edges {u1, r} {r, u2} and replacing each

edge {u, v} ∈ Ai (for i = 1, 2) with {ui, v}. See Figure 5.4.

Iterating this procedure, given u ∈ V (G) with degG(u) > 3, we can replace u and the set

of edges δ(u) with a tree, where each internal node will have degree equal to three except for

the special node r. See Figure 5.5.

In this figure, a degree-5 node u and the set of edges {(u, vi) : 1 ≤ i ≤ 5} is converted into

a tree with four internal nodes (r, a, b and c). There is a one-to-one correspondence between
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u

v1 v2 v3 v4 v5

−→

c r b v5

v1 a v4

v2 v3

Figure 5.5: Complete node splitting

the edges {u, vi} in the original network, and edges of the tree incident with leaves. Also

note that this operation does not change the degree of the vi.

In general there are several possible complete node splittings, and alternate sequences of

node splittings can produce networks with dramatically different tree-width, an issue that we

will tackle in Section 5.4.4.

Formally, the splitting operation goes as follows. Consider u ∈ V (G) with degG(u) > 3.

Let T̂u be an arbitrary tree where

(t.1) The set of non-leaf or internal nodes of T̂u is disjoint from V (G). Further, the set of

leaves of T̂u is {v ∈ V (G) : {u, v} ∈ E(G)}.

(t.2) Each internal node of T̂u has degree equal to three, except for a special node r (the

root), of degree two.

Completely splitting u using T̂u yields a new network, G′ where V (G′) consists of V (G)\{u}

together the internal nodes of T̂u, and E(G′) = (E(G) \ δG(u)) ∪ E(T̂u). For convenience,

below we will think of T̂u as rooted at r (i.e., with all edges oriented away from r). Note that

the degree of any v ∈ V (G) with v 6= u is unchanged in this process, thus we can iteratively

apply this process to any node with degree four or more. Such algorithm will terminate with

a network where each node has degree at most three. Each complete splitting operation

will be accompanied by a reformulation of the NPO that yields an equivalent NPO. This

reformulation is described next.

Assume a complete splitting at u ∈ V (G) using T̂u. First, at all nodes v 6= u of G the

original NPO remains unchanged. For each internal node i of T̂u, in our reformulation we

first have:
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(v.0) All variables in Xu are associated with i in the new NPO.

Let k ∈ Ku be the index representing a constraint (5.1b) that is associated with u. We

will replace this constraint with a family of constraints associated with the internal nodes of

T̂u. This will be done in steps (v.k), (c.1.k) and (c.2.k) given next. Define

Ni,k =
∑{

‖p(k)
(u,v)‖1 : {u, v} ∈ δ(u), v a descendant of i in T̂u

}
The quantities 5/4, 5/2 and 5 that we saw in (5.8) are precisely the Ni,k for Example 5.1.1.

Note that if i is an internal node of T̂u with children j, l, then our definition implies that

Ni,k = Nj,k +Nl,k.

We now associate the following additional variables with node i:

(v.k) If i 6= r we additionally associate two variables, πi,k, µi,k ∈ [0, 1]. If i = r we associate

a single additional variable πr,k ∈ [0, 1] with r.

If i has a child v that is a leaf, and hence {u, v} ∈ δG(u), then we associate with i two

additional variables πv,k, µv,k ∈ [0, 1]. We emphasize that these variables are associated

with i but not with v.

Next we describe the arc polynomials. We omit polynomials that are identically zero.

(c.1.k) Suppose v is a child of i which is a leaf, i.e. {u, v} ∈ δG(u). Then we define the arc

polynomial ‖p(k)
(u,v)‖1(πv,k − µv,k) and write the constraint (also associated with i)

‖p(k)
(u,v)‖1 (πv,k − µv,k) ≤ p

(k)
(u,v)(x). (5.9)

[See constraint (5.8a).] We note that this constraint is well-defined as an NPO con-

straint, because by (v.0) and (v.k) all variables in (5.9) are associated with node i or

with node v.

(c.2.k) Let j, l be the children of i. Then we define the (linear) arc polynomials Nj,k (πj,k−µj,k)

and Nl,k (πl,k − µl,k), associated with edges {i, j} and {i, k}, respectively.
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If i 6= r, then we define the additional arc polynomial Ni,k(πi,k − µi,k) (which can be

associated with any edge incident with i) and write the constraint

Ni,k (πi,k − µi,k) ≤ Nj,k (πj,k − µj,k) +Nl,k (πl,k − µl,k). (5.10)

[See constraints (5.8b), (5.8c).]

If on the other hand i = r, then we write the constraint [see (5.8d)]

Nr,k πr,k ≤
∑
s=j,l

Ns,k(πs,k − µs,k). (5.11)

We have just described how the variables and constraints associated with node u in the

original NPO are to be reformulated in the new NPO. To complete the description of the

new NPO we consider a generic node v ∈ V (G) with v 6= u. Formally,

(v’) We keep the same set Xv of variables associated with v.

We also keep the same set of constraints Kv associated with v. This is done by, effectively,

keeping the same set of arc polynomials p(v,w). Specifically, consider any edge {v, w} ∈ E(G′):

(c’.1) If w 6= u, the original arc polynomials p(v,w) are arc polynomials in the reformulated

problem because of (v’) above.

(c’.2) If w = u then as discussed in item (t.1) above, there is one edge {i, v} of T̂u. By

item (v.0), all variables in Xu are associated with node i. Hence, we any arc polynomial

p(v,u) in the original NPO can be viewed as an arc polynomial p(v,i) in the reformulated

NPO.

5.4.2 Validity of the reformulation

Here we consider a single node u and and index k ∈ K(u) as in Section 5.4.1. Lemma 5.4.1

proves that the original and reformulated NPOs are equivalent, and Lemma 5.4.3 discusses

the quality of the approximation to the first NPO provided by an approximate solution to

the second.
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Lemma 5.4.1 (a) Suppose (π̂, µ̂, x̂) satisfies constraints (5.10), (5.11), (5.9) and addition-

ally π̂r,k ≥ 0. Then x satisfies the constraint
∑
{u,v}∈δG(u) p

(k)
(u,v)(x) ≥ 0.

(b) Conversely, if
∑
{u,v}∈δG(u) p

(k)
(u,v)(x̂) ≥ 0 with x̂j ∈ [0, 1] for all j, then we can find

(π̂, µ̂, π̂r,k) that satisfy (5.10), (5.11), (5.9) with all variables in the range [0, 1].

Proof:

(a) This fact follows because summing (5.10), (5.11), (5.9) yields∑
{u,v}∈δG(u)

p
(k)
(u,v)(x̂) ≥ Nr,k πr,k.

(b) This fact is obtained as in the discussion following equations (5.8). We proceed, induc-

tively, up the tree, choosing values π̂ and ν̂ so that all constraints (5.10) and (5.9) hold

as equality, and so that at each internal node i, π̂i,k ≥ 0, µ̂i,k ≥ 0 and π̂i,kµ̂i,k = 0.

Inductively, by definition of the constants Ni,k, no variable will ever exceed 1. At

termination we will be able to likewise set π̂r,k so that (5.11) also holds an equation.

Part (a) of Lemma 5.4.1 shows that a feasible solution for the updated NPO gives rise

to a feasible solution to the original NPO. If, however, we were to apply Theorem 4.1.2 to

the new NPO we would only obtain an approximately feasible solution (π̂, µ̂, x̂) and we need

to address the infeasibility of x̂ with respect to the original NPO. This issue is handled by

Lemma 5.4.3. We first need a technical result.

Lemma 5.4.2 The sum of 1-norms of all constraints (5.10), (5.11), (5.9) is at most

4 degG(u)
∑

(u,v)∈δG(u)

‖p(k)
(u,v)‖1.

Proof: Write d = degG(u). The 1-norm of a constraint (5.10) at an internal node i (or

(5.11) if i = r) equals 2Ni,k. Since all internal nodes of T̂u, except for r, have degree three

in T̂u and T̂u has d leaves, the total number of internal nodes equals d − 1. Thus the sum

of 1-norms of all constraints (5.10) or (5.11) is at most 2d
∑

(u,v)∈δG(u) ‖p
(k)
(u,v)‖. A similar

observation regarding constraints (5.9) yields the result.
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Lemma 5.4.3 Let γ > 0. Suppose (π̂, µ̂, x̂) is γ-scaled feasible for constraints (5.10), (5.11),

(5.9), and satisfies π̂r,k ≥ 0. Then∑
{u,v}∈δG(u)

p
(k)
(u,v)(x̂) ≥ −4 degG(u) γ

∑
{u,v}∈δG(u)

‖p(k)
(u,v)‖1,

i.e. x̂ is (4 degG(u) γ)-scaled feasible for constraint
∑
{u,v}∈δG(u) p

(k)
(u,v)(x) ≥ 0.

Proof: Writing a generic constraint (5.10), (5.11), (5.9) as f(π, µ, x) ≥ 0 we have by

assumption that f(π̂, µ̂, ŷr, x̂) ≥ −‖f‖1γ. Since the sum of all constraints (5.10), (5.11), (5.9)

yields ∑
(u,v)∈δG(u)

p
(k)
(u,v)(x) ≥ Nr,k πr,k

we therefore obtain ∑
(u,v)∈δG(u)

p
(k)
(u,v)(x̂) ≥ Nr,k π̂r,k − Sγ,

where S is the sum of L1 norms of all constraints (5.10), (5.11), (5.9). Applying Lemma 5.4.2

yields the desired result.

We can now comment on the quality of an approximate solution to the reformulation, in

terms of the initial problem. Let us suppose that given an NPO on a network G (we will term

this the initial NPO) we apply a sequence of complete node splittings and reformulations so

as to obtain a final NPO. In what follows, we will denote Pf is the final NPO, and Gf the

final network.

Lemma 5.4.4 Pf is equivalent to the initial NPO and a solution that is γ-scaled feasible

for the constraints in Pf yields a (4Dγ)-scaled feasible solution to the initial NPO, where

D = max
v∈V (G)

degV (G)(v).

Proof: Equivalence follows by applying Lemma 5.4.1 inductively. Applying Lemma 5.4.3

inductively proves the approximation error bound.

For future reference we also state the following result concerning the size of the reformu-

lated NPO:
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Lemma 5.4.5 Let ∆ = maxv∈V (G){|Kv|}. Suppose the original NPO has n variables in

total, and |E(G)| = m. Then Gf has O(m) nodes and edges. Further, the number of variables

and constraints in Pf

n + O

 ∑
u∈V (G)

degG(u)|Ku|

 = n+O(D∆). (5.12)

Proof: Since
∑

v∈V (G) degG(v) = 2m we obtain that Gf has the desired size. The variables

for Pf are the original variables, plus all π and µ variables, which are accounted for in the

second term of (5.12).

In the next section we group all arguments together, including the approximate LP for-

mulations that arise from applying Theorem 4.1.2 to Pf .

5.4.3 Implications to Theorem 5.1.3

Let us follow the above recipe to obtain a final reformulated NPO Pf on a network Gf . We

will now apply Theorem 4.1.2 by treating Pf as a general polynomial optimization problem

of the form PO. In this section we address the size of the resulting LP and its approximation

guarantees. In particular, suppose that we want to produce a solution for the initial NPO

within tolerance ε, i.e. ε-scaled feasible and with objective value exceeding the optimum by

at most ε‖c‖1.

1. Using Lemma 5.4.4 we see that we need to find a solution to Pf within tolerance γ,

where γ = ε/(4D).

2. Suppose we have a tree-decomposition of Gf of width W ≥ 1, say. Then by Theo-

rem 5.2.1, there is a tree-decomposition of the intersection network of Pf of width

≤ O(∆W ).

3. The number of variables in Pf , by Lemma 5.4.5, is n+O(D∆).

4. Let ρ be the maximum degree of any of the arc polynomials in the initial NPO (also

the maximum degree of arc polynomials in Pf ). We apply Theorem 4.1.2 to find a
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solution to Pf as per item 1 above. This step will produce an LP of size

O
(

(2ρ/γ)O(∆W )+1 (n+D∆) log(Dρ/γ)
)

= O
(

(Dρ/ε)O(∆W )+1 n log(ρ/ε)
)
.

Thus the construction almost yields Theorem 5.1.3. The key issue is the parameter W in

this estimation. This is the width of a tree-decomposition of the final network Gf rather

than the initial network G. We are thus faced with a purely graph-theoretic issue: given an

arbitrary network, is there a sequence of complete node splittings that render a network with

maximum degree at most three, and without a large increase in tree-width?

This is precisely what will be done in the next section. We will prove that if the initial

network has a tree-decomposition of width ω then there is a (polynomial-time constructible)

network Gf with a tree-decomposition of width O(ω). Combining this fact with the above

observations yields a proof of Theorem 5.1.3.

5.4.4 Constructing reformulations on small tree-width networks

Consider the example given in Figure 5.6. Here the vertices of the graph shown in (a) are

arranged into k > 1 columns. The odd-numbered columns have k vertices each, which induce

a path, while the even-numbered columns have a single vertex which is adjacent to all vertices

in the preceding and following columns. It can be shown that this graph has tree-width 3.

In (b) we show the outcome after splitting vertices so that the maximum degree is four. This

second graph has tree-width k, and further splitting the degree-four vertices will not change

this fact.

In contrast to this situation, suppose that we split the graph in Figure 5.6(a) in two steps

as shown in Figure 5.7. The tree-width of the final graph is also 3. The difference between

Figures 5.6 and 5.7 is explained by the fact that the splitting initiated by the “first step” in

Figure 5.7 exploits the tree-decomposition of width 3 of the graph Figure 5.6(a).

Next we turn to a formal approach that produces the desired outcome in the general

setting. Given a graph G, a simplification of G will be graph Ḡ obtained by a sequence

of complete vertex splittings, such that the maximum degree of a vertex in Ḡ is ≤ 3. The

following Lemma will show how to obtain a simplification of a graph via a vertex splitting

that maintains tree-width up to a constant factor. In the proof, the trees T̂u that yield the
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Figure 5.7: Correct vertex splitting of graph in Figure 5.6(a).
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general splitting procedure described in Section 5.4.4 will be explicitly defined.

Lemma 5.4.6 Let G be a connected undirected graph and (T,Q) a tree-decomposition of G

of width Z. Then there is a simplification Ḡ of G and a tree-decomposition (T̄ , Q̄) of Ḡ of

width at most 2Z + 1.

Proof: We first modify (T,Q) in a sequence of steps.

Step 1. For any edge e = {u, v} ∈ E(G), choose an arbitrary t ∈ V (T ) with e ⊆ Qt. Then

we modify T by adding to T a new vertex, te and the edge {te, t}. Further, we set Qte = {u, v}.

Step 2. Without loss of generality, every vertex of T has degree at most 3. To attain this

condition, consider any t ∈ V (T ) with δT (t) = {s1, . . . , sd} (say) where d > 3. Then we alter

T by replacing t with two adjacent vertices t1 and t2, such that t1 is also adjacent to s1 and

s2 and t2 is adjacent to s3, . . . , sd. Finally, we set Qt1 = Qt2 = Qt. Continuing inductively

we will attain the desired condition.

Step 3. For any vertex u ∈ V (G) let Tu be the subtree of T consisting of vertices t with

u ∈ Qt, and T̆u be the subtree of Tu that spans {te : e ∈ δG(u)} (which is a subset of the leaves

of Tu). Then we modify (T,Q) by replacing Tu with T̆u, yielding a new tree-decomposition

of same or smaller width. In other words, without loss of generality every leaf of Tu is of the

form te for some e ∈ δG(u).

We can now describe our vertex splitting scheme. Consider u ∈ V (G) with degG(u) > 3.

We say that a vertex of Tu is blue if it is either a leaf or of degree three in Tu. Now we form

the tree T̂u whose vertex-set is the set of blue vertices of Tu, and whose edge-set is obtained

as follows. By construction, E(Tu) can be partitioned into a set of paths whose endpoints

are blue and which contain no other blue vertices. For each such path, with endpoints a and

b (say), the tree T̂u will contain the edge {a, b} (in other words, Tu can be obtained from T̂u

by subdividing some edges and so Tu and T̂u are topologically equivalent). Note that T̂u has

degG(u) leaves, each internal vertex with degree 3, and for each edge {u, v} ∈ E(G) there is
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one pendant edge, as needed.

Let Ğ be the graph obtained by the complete splitting of u using T̂u. For each internal

vertex t ∈ V (T̂u) we name ut the corresponding new vertex in Ğ, to emphasize that each

non-leaf vertex in T̂u will create a vertex in the complete splitting (recall that the leaves in

T̂u will correspond to the neighbors of u). This operation does not change the degree of any

vertex v ∈ V (G) with v 6= u. The eventual graph Ḡ in the proof will be obtained by applying

a complete splitting of this type at every vertex of degree > 3 in G.

Returning to Ğ, we construct, for it, a tree decomposition (T, Q̆) as follows. First, let us

regard the tree Tu as rooted at some internal blue vertex r(u). For a vertex t ∈ V (Tu) let

Au(t) be the closest blue ancestor of t in Tu; we write Au(r(u)) = r(u). Then, for t ∈ V (T ),

we set

Q̆t =


(Qt − u) ∪ {uAu(t)}, if t ∈ V (Tu) and degTu(t) = 2 ,

(Qt − u) ∪ {ut, uAu(t)}, if t ∈ V (Tu) and degTu(t) 6= 2,

Qt, if t /∈ V (Tu).

(5.13)

Now we argue that (T, Q̆) is a tree-decomposition of Ğ. To see this, note that if t ∈ V (T̂u)

then ut ∈ Q̆s iff s = t or s is a child of t in T̂u, thus the endpoints of any edge {ut, us},

where t is the parent of s, will be contained in Q̆s. Further, for any edge of e = {u, v} of G,

by Step 3 above there will be a leaf te of Tu such that the edge {te,Au(te)} ∈ E(T̂u). This

corresponds to a pendant edge {uAu(te), v} ∈ E(Ğ) and by construction both v ∈ Q̆te and

uAu(te) ∈ Q̆te . The fact that every vertex in Ğ induces a connected subgraph in T can be

easily verified. This completes the argument (T, Q̆) is a tree-decomposition of Ğ.

Notice that for v ∈ V (G) with v 6= u, the subtree Tv is the same in (T,Q) and (T, Q̆),

and that Ğ has one less node of degree greater than three than G. Thus, iteratively applying

the complete splitting of every vertex of Ğ of degree greater than three, and modifying the

tree-decomposition as in (5.13) will produce a tree-decomposition (T, Q̄) of the final graph

Ḡ.

By construction, for each t ∈ V (T ) we obtain Q̄t from Qt by replacing each element

with (at most) two new elements. Thus, since |Qt| ≤ Z + 1, the width of (T, Q̆) is at most

2(Z + 1)− 1.
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Chapter 6

Cutting planes for Polynomial

Optimization

In the previous chapter we introduced a theoretical framework, along with tractability re-

sults, involving linear programming techniques used to approximate polynomial optimization

(PO) problems. Tractability was parametrized by tree-width, a graph theoretical measure

of structured sparsity. In this chapter we follow on the idea of using linear programming to

approximate PO problems using the well-studied technique of cutting planes, widely used in

the context of mixed-integer programming. As before, we will be concerned on PO problems

which we recall for convenience of the reader:

(PO) : min cTx (4.1a)

subject to : fi(x) ≥ 0 1 ≤ i ≤ m (4.1b)

x ∈ {0, 1}p × [0, 1]n−p, (4.1c)

where each fi is a polynomial. In a different, or complementary, spirit from Chapter 4 we will

not assume structured sparsity on PO. Instead, we will aim at developing general techniques

that can be computationally efficient and stable. To this purpose, we discuss 2 families of

cutting planes for PO problems: digitization and intersection cuts.
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Digitization cuts make use of the maturity of Mixed-Integer Programming (MIP) solvers in

order to find valid cuts to PO problems. Using the digitization technique already introduced

in Section 4.2, and used there to obtain theoretical tractability results, we will devise a

separation procedure for PO that uses MIP solvers as a sub-routine. As for Intersection cuts,

we will provide a review and details on the computational aspects of the cuts introduced in

[23]. There, a generalization of classical Intersection cuts for IP is developed, along with a

practical procedure for finding such cuts in the PO context.

6.1 Digitization Cuts

6.1.1 Approximations of Polynomial Optimization revisited

Given a PO problem, in Section 4.2 we discussed the following pure binary approximation:

(GB(γ)) : min

p∑
j=1

cjxj +

n∑
j=p+1

cj

 Lγ∑
h=1

2−hzj,h


s.t.

∑
α∈I(i)

fi,α

 ∏
j∈Z(i,α)

xj

n∏
j=p+1

 Lγ∑
h=1

2−hzj,h

αj ≥ −ε‖fi‖1, 1 ≤ i ≤ m (4.5a)

xj =

Lγ∑
h=1

2−hzj,h, p+ 1 ≤ j ≤ n (4.5b)

xj ∈ {0, 1}, 1 ≤ j ≤ p (4.5c)

zj,h ∈ {0, 1}, p+ 1 ≤ j ≤ n, 1 ≤ h ≤ Lγ (4.5d)

where ε = 1− (1− γ)ρ. This approximation can be used to obtain solutions to PO that are

ε-scaled feasible (Definition 4.1.1) and it is based on the fact that, for any 0 ≤ r ≤ 1, given

0 < γ < 1 we can approximate r as a sum of inverse powers of 2:

Lγ∑
h=1

2−hzh ≤ r ≤
Lγ∑
h=1

2−hzh + 2−Lγ ≤
Lγ∑
h=1

2−hzh + γ ≤ 1, (6.1)

for some zh ∈ {0, 1}, 1 ≤ h ≤ Lγ and where

Lγ
.
= dlog2 γ

−1e.
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What GB(γ) effectively does is, starting from PO, it replaces each continuous variable

by a digitized version of it, given by the leftmost expression in (6.1). Using the binary nature

of the variables, all non-linearities in GB(γ) can be expressed as linear expressions in a lifted

space. This follows from the fact that, given x1, x2 ∈ {0, 1}:

y = x1 · x2 ⇐⇒ max{x1 + x2 − 1, 0} ≤ y ≤ min{x1, x2}.

Thus, with a slight abuse of notation, we will consider GB(γ) as a binary linear problem. The

following result was proved in Section 4.2, which justifies the usefulness of this approximation.

Lemma 4.2.2 (a) Suppose x̄ is feasible for PO. Then there is a feasible solution (x̃, z̃) for

GB(γ) with objective value at most cT x̄+ ε‖c‖1.

(b) Suppose (x̂, ẑ) is feasible for GB(γ). Then x̂ is ε-scaled feasible for (4.1b) and

cT x̂ =

p∑
j=1

cj x̂j +

n∑
j=p+1

cj

 Lγ∑
h=1

2−hẑj,h

 .

In this chapter we will aim at obtaining valid inequalities to PO from GB(γ). However,

even though Lemma 4.2.2 indicates that GB(γ) acts as a form of relaxation, a valid inequality

for GB(γ) might not be valid to PO. We justify this in the next example.

Example 6.1.1 Consider the following simple feasible set for PO

S =

{
(x1, x2) : x2

1 + x2
2 ≤

5

4
, (x1, x2) ∈ [0, 1]2

}
.

Choose γ = 1/4, thus Lγ = 2 and ε = 0.4375. Formulating GB(γ) renders the following

feasible set: (
1

2
z1,1 +

1

4
z1,2

)2

+

(
1

2
z2,1 +

1

4
z2,2

)2

≤ 5

4
+

13

4
ε = 2.671875 (6.2a)

x1 =
1

2
z1,1 +

1

4
z1,2 (6.2b)

x2 =
1

2
z2,1 +

1

4
z2,2 (6.2c)

zi,j ∈ {0, 1}. (6.2d)

Constraint (6.2a) is redundant, hence the projection onto x-space of (6.2) is simply

S′ =

{
0,

1

4
,
1

2
,
3

4

}2

.
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On the other side, note that (
√

5/8,
√

5/8) ∈ S. However, as
√

5/8 ≈ 0.79,

(
√

5/8,
√

5/8) 6∈ conv(S′).

This shows that a valid inequality for conv(S′) (e.g, x1 ≤ 3/4) might be invalid for S.

The issue with GB(γ) is that, even though it provides an approximation with provable

guarantees, it only uses one side of approximation (6.1). Therefore, there might be feasible

points of PO outside the convex hull of the feasible region of GB(γ). We fix this problem

by introducing a more elaborate version of this approximation, which considers both of the

leftmost inequalities in (6.1) simultaneously. We call this new approximation GB(γ)+:

(GB(γ)+) : min

p∑
j=1

cjxj +

n∑
j=p+1

cj

Lγ+1∑
h=1

dhzj,h


s.t.

∑
α∈I(i)

fi,α

 ∏
j∈Z(i,α)

xj

n∏
j=p+1

Lγ+1∑
h=1

dhzj,h

αj ≥ −ε‖fi‖1, 1 ≤ i ≤ m (6.3a)

xj =

Lγ+1∑
h=1

dhzj,h, p+ 1 ≤ j ≤ n (6.3b)

xj ∈ {0, 1}, 1 ≤ j ≤ p (6.3c)

zj,h ∈ {0, 1}, p+ 1 ≤ j ≤ n, 1 ≤ h ≤ Lγ + 1 (6.3d)

where dh = 2−h for h = 1, . . . , Lγ and dLγ+1 = 2−Lγ . GB(γ)+ includes one extra digit in

the digitization of each continuous variable, which yields a relaxation with better properties

than GB(γ). As a starting point, we can easily prove the same result as in Lemma 4.2.2 for

GB(γ)+:

Lemma 6.1.2

(a) Suppose x̄ is feasible for PO. Then there is a feasible solution (x̃, z̃) for GB(γ)+ with

objective value at most cT x̄+ ε‖c‖1.

(b) Suppose (x̂, ẑ) is feasible for GB(γ)+. Then x̂ is ε-scaled feasible for (4.1b) and

cT x̂ =

p∑
j=1

cj x̂j +
n∑

j=p+1

cj

Lγ+1∑
h=1

dhẑj,h

 .
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Proof: For part (a), we use the same proof as in Lemma 4.2.2 and set the zj,Lγ+1 variables

to 0. Part (b) is direct.

The importance of the extra digit included in GB(γ)+ will become evident in the next

Lemma, and it will justify why GB(γ)+ can be used to derive valid cuts for PO.

Lemma 6.1.3 Suppose x̃ is feasible for PO. Then there exists (xi, zi) i = 0, . . . , 2n−p − 1

feasible solutions for GB(γ)+ such that

x̃ ∈ conv({xi | i = 0, . . . , 2n−p − 1}).

Proof: We follow a similar procedure as in the proof of Lemma 4.2.2. We start by construct-

ing (x0, z0) to fix ideas. For each j ∈ {1, . . . , p} define x0
j = x̃j , for j ∈ {p+ 1, . . . , n} choose

z0
j,h h = 1, . . . , Lγ so as to attain the approximation for x̃j as in (6.1), and set z0

j,Lγ+1 = 0.

We define x0
j for j ∈ {p+ 1, . . . , n} from z0 according to (6.3b). From the analysis in Lemma

4.2.2 we know (x0, z0) is feasible for GB(γ)+. Building (x0, z0) can be seen as a “rounding”

of x̃ to the nearest smaller inverse power of 2, but we can also “round up” using the last

digit.

For i = 1, . . . , 2n−p − 1 we define (xi, zi) the same way as (x0, z0), except for zip+j,Lγ+1,

j = 1, . . . , n− p, which we set to 1 if and only if the j-th digit of the binary encoding of i is

1. The idea is to have every possible combination of 0’s and 1’s in the last digit. From (6.1),

for every i:
Lγ∑
h=1

2−hzip+j,h ≤ x̃p+j ≤
Lγ∑
h=1

2−hzip+j,h + 2−Lγ .

We claim that for every i:

n−p∏
j=1

Lγ+1∑
h=1

dhz
i
p+j,h

αj

− ε ≤
n−p∏
j=1

x̃
αj
p+j ≤

n−p∏
j=1

Lγ+1∑
h=1

dhz
i
p+j,h

αj

+ ε. (6.4)

For each i we denote Yi ⊆ {1, . . . , n − p} the digits with 1 in the binary encoding of i.

Similarly we denote Ni the digits with 0 in the binary encoding of i. Thus zip+j,Lγ+1 = 1 iff

j ∈ Yi. From the proof of Lemma 4.2.2, we have

∏
j∈Ni

x̄
αj
p+j ≤

∏
j∈Ni

Lγ+1∑
h=1

dhz
i
p+j,h

αj

+ ε.
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and ∀j ∈ Yi

x̃p+j ≤
Lγ+1∑
h=1

dhz
i
p+j,h ≤ 1.

This implies

n−p∏
j=1

x̃
αj
p+j =

∏
j∈Ni

x̄
αj
p+j

∏
j∈Yi

x̄
αj
p+j


≤

∏
j∈Ni

Lγ+1∑
h=1

dhz
i
p+j,h

αj

+ ε

 ∏
j∈Yi

Lγ+1∑
h=1

dhz
i
p+j,h

αj

≤
n−p∏
j=1

Lγ+1∑
h=1

dhz
i
p+j,h

αj

+ ε,

which proves the right-hand side inequality of (6.4). To obtain the left-hand side inequal-

ity, we apply Lemma 4.2.1 for the indices j ∈ Yi. We identify uj = x̃p+j and vj =∑Lγ+1
h=1 dhz

i
p+j,h − x̃p+j ≥ 0. Clearly, since j ∈ Yi

vj = 2−Lγ +

Lγ∑
h=1

dhz
i
p+j,h − x̃p+j ≤ 2−Lγ ≤ γ

therefore,

∏
j∈Yi

Lγ+1∑
h=1

dhz
i
p+j,h

αj

−
∏
j∈Yi

x̄
αj
p+j ≤ 1−

∏
j∈Yi

(1− vj)αj

≤ 1−
∏
j∈Yi

(1− γ)αj

≤ 1− (1− γ)ρ = ε.

This implies

n−p∏
j=1

x̃
αj
p+j + ε =

∏
j∈Ni

x̄
αj
p+j

∏
j∈Yi

x̄
αj
p+j

+ ε

≥

∏
j∈Ni

x̄
αj
p+j

∏
j∈Yi

x̄
αj
p+j + ε





CHAPTER 6. CUTTING PLANES FOR POLYNOMIAL OPTIMIZATION 93

≥

∏
j∈Ni

 Lγ∑
h=1

dhz
i
p+j,h

αj∏
j∈Yi

Lγ+1∑
h=1

dhz
i
p+j,h

αj
=

n−p∏
j=1

Lγ+1∑
h=1

dhz
i
p+j,h

αj

,

which completes the proof of (6.4). It immediately follows that ∀i ∈ {0, . . . , 2n−p − 1} the

vector (xi, zi) is feasible for GB(γ)+.

By definition, for each fixed j ∈ {1, . . . , n − p} all zip+j,h, h = 1, . . . , Lγ are equal. The

difference only exists in the last digit. Thus we can define

Cj =

Lγ∑
h=1

2−hzip+j,h.

Now define the polyhedron

Pγ(x̃) = {x ∈ [0, 1]n | xj = x̃j j = 1, . . . , p, Ck ≤ xp+k ≤ Ck + 2−Lγ k = 1, . . . n− p}.

We clearly see that xi i = 0, . . . , 2n−p − 1 is the set of all extreme points in Pγ(x̃), and since

x̃ ∈ Pγ(x̃), the convex combination claim follows.

In this case, we can also provide a tighter result than the one in Corollary 4.2.3:

Corollary 6.1.4 Let P ∗ be the optimal value of problem PO, and let (x̂(γ), ẑ(γ)) be optimal

for GB(γ)+. Then cT x̂(γ) ≤ P ∗ and x̂(γ) is ε-scaled feasible for (4.1b).

Proof: Follows directly from Lemma 6.1.3.

Example 6.1.5 Let us continue with Example 6.1.1 to illustrate how GB(γ)+ avoids the

aforementioned issue of GB(γ). In this example,

S =

{
(x1, x2) : x2

1 + x2
2 ≤

5

4
, (x1, x2) ∈ [0, 1]2

}
.

We choose γ = 1/4 as before, thus Lγ = 2 and ε = 0.4375. Instead of the feasible set defined



CHAPTER 6. CUTTING PLANES FOR POLYNOMIAL OPTIMIZATION 94

by (6.2), GB(γ)+ defines the following one:(
1

2
z1,1 +

1

4
z1,2 +

1

4
z1,3

)2

+

(
1

2
z2,1 +

1

4
z2,2 + +

1

4
z2,3

)2

≤ 2.671875 (6.5a)

x1 =
1

2
z1,1 +

1

4
z1,2 +

1

4
z1,3 (6.5b)

x2 =
1

2
z2,1 +

1

4
z2,2 +

1

4
z2,3 (6.5c)

zi,j ∈ {0, 1}. (6.5d)

As before, constraint (6.5a) is redundant. We can discard it and see that the feasible set

defined in the x-space is now

S′′ =

{
0,

1

4
,
1

2
,
3

4
, 1

}2

.

Clearly, conv(S′′) = [0, 1]2 and thus

(
√

5/8,
√

5/8) ∈ conv(S′′).

Even though these examples used inequalities that become redundant after the approx-

imation is introduced, this might not be the case in general. This choice was made only to

simplify the discussion and argue the need of Lemma 6.1.3 even in easy cases.

6.1.2 Why we need to approximate

A reader may wonder why or if “exact” feasibility (or optimality) for PO cannot be guar-

anteed. From a trivial perspective, we point out that there exist simple instances of PO (in

fact convex, quadratically constrained problems) where all feasible solutions have irrational

coordinates. Should that be the case, if any algorithm outputs an explicit numerical solution

in finite time, such a solution will be infeasible.

Example 6.1.6 A simple 1-dimensional example evidencing the need for approximation is

given by the following problem:

max x

subject to: x2 ≤ 1

2

x ∈ [0, 1]

where the optimal solution is an irrational number.
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Figure 6.1: Graphical representation of Digitization and the corresponding convex hull

Example 6.1.7 A more elaborate example is given by the following region in R2:{
(x, y) : x2 + y2 ≤ 1, xy ≥ 1

2
, (x, y) ∈ [0, 1]2

}
.

The set is expressed only using rational data, and the unique feasible point is (1/
√

2, 1/
√

2).

Another question one might ask, is whether it is possible to achieve constraint violations

that are at most ε, independent of the 1-norm of the constraints. Intuitively, this should

not be possible since in such case one could augment the coefficients on the constraints and

obtain arbitrarily high-quality solutions. For a more rigorous analysis of this see Section C.1

of the Appendix, where we argue why the scaled feasibility feature is needed, even in the

bounded tree-width case.

6.1.3 Digitization-based Cuts

In Figure 6.1 we show a graphical representation on what GB(γ)+ is doing with respect to

PO: it replaces each continuous variable with a weighted sum of binary variables. Moreover,

by Lemma 6.1.3, the digitization is such that the convex hull contains the original feasible

set. The cuts we will discuss in this section will aim to separate from such convex hull. In

what follows, we assume ε (and thus γ) are predetermined values.

To make the analysis precise, we label the different feasible sets we are considering the
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Figure 6.2: Graphical representation of Digitization Cut

following way:

F = {x ∈ {0, 1}p × [0, 1]n−p | x is feasible for PO}

Fε = {x ∈ {0, 1}p × [0, 1]n−p | x is ε-scaled feasible for PO}

Fγ = {(x, z) ∈ {0, 1}p × [0, 1]n−p × {0, 1}(n−p)Lγ | (x, z) is feasible for GB(γ)+}

Lemma 6.1.8 conv(F ) ⊆ conv(projx(Fγ)) ⊆ conv(Fε)

Proof: This is direct from Lemma 6.1.3 and from the definition of GB(γ)+.

Our goal will be to use Fγ to produce ε-feasible solutions to PO by separating from its

convex hull. We use the following algorithmic template:

1. Find a polyhedral relaxation of F and an extreme point solution x̄.

2. If x̄ ∈ Fε, then STOP.

3. Otherwise, x̄ 6∈ conv(projx(Fγ)) (by Lemma 6.1.8). We look for a cutting plane sepa-

rating x̄ from conv(projx(Fγ)) and add it to the polyhedral relaxation of F . See Figure

6.2, where the black point represents x̄.

Separating from Fγ can be computationally challenging, as it can be as hard as optimizing

over GB(γ)+ in general. Thus, in order to speed up the cut-finding procedure, we digitize

only a subset of the continuous variables.
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Let J ⊆ {p+ 1, . . . , n}, we define

I(J) = {i | supp(fi) ⊆ {1, . . . , p} ∪ J}

i.e, the indices of the constraints that involve only continuous variables contained in J and

binary variables. Given I ⊆ {1, . . . ,m}, we denote as Poly(I) a polyhedral relaxation (po-

tentially using lifted variables) of the set

{x ∈ {0, 1}p × [0, 1]n−p | fi(x) ≥ 0, i ∈ I}.

Given η ∈ Rn, we define

(GB(γ, J, η)+): max

n∑
j=1

ηjxj

subject to: x ∈ Poly(I(J)c) (6.6a)

∑
α∈I(i)

fi,α

 ∏
j∈Z(i,α)

xj
∏
j∈J

Lγ+1∑
h=1

dhzj,h

αj ≥ −ε‖fi‖1, i ∈ I(J) (6.6b)

zj,h ∈ {0, 1}, j ∈ J, 1 ≤ h ≤ Lγ + 1 (6.6c)

xj =

Lγ+1∑
h=1

dhzj,h, j ∈ J (6.6d)

xj ∈ [0, 1], j 6∈ J (6.6e)

xj ∈ {0, 1}, 1 ≤ j ≤ p (6.6f)

In simple words, we are just digitizing the continuous variables in J instead of all of

them. As for the constraints, we are only imposing constraints in I(J) explicitly, as these

can be represented using only binary variables and thus can be reformulated using linear

expressions. The rest of the constraints, i.e, the ones with indices in I(J)c are relaxed using

some polyhedron. This renders problem GB(γ, J, η)+ a mixed-integer linear problem with

p+ Lγ |J | binary variables and n− p continuous variables.

Following the same notation as before, we denote as Fγ(J) the feasible region of problem

GB(γ, J, η)+. Clearly

Fγ = Fγ({p+ 1, . . . , n})

and using the same argument as in Lemma 6.1.3 we see

conv(F ) ⊆ conv(projx(Fγ(J))) ∀J ⊆ {p+ 1, . . . , n}.
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Therefore, every valid inequality derived from Fγ(J) will be valid for F , and if we keep J

of moderate size, GB(γ, J, η)+ will be a MIP with a small number of binary variables. This

can make finding such valid inequality a manageable task.

Let x̄ 6∈ Fε. In order compute a cut we solve the following problem

SEPγ(J): max δ

subject to: αT (x̄− x) ≥ δ ∀x ∈ projx(Fγ(J))

‖α‖ ≤ 1

δ ≥ 0

with ‖ · ‖ some norm. We solve problem SEPγ(J) using a row generation approach, i.e, at

any given step we count with a finite number of solutions {xk}k∈K ⊆ projx(Fγ(J)) for some

K finite. Then we solve the following relaxation of SEPγ(J):

SEP relγ (J): max δ

subject to: αT (x̄− xk) ≥ δ ∀xk, k ∈ K

‖α‖ ≤ 1

δ ≥ 0.

If the norm ‖ · ‖ is linearly representable (e.g, 1-norm, infinity norm), problem SEP relγ (J) is

an LP. Given (α̃, δ̃) optimal for SEP relγ (J), we solve GB(γ, J, α̃)+. Let (x′, z′) be its optimal

solution.

• If α̃T x̄− δ̃ < α̃Tx′, then (α̃, δ̃) is not feasible for SEPγ(J), and we add x′ to K in order

to separate (α̃, δ̃).

• If α̃T x̄−δ̃ ≥ α̃Tx′, then by optimality of (x′, z′) the vector (α̃, δ̃) is feasible for SEPγ(J),

and thus optimal.

Using this procedure we can directly look for cutting planes. The performance of it will

depend heavily on the size of J , thus the choice of J should aim for both a strong relaxation,

and for efficiency. Below we use a natural choice of J that can leverage these notions if the

constraints are sparse.
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6.1.4 Computational Experiments

In the previous section we discussed a cutting plane approach that separates from Fγ(J), as

a way of generating valid inequalities for PO. We implemented an iterative cutting plane

method that, in each iteration, chooses a different set J to attempt to separate the current

solution x̄ 6∈ Fε from Fγ(J). The following considerations were taken in the implementation:

• The algorithm is stopped if no cut is found, or if some numerical instability is detected.

• At each iteration, given an extreme point solution x̄, we choose J to be the support of

the most violated constraint by x̄.

• We used ε = 10−12 for the approximation quality.

• When solving SEP relγ (J), the 1-norm was used.

Computations were run on a 4-core laptop computer with an Intel Core i7-5600U CPU

and 8 GB of RAM. The code was written in Python 2.7.13. The linear programming solver

is Gurobi 7.0.1 with default settings.

Test instances are taken from Floudas et al. [46] (available via GLOBALLib [82]). Even

though all cuts can handle arbitrary polynomial terms, for implementation purposes we

restricted ourselves to problems with quadratic objective and constraints. Whenever an

objective function is non-linear, we use the usual epigraph reformulation that brings the non-

linearities to the constraints. To evaluate the quality of the cuts obtained, we compare with

[97, 98].

We choose the initial LP relaxation to be the standard RLT relaxation of QCQP, i.e, we

include a new variable representing each bilinear term and add the McCormick estimators

for them (see e.g. [2]). At each subsequent iteration we construct the polyhedra Poly(I(J)c)

using the same RLT technique.

The results are summarized in Table 6.1. Let OPT denote the optimal value of an

instance, RLT the optimal value of the standard RLT relaxation, and GLB the objective

value obtained after applying the cutting plane procedure. We use the following metric for

determining the quality of the solutions:

Gap Closed =
GLB −RLT
OPT −RLT

.
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SBL-Gap SBL-Time Digitization

Instance Gap Closed Time (s) Gap Closed Time (s) Gap Closed Time (s) Cuts

Ex2 1 5 99.98% 0.173 77.09% 0.049 98.6% 2.3 8

Ex2 1 6 99.97% 0.385 99.96% 0.265 77.8% 0.12 3

Ex2 1 7 88.09% 221.363 69.74% 11.179 100% 224.54 5

Ex2 1 8 99.90% 1.692 99.64% 0.645 9.94% 49.7 100

Ex2 1 9 93.96% 0.985 93.96% 0.985 37.9% 10.8 3

Ex3 1 1 15.94% 3600 0.35% 0.186 87.76% 63.63 7

Ex5 2 2 0.22% 0.150 0.22% 0.150 100% 0.53 1

Ex5 2 4 79.31% 68.927 73.30% 1.448 94.72% 235.24 4

Ex5 3 2 7.27% 245.821 0.0% 2.665 0% 5.3 1

Ex5 4 2 27.57% 3614 0.52% 0.177 30% 92.02 11

Ex8 4 1 91.84% 3659 89.05% 3.050 0% Num -

Ex9 1 4 0.0% 0.057 0.0% 0.057 39.53% 5.43 36

Ex9 2 1 68.74% 0.563 68.74% 0.563 0% No Cut -

Ex9 2 7 61.34% 0.899 59.30% 0.468 0% No Cut -

Table 6.1: Digitization Cuts Experiments

SBL-Gap shows the values obtained in [97, 98] that achieve the best Gap Closed, regardless

of the time spent in the cutting plane algorithm. SBL-Time shows the values obtained in the

same articles, but restricted to results obtained with a running time in order of seconds.

Table 6.1 shows encouraging results. First of all, only using a few cuts we are able to close

considerable gap in many instances, with moderate running times. This shows potential, as

fewer cuts yield algorithms that are numerically more stable. An interesting case is given by

instance Ex8 4 1, which presents numerical instability while generating the very first cut. In

the last 2 instances, Ex9 2 1 and Ex9 2 7, the algorithm was not able to find a cutting plane

with our choice of J .

Overall these results show how useful this approach is. Digitization cuts are able to

provide good solutions in short times, only relying in MIP solvers, and the flexibility on the

choice of J opens a gate for more elaborate heuristics that can improve on these results.



CHAPTER 6. CUTTING PLANES FOR POLYNOMIAL OPTIMIZATION 101

6.2 Intersection Cuts

In this section we review the family of cuts introduced in [23], and show the computational

aspects in detail, in order to analyze the practical performance of them in challenging PO

instances. At the core of this family there is the concept of S-free sets, which we review next.

6.2.1 Review of S-free sets and Intersection cuts

Consider a generic optimization problem

min cTx (6.7a)

subject to: x ∈ S ∩ P, (6.7b)

where P ⊆ Rn is a polyhedron and S ⊆ Rn is a closed set. In order to address this problem,

we will follow a cutting plane approach as before, i.e, we construct a polyhedral relaxation

of S ∩ P , find and extreme point solution x̄, and if x̄ 6∈ S we aim to find (π, π0) ∈ Rn+1 such

that

πTx ≤ π0 ∀x ∈ S ∩ P ∧ πT x̄ > π0.

A typical example is given by integer programming, where S is the integer lattice Zn. In

our case, we will use a set S drawn from an equivalent formulation to PO, and then we will

derive cuts from convex forbidden zones, or S-free sets, which are defined as follows:

Definition 6.2.1 A set C ⊂ Rn is S-free if int(C) ∩ S = ∅ and C is convex.

Remark 6.2.2 For any S-free set C we have S ∩ P ⊆ clconv(P \ int(C)), and so any valid

inequalities for clconv(P \ int(C)) are valid for S ∩ P .

To generate cuts, we will adopt the standard procedure of finding a simplicial cone P ′

containing P and apply Balas’ intersection cut [9] for P ′ \ int(C). For relevant literature

related to this well studied family of cuts see [35, 37, 36]. Balas and Margot [11] propose

strengthened intersection cuts by using a tighter relaxation of P .

Definition 6.2.3 We say P ′ ⊇ P is a simplicial conic relaxation of P when P ′ is a dis-

placed polyhedral cone with apex x̄ and defined by the intersection of n linearly independent

halfspaces.
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A simplicial cone may be written as follows:

P ′ =

x|x = x̄+
n∑
j=1

λjr
(j), λ ≥ 0

 . (6.8)

Remark 6.2.4 Any n linearly independent constraints describing P can be used to define a

simplicial conic relaxation, using the corresponding extreme point of P as the apex of P ′.

Each extreme ray is of the form x̄ + λjr
(j), where each r(j) ∈ Rn is a direction and

λj ∈ R+.

As mentioned before, we will assume x̄ 6∈ S, with the goal of separating x̄ from S. Let

C be an S-free set with x̄ ∈ int(C), and P ′ a simplicial cone relaxation with apex x̄. Each

extreme ray of P ′ must satisfy one of the following:

• Either it is entirely contained in C:

x̄+ λjr
(j) ∈ int(C) ∀λj ≥ 0

• Or there is an intersection point with the boundary:

∃λ∗j : x̄+ λ∗jr
(j) ∈ bd(C)

Then the intersection cut is defined as follows:

Definition 6.2.5 Let x̄ 6∈ S be an extreme point of a polyhedral relaxation of S ∩ P , C be

an S-free set with x̄ ∈ int(C), and P ′ a simplicial cone relaxation of P with apex x̄. The

intersection cut is the halfspace whose boundary contains each intersection point (given by

λ∗j) and that is parallel to all extreme rays of P ′ fully contained in C.

In [9] a closed-form expression for the cut πTx ≤ π0 is provided. Consider P ′ in inequality

form, P ′ = {x|Ax ≤ b}, where A is an n × n invertible matrix and x̄ = A−1b. Then the

coefficients of the intersection cut defined in Definition 6.2.5 can be expressed as

π0 =

n∑
i=1

(1/λ∗i )bi − 1, πj =

n∑
i=1

(1/λ∗i )aij . (6.9)

Here, 1/λ∗j is treated as zero if the step-length is infinite. Note that, without loss of

generality, the rays are assumed to be aligned with the inequality form, in the sense that for
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each j, −r(j) is the j-th column of the inverse of A. A quick calculation shows the hyperplane

πTx = π0 intersects all intersection points. Let j be such that λ∗j <∞:

πT
(
x̄+ λ∗jr

(j)
)

= πT x̄+ λ∗jπ
T r(j)

=
n∑
k=1

πkx̄k + λ∗j

n∑
k=1

πkr
(j)
k

=
n∑
k=1

πk(A
−1b)k + λ∗j

n∑
k=1

n∑
i=1

(1/λ∗i )aikr
(j)
k

=
n∑
i=1

(1/λ∗i )
n∑
k=1

aik(A
−1b)k + λ∗j

n∑
i=1

(1/λ∗i )
n∑
k=1

aikr
(j)
k

=
n∑
i=1

(1/λ∗i )bi − λ∗j
n∑
i=1

(1/λ∗i )1{i=j}

=
n∑
i=1

(1/λ∗i )bi − 1 = π0

and clearly the halfspace is parallel to all r(j) such that λ∗j =∞.

The final step on constructing the intersection cut is to determine the right direction of

the inequality. To this end, let β0 := sgn(πT x̄− π0), where sgn(·) denotes the sign function.

The intersection cut formula is then given by:

β0(πTx− π0) ≤ 0. (6.10)

The following proposition concludes the argument for the correctness of the cut:

Proposition 6.2.6 Let V := {x | β0(πTx − π0) ≤ 0} be the halfspace defined by the inter-

section cut. Then

V ⊇ P ′ \ int(C).

Furthermore, if all step lengths are finite, then V ∩ P ′ = conv(P ′ \ int(C)).

For a proof of this statement see [9, Theorem 1].

From this section we see that the bottleneck of constructing intersection cuts efficiently

is given by determining the step-lengths λ∗. These will depend on the S-free set constructed

for each x̄, and in general they might not be easily computable.

In the next section we will review how we can construct S-free sets for PO problems, as

well as showing how to compute the step-lengths for each one of the proposed S-free sets.
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6.2.2 S-free sets for Polynomial Optimization

We now turn to the construction of S-free sets for PO problems. We begin by casting PO

as a problem of the type (6.7) so as to identify S precisely.

6.2.2.1 Moment-based reformulation for PO problems

We will make use of the moment-based reformulation of PO problems (see [67, 70]). Let ρ

be the maximum degree among polynomials fi defined in (4.1b). Let mr(x) = [1, x1, ..., xn,

x1x2, ..., x
2
n, ...x

r
n] be a vector of all monomials up to degree r. Then it is easy to see that

whenever 2r ≥ ρ any polynomial fi can be written as

fi(x) = mT
r (x)Aimr(x)

where Ai is an appropriately defined symmetric matrix obtained from fi. Then,

fi(x) ≥ 0⇐⇒ mT
r (x)Aimr(x) ≥ 0⇐⇒ 〈mr(x)mr(x)T , Ai〉

and we can apply this transformation to PO to obtain the following reformulation:

(LPO) : min 〈A0, X〉

subject to: 〈Ai, X〉 ≥ 0, i = 1, ...,m, (6.11a)

X = mr(x)mT
r (x). (6.11b)

Remark 6.2.7 A problem of the form LPO can be obtained even when not assuming the

objective function in PO is linear.

Condition (6.11b) can be equivalently stated as X � 0, rank(X) = 1, and consistency

constraints among the expressions that represent the same monomial. Constraint X � 0 is

a convex constraint, thus the non-convexity of the original PO problem is now absorbed in

the rank constraint. Dropping the latter yields the standard semidefinite relaxation of PO

[102]. In some cases, (e.g. [78, 67, 71, 90]) it can be proven that there exists sufficiently large

r to ensure an exact relaxation. However, there is a rapid increase in the size of LPO and its

semidefinite relaxation with respect to r.
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Note that LPO was written in a convenient way: constraints (6.11a) are polyhedral

constraints, and constraints (6.11b) represent a closed set. Hence, we are left with a natural

definition of S:

S = {xxT : x ∈ RN(r)} (6.12)

with N(r) appropriately defined. Furthermore, we let P correspond to the linear constraints

(6.11a) together with the consistency constraints and X11 = 1. This brings a PO problem

to a problem of the form (6.7), and justifies the study of outer-product-free sets, i.e, sets of

matrices that are not symmetric outer-products of vectors. In what follows, we will drop the

dependency on r in the definition N for alleviating notation.

For X ∈ SN×N consider the vectorized matrix vec(X) ∈ RN(N+1)/2, with entries from

the upper triangular part of the matrix. We will work in this vector space, thus all notions

of the interior, convexity, and so forth are with respect to it. However, for simplicity of the

discussion, we drop the explicit vectorization where obvious, as translating the results in

matrix form to vector form is straight-forward.

6.2.2.2 Oracle-based S-free sets for PO

When there is an oracle that can provide the distance of any point to the set S, a simple

S-free set can be constructed. Say x̄ 6∈ S, and let d > 0 be the distance from x̄ to S, then

clearly the ball of center x̄ and radius d, denoted Boracle(x̄, d) is S-free and an intersection

cut can be easily derived from it. In [23], an in-depth study of these oracle-based cuts is

performed, providing theoretical guarantees when using them in an iterative fashion.

In the context of PO, given a matrix X̄ that is not an outer-product, we would like

to compute the distance of X̄ to the nearest symmetric outer product, or equivalently the

nearest positive semidefinite matrix with rank at most one. Fortunately, this distance can be

obtained using a low-rank approximation scheme. Given an integer r > 0, we define

(PMA) : min
Y

‖X̄ − Y ‖F

s.t. rank(Y ) ≤ r,

Y � 0.
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In what follows, we denote as {λi}ni=1 the eigenvalues of X̄, in decreasing order, and

{di}ni=1 the corresponding eigenvectors. Dax [40] proves the following:

Theorem 6.2.8 (Dax’s Theorem [40]) Let k be the number of nonnegative eigenvalues of

X̄. For 1 ≤ r ≤ N − 1, an optimal solution to PMA is given by Y =
∑min{k,r}

i=1 λidid
T
i .

When X̄ is not negative semidefinite, the solution from Dax’s theorem coincides with

Eckart-Young-Mirsky [83, 43] solution to PMA without the positive semidefinite constraint.

With this, we can construct an outer-product-free ball:

Boracle(X̄) :=

 B(X̄, ‖X̄‖F ), if X̄ is NSD,

B(X̄, ‖
∑n

i=2 λidid
T
i ‖F ), otherwise.

And directly from Dax’s Theorem:

Corollary 6.2.9 Boracle(X̄) is outer-product-free.

This construction centers the oracle ball around around X̄, however, for LPO we can

obtain a larger ball containing the original one by re-centering it. Consider a ball B(X, r).

Let s > 0 and suppose Q is in the boundary of the ball. We construct the “shifted” ball

B(Q+ (s/r)(X −Q), s). This ball has radius s and its center is located on the ray that goes

through X emanating from Q, and moreover, whenever s > r the shifted ball contains the

original ball.

This allows us to construct Bshift(X̄, s), a shifted oracle ball. We will use the nearest

symmetric outer product as the boundary point in our construction:

Bshift(X̄, s) :=

 B(sX̄/‖X̄‖F , s), if X̄ is NSD,

B
(
λ1d1d

T
1 + s

‖X̄−λ1d1dT1 ‖F
(X̄ − λ1d1d

T
1 ) , s

)
, otherwise.

As the reader might notice, the definition depends on the value of s. This will determine

when the shifted ball is outer-product-free. In [23], the following is proved:

Proposition 6.2.10 Suppose X̄ is not an outer product. If λ2 ≤ 0 then Bshift(X̄, ‖X̄‖F + ε)

is outer-product-free and strictly contains Boracle(X̄) for ε > 0. If 0 < λ2 < λ1, then for∥∥∑n
i=2 λidid

T
i

∥∥
F
< s ≤ λ1

λ2

∥∥∑n
i=2 λidid

T
i

∥∥
F

, Bshift(X̄, s) is outer-product-free and strictly

contains Boracle(X̄).
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Additionally, the following Theorem allows to further improve outer-product-free sets we

have discussed so far.

Theorem 6.2.11 Let C ⊂ SN×N be a full-dimensional outer-product-free set. Then clcone(C)

is outer-product-free.

This implies that, provided s is chosen appropriately so Bshift(X̄, s) is outer-product-free,

the closure of the conic hull, clcone(Bshift(X̄, s)), is also outer-product-free.

6.2.2.3 Maximal S-free sets for PO

While in principle any S-free set can be used to obtain intersection cuts, larger S-free sets

can be useful for generating deeper cuts [35]. Thus, we aim to find maximal S-free sets.

Definition 6.2.12 An S-free set C is maximal if V 6⊃ C for all S-free V .

The following results of [23] yield two families of maximal outer-product-free sets.

Theorem 6.2.13 A halfspace 〈A,X〉 ≥ 0 is maximal outer-product-free iff A is negative

semidefinite.

Remark 6.2.14 It is not hard to see that whenever the S-free set is of the form 〈A,X〉 ≥ 0,

then the intersection cut associated to it is given by 〈A,X〉 ≤ 0.

Theorem 6.2.13 gives an interesting interpretation to the well known outer-approximation

of the PSD cone, which can be used to solve SDPs. Say X̄ 6� 0, then there exists c such that

cT X̄c < 0

and the set

{X ∈ SN×N | 〈−ccT , X〉 ≥ 0}

is maximal outer-product free. By Remark 6.2.14 the intersection cut will be given by

〈−ccT , X〉 ≤ 0

which will cut off X̄.
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Remark 6.2.15 We can assume the matrix A in Theorem 6.2.13 is of rank 1. If not, let

r > 1 be its rank, λi < 0 i = 1, . . . , r its eigenvalues and di i = 1, . . . , r its eigenvectors.

Then, all sets

{X ∈ SN×N | 〈−didTi , X〉 ≥ 0} i = 1, . . . , r

will be outer-product free, and they will generate the intersection cuts

〈−didTi , X〉 ≤ 0.

These cuts imply 〈
r∑
i=1

λidid
T
i , X

〉
≤ 0

which is the cut 〈A,X〉 ≥ 0 induces.

Another family of maximal outer-product-free sets is defined next.

Definition 6.2.16 A 2×2 PSD cone is of the form Ci,j := {X ∈ SN×N |X[i,j] � 0}, for some

pair 1 ≤ i 6= j ≤ N .

Remark 6.2.17 The boundary of Ci,j is the set of X ∈ SN×N such that X[i,j] has rank one

and is PSD.

Theorem 6.2.18 Every 2× 2 PSD cone is maximal outer-product-free.

In [23] it is proven that for N = 2 every maximal outer-product-free sets is either a

halfspace, or the PSD cone (which corresponds to the single 2 × 2 PSD cone in this case).

However, for N ≥ 3 there exist other maximal outer-product-free sets.

6.2.3 Cutting plane procedure

From the previous section we can extract 4 families of intersection cuts, which are summarized

in Table 6.2. Since the 2× 2 cut will separate any rank two or greater PSD matrix, and the

outer approximation cuts will separate NSD or indefinite matrices, then the two families of

cuts can be considered complementary. Bshift provides a stronger cut than Boracle and can be

used alone or in combination with the other cuts.
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Cut Name S-free set Separation Condition

2× 2 Cut X[i,j] � 0 X̄[i,j] � 0

Outer Approximation Cut cTXc ≤ 0 X̄ NSD or indefinite

Oracle Ball Cut Boracle X̄ not an outer product

Strengthened Oracle Cut clcone(Bshift) X̄ not an outer product

Table 6.2: Proposed Intersection Cuts

In order to test the efficacy of these cuts, we construct a pure cutting plane procedure

that makes use of these intersection cuts. From equations (6.10) and (6.9) we observe most of

the complexity of finding the cuts of a given S-free set is to find the associated step-lengths

λ∗. In the case of the 4 families described above, the step-lengths can be computed using

closed-form expressions. This is one of the strongest features of these families, as finding

the corresponding cuts should not present a heavy computational burden. We specify how

to compute these next. In all cases we assume X̄ is matrix which is not an outer-product,

and as before we denote as λi and di its eigenvalues and eigenvectors, respectively, with

the eigenvalues sorted in decreasing order. We also assume we computed the rays D(k)

k = 1, . . . , N of the simplicial cone relaxation in matrix form.

6.2.3.1 Oracle Ball step-length

The outer-product-free set in this case is given by

Boracle(X̄) :=

 B(X̄, ‖X̄‖F ), if X̄ is NSD,

B(X̄, ‖
∑n

i=2 λidid
T
i ‖F ), otherwise.

Clearly the step-length in all directions will be given by the radius of the ball. Such

computation involves computing either ‖X̄‖F or ‖
∑n

i=2 λidid
T
i ‖F .
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6.2.3.2 Strengthened Oracle Ball step-length

The analysis to obtain the step-lengths associated with clcone(Bshift(X̄, s)) is more compli-

cated, and requires separating into several different cases according to Proposition 6.2.10.

We summarize these cases next. For details we refer the reader to the full-length paper [23].

• If X̄ is NSD, it can be proven that the conic extension of Bshift(X̄, ‖X̄‖F + ε) is a

halfspace tangent to the shifted ball, at the origin. The best possible cut is then the

halfspace:

〈X̄/‖X‖F , X〉 ≤ 0.

Hence, we do not require a step-length computation.

• If X̄ is not NSD, and λ2 is non-positive, then we may use the halfspace that contains

λ1d1d
T
1 on its boundary and that is perpendicular to the vector from X̄ to λ1d1d

T
1 . The

best possible cut is a halfspace:

〈X̄ − λ1d1d
T
1 , X − λ1d1d

T
1 〉 ≤ 0.

Again, we do not require a step-length computation.

• If X̄ is not NSD and λ2 is positive, we use the maximum shift of Proposition 6.2.10:

s = λ1
λ2

∥∥∑n
i=2 λidid

T
i

∥∥
F

. This gives us a shifted ball with center

XC := λ1d1d
T
1 +

λ1

λ2
(X̄ − λ1d1d

T
1 )

and radius

q :=
λ1

λ2

∥∥X̄ − λ1d1d
T
1

∥∥
F
.

Given a ray D(k), a simple computation can distinguish whether it is fully contained

on the cone or not. This is determined using the projection of the direction vector onto

the axis of the cone: 〈D(k), XC〉/‖XC‖F .

If the step length is finite, using geometric arguments we can prove that the step λ∗k

required to reach the boundary of cone(B(XC , q)) using ray D(k) satisfies the quadratic
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equation aλ2
k + bλk + c = 0, where

a := q2〈D(k), XC〉2/(‖XC‖2F − q2)− ‖Z4‖2F ,

b := 2q2〈X̄,XC〉〈D(k), XC〉/(‖XC‖2F − q2)− 2〈Z3, Z4〉,

c := q2〈X̄,XC〉2/(‖XC‖2F − q2)− ‖Z3‖2F ,

Z3 := ‖XC‖F X̄ − 〈X̄,XC〉XC/‖XC‖F ,

Z4 := ‖XC‖FD(k) − 〈D(k), XC〉XC/‖XC‖F .

λ∗k is equal to the positive root of this quadratic equation.

6.2.3.3 Outer Approximation step-length

From the discussion below Theorem 6.2.13, given a matrix X̄ 6� 0, a maximal outer-product-

free set can be computed directly using any negative eigenvalue of X̄ (and the corresponding

eigenvector) of X̄. This outer-product-free set will be a halfspace, and the corresponding

intersection cut can be obtained directly. Computing the step-lengths in this case is again

unnecessary, and the intersection cut coefficients computation rely only on the eigenvalue

decomposition of X̄.

6.2.3.4 2× 2 Cut step-length

Given X̄, in order to find a 2×2 PSD cone containing X̄ in its interior we first cycle through

all pairs 1 ≤ i 6= j ≤ N and check whether X̄[i,j] � 0 or not. This can be done by checking

X̄ii, X̄jj > 0 and X̄iiX̄jj > X̄2
ij .

If some pair i, j is such that X̄[i,j] � 0, then X̄ ∈ int(Ci,j) and the step-lengths can be

found using the 2 × 2 principal sub-matrices X̄[i,j] and D
(k)
[i,j] corresponding to X̄ and some

extreme ray direction D(k), respectively.

First suppose D
(k)
[i,j] 6� 0. Then we need to compute λk ≥ 0 such that X̄[i,j] + λkD

(k)
[i,j] lies

on the boundary of the 2×2 cone, i.e. its minimum eigenvalue is zero. For a 2×2 symmetric

matrix  a b

b c


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the minimum eigenvalue is given by

(a+ c−
√
a2 − 2ac+ 4b2 + c2)/2.

The eigenvalue is zero when ac = b2, a+ c ≥ 0. Applying this to X̄[i,j] +λkD
(k)
[i,j] we obtain

the following equation:

((D
(k)
ij )2 −D(k)

ii D
(k)
jj )λ2

k + (2D
(k)
ij X̄ij −D(k)

ii X̄jj −D(k)
jj X̄ii)λk + X̄2

ij − X̄iiX̄jj = 0.

The desired step length is given by the greater root of this quadratic equation with respect

to λk (the lesser root sets the maximum eigenvalue to zero).

In the case D
(k)
[i,j] � 0, X̄[i,j] +λkD

(k)
[i,j] is positive semidefinite for all nonnegative λk, which

yields an intersection at infinity.

Remark 6.2.19 If some extreme rays are fully contained in an outer-product-free set, then

the intersection cut can be strengthened by using negative step lengths λ∗j [42, 15, 14]. The

strengthening procedure involves changing one step-length at a time, which rotates the inter-

section cut in the axis defined by the other (n− 1) intersection points. See [23] for details on

how we can apply this procedure to our proposed families of outer-product-free sets.

6.2.4 Computational Experiments

We present numerical experiments using a pure cutting plane algorithm implementation of

the cuts described above. These experiments are meant to provide a sense on how useful the

cuts are, and not to be used as a complete polynomial optimization solver.

The cutting plane procedure follows the same structure as usual: we find a polyhedral

relaxation of S ∩ P and compute an extreme point optimal solution x̄. If x̄ 6∈ S ∩ P , we add

intersection cuts to the relaxation separating x̄, and repeat. In our implementation we used

the following stopping conditions:

• Time limit of 600 seconds

• Objective value not improving for 10 iterations

• Maximum violation of a cut not more than 10−8. Here, if πTx ≤ π0 is the cut, i.e, a

valid inequality such that πTx∗ > π0, we define the violation as

(πTx∗ − π0)/‖π‖1
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• Linear program becomes numerically unstable

The machine where the tests were made is a 20-core server with an Intel Xeon E5-2687W

v33.10GHz CPU and 264 GB of RAM. Even though these tests were performed in a computer

with high specifications, we confirmed that similar performance can be obtained with a laptop

of the same specifications as the Digitization cuts. The code is written in Python 2.7.13 using

the Anaconda 4.3 distribution. The linear programming solver is Gurobi 7.0.1 with default

settings. The code and full experimental data is available at https://github.com/g-munoz/

poly_cuts.

Test instances are taken from two sources. First, as in Digitization cuts, we include prob-

lem instances from GLOBALLib [82] that have quadratic objective and constraints. Second,

we include all 99 instances of BoxQP developed by several authors [106, 31]. As before, we

choose the initial LP relaxation to be the standard RLT relaxation of QCQP. Note that, un-

like the Digitization cuts, Intersection cuts do not need the epigraph reformulation to bring

non-linearities of the objective function to the constraints. To obtain variable bounds for

some of the GLOBALLib instances we apply a simple bound tightening procedure: mini-

mize/maximize a given variable subject to the RLT relaxation.

Results averaged over all included instances are shown in Table 6.3 for GLOBALLib and

Table 6.4 for BoxQP. Cut family indicates one of 5 cut configurations: Oracle Ball cuts (OB),

Strengthened Oracle cuts (SO), Outer Approximation cuts (OA), 2x2 cuts together with OA

(2x2 + OA), and finally 2x2, OA and SO cuts together (SO + 2x2 + OA). As before, let

OPT denote the optimal value of an instance (with objective minimized), RLT the optimal

value of the standard RLT relaxation, and GLB the objective value obtained after applying

the cutting plane procedure. Then the optimality gaps (per instance) are

Initial Gap =
OPT −RLT
|OPT |+ ε

,

End Gap =
OPT −GLB
|OPT |+ ε

,

Gap Closed =
GLB −RLT
OPT −RLT

.

https://github.com/g-munoz/poly_cuts
https://github.com/g-munoz/poly_cuts
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where ε := 1 is a parameter to avoid division by zero. The Initial Gap values are the same

irrespective of the cut configuration, so only one entry in the corresponding column is needed

on Table 6.3 and Table 6.4. Iters is the number of cutting plane algorithm iterations per

problem instance. Time is the total time in seconds spent by the algorithm. LPTime is the

percentage of total time spent solving linear programs.

Large initial gaps are observed due to our choice of a simple initial relaxation. It is also

important to mention that initial and end gaps averages are negatively affected by a few

instances with high gap, thus we also provide a distribution of outcomes in Table 6.6. Table

6.5 shows a distribution on the closed gaps, which we believe is a more appropriate measure

for comparing averages, as it is normalized to between 0% and 100%.

In the oracle-based cuts (OB and SO), we first observe what was expected: the strength-

ened oracle cuts produce better results than the basic oracle ball cuts. However, both families

exhibit tailing off behavior, which results in modest closed gaps. The 2×2+ OA configuration

provides substantially better performance compared to OB, SO, and OA, on GLOBALLib

instances, indicating the benefits of separating over the 2 × 2 family of cuts. OA produces

the best results in terms of average end gap and closed gap on BoxQP instances.

The small LPTime values indicate a relatively high percent of time spent in producing

cuts. This was counter-intuitive, as generating the cuts do not require complex computa-

tions. A closer inspection showed that the majority of the time was spent in linear algebra

operations (eigenvalue computations, norms, solving linear systems, etc). For these opera-

tions we rely on the NumPy library, thus our simple Python implementation is bound to

be as efficient as Python and NumPy, which are mainly built for scripting and not for high

performance computing. We strongly believe using a lower-level language should increase

efficiency drastically.

Per-instance data for 2× 2+OA can be found in Appendix D; for other configurations we

refer the reader to the online supplement mentioned at the beginning of this section. The

appendix also provides data showing that 2×2+OA offers comparable bounds at substantially

faster computation times compared to the V2 configuration of Saxena, Bonami, and Lee [97].

However, we emphasize that cuts are complementary and not competitive.
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Cut Family Initial Gap End Gap Closed Gap # Cuts Iters Time (s) LPTime (%)

OB 1387.92% 1387.85% 1.00% 16.48 17.20 2.59 2.06%

SO 1387.83% 8.77% 18.56 19.52 4.14 2.29%

OA 1001.81% 8.61% 353.40 83.76 33.25 7.51%

2x2 + OA 1003.33% 32.61% 284.98 118.08 30.40 15.03%

SO+2x2+OA 1069.59% 31.91% 174.79 107.16 29.55 12.56%

Table 6.3: Averages for GLOBALLib instances

Cut Family Initial Gap End Gap Closed Gap # Cuts Iters Time (s) LPTime (%)

OB 103.59% 103.56% 0.04% 12.84 13.62 127.15 0.40%

SO 103.33% 0.34% 14.34 15.45 132.07 0.49%

OA 30.88% 75.55% 676.90 137.52 459.28 31.80%

2x2 + OA 32.84% 74.52% 349.21 140.40 473.18 28.76%

SO+2x2+OA 33.43% 74.03% 227.39 136.93 475.38 26.59%

Table 6.4: Averages for BoxQP instances

GLOBALLib BoxQP

SO+2x2 SO+2x2

Closed Gap OB SO OA 2x2 + OA +OA OB SO OA 2x2 + OA +OA

>98% 0 1 0 3 3 0 0 37 37 37

90-98 % 0 1 1 2 1 0 0 16 15 15

75-90 % 0 0 0 0 0 0 0 14 11 10

50-75 % 0 0 1 3 4 0 0 13 15 15

25-50 % 0 0 1 4 4 0 0 5 7 8

<25 % 25 23 22 13 13 99 99 14 14 14

Table 6.5: Distribution of Closed Gaps for GLOBALLib and BoxQP
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GLOBALLib BoxQP

Initial 2x2 SO+2x2 Initial 2x2 SO+2x2

End Gap Gap OB SO OA + OA +OA Gap OB SO OA + OA +OA

<1 % 2 2 2 2 4 4 0 0 0 35 34 34

1 - 25 % 4 4 4 4 4 4 4 4 4 32 32 31

25-50 % 6 6 6 6 4 4 14 14 17 11 9 9

50-75 % 3 3 3 3 3 3 19 19 16 11 8 8

75-100 % 3 3 3 4 5 5 18 18 18 2 8 9

100-500 % 3 3 3 2 2 2 44 44 44 8 8 8

>500% 4 4 4 4 3 3 0 0 0 0 0 0

Table 6.6: Distribution of End Gaps for GLOBALLib and BoxQP
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Chapter 7

Conclusions

The development of new polynomial optimization techniques is a cornerstone in the expan-

sion of the current reach computational optimization has. A vast number of articles have

showed a significant shift towards handling non-linear and non-convex expressions not only

from a theoretical standpoint, but also from the need of solving important real-word appli-

cation such as the AC-OPF problem. The gap between theory and computations related to

polynomial optimization problems seems to be decreasing, and we expect this work can help

in this regard by boosting a synergy between mixed-integer programming and polynomial

optimization.

We showed how useful this approach can be in the AC-OPF and ACTS problems. These

are difficult nonlinear, non-convex optimization problems with an important impact in our

daily lives. By introducing mixed-integer programming techniques that yield simple relax-

ations, we are able to address problems quickly and effectively. Even though there is a loss

in expressiveness by only limiting ourselves to LP formulations, there is a large gain in terms

on numerical reliability and speed, and furthermore, these methodologies can also be of use

alongside other frameworks such as SDP or SOCP.

We expect this approach can also be of use in Power Systems problems that involve

renewable energy sources. One can envision models that merge AC-OPF models with elab-

orate uncertainty models arising from the presence of alternative energy sources, however,

the current computational boundaries in optimization can hinder the development of them.
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Counting with quick procedures in the classical problems can make the transition to complex

models involving renewable sources more manageable.

From a more abstract perspective, our thorough study on the effect on structured sparsity

on polynomial problems given by tree-width provided strong results regarding how far we can

go using LP formulations, and even though some extra machinery is needed to bring this to

practice, we provided an important contribution in terms of analyzing much can tree-width be

exploited in a very general setting. There are two main questions that arise from this. First,

is there another graph-theoretical structure we can grasp on in general? More specifically,

if there is a family of instances whose intersection graphs have unbounded tree-width, can

we expect to solve them efficiently? The work of [34] shows that in the pure binary case the

answer is negative, and we strongly believe this is also the case for our approximation results

in the continuous setting. The second question is related to how tight the sizes of our LP

approximations are. It would be interesting to show some examples where the sizes given in

our results cannot be improved.

The introduction of Network Polynomial Optimization problems, and the study of their

tractability with respect to the structured sparsity of the underlying network, also presents

a significant contribution. This concept encompasses many classical optimization problem,

and can provide a unified framework for the study of them; our tractability result being an

important example of this. This result provides a glimpse on how much can be achieved,

even in a fairly generic setting.

Finally, the proposed cutting plane procedures for Polynomial Optimization we studied

provide an interesting approach to quickly compute bounds of challenging problems without

assuming much about their structure. These approaches are flexible enough so we can easily

extend an build upon them. We expect they can be further exploited and blended into more

elaborate solution methods such as branching.

In general, we were able to give an in-depth study on the reach of mixed-integer program-

ming techniques in Polynomial Optimization. And we believe this is only a starting point.

From both a theoretical and computational standpoint we see an important contribution,

providing novel insights into the Polynomial Optimization field, and hopefully giving a boost

into the computational aspects of it.
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Appendix A

Extra details for Chapter 2

A.1 Derivation of General Case

Here we specify the derivation of the formulas (2.42) and (2.43) for general case of a line

with a transformer and/or nonzero shunts. We assume the transformer is on the k side of

line {k,m} and we drop the subscripts to simplify notation. In this case we have

Ikm =
1

τ
y

[
1

τ
Vk − ejσVm

]
+

1

2τ2
yshVk

=
1

τ
y

[
1

τ
Vk − (cosσ + j sinσ)Vm

]
+

1

2τ2
(gsh + jbsh)Vk.

In rectangular coordinates this can be further expanded as

Ikm =
1

τ
(g + jb)

[
1

τ
(ek + jfk)− (cosσ + j sinσ)(em + jfm)

]
+

1

2τ2
(gsh + jbsh)(ek + jfk)

=
1

τ
(g + jb)

[
1

τ
(ek + jfk)− em cosσ + fm sinσ − j(em sinσ + fm cosσ)

]
+

1

2τ2

[
gshek − bshfk + j(bshek + gshfk)

]
=

1

τ
(g + jb)

[
1

τ
ek − em cosσ + fm sinσ + j(

1

τ
fk − em sinσ − fm cosσ)

]
+

1

2τ2

[
gshek − bshfk + j(bshek + gshfk)

]
.
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From this expression we obtain:

Re Ikm =
g

τ

[ek
τ
− em cosσ + fm sinσ

]
− b

τ

[
1

τ
fk − em sinσ − fm cosσ

]
+

1

2τ2

[
gshek − bshfk

]
, (A.1)

Im Ikm =
b

τ

[ek
τ
− em cosσ + fm sinσ

]
+
g

τ

[
1

τ
fk − em sinσ − fm cosσ

]
+

1

2τ2

[
bshek + gshfk

]
. (A.2)

We can easily verify that in the “no-transformer” case, i.e. τ = 1 and σ = 0, (A.1) and

(A.2) match the expansion (2.30) for Ikm, as desired. As a result,

Pkm = ReVkI
∗
km

= ek

{
g

τ

[ek
τ
− em cosσ + fm sinσ

]
− b

τ

[
1

τ
fk − em sinσ − fm cosσ

]}
+ fk

{
b

τ

[ek
τ
− em cosσ + fm sinσ+

]
+
g

τ

[
1

τ
fk − em sinσ − fm cosσ

]}
+
gsh

2τ2
(e2
k + f2

k ).

This can be rewritten as

Pkm =
1

τ

[ek
τ
− em cosσ

]
(g , b)(ekfk) +

1

τ

[
1

τ
fk − fm cosσ

]
(−b , g)(ekfk)

+
gsh

2τ2
(e2
k + f2

k )

+
gekfm + bekem + bfkfm − gfkem

τ
sinσ. (A.3)

Note that in (A.3) the third term vanishes when there is no transformer, and the second

term vanishes when there is no shunt conductance. Thus, in the no-transformer case this

expression evaluates to

(ek − em)(g , b)(ekfk) + (fk − fm)(−b , g)(ekfk) +
gsh

2
(e2
k + f2

k )
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which is the same as (2.31), as desired. We can further rewrite (A.3) as

Pkm =
1

τ

[ek
τ
− em cosσ + fm sinσ

]
(g , b)(ekfk)

+
1

τ

[
1

τ
fk − fm cosσ − em sinσ

]
(−b , g)(ekfk)

+
gsh

2τ2
(e2
k + f2

k ). (A.4)

This is equation (2.42) given above.

Next we compute an expression for Pmk. If there is a transformer present, the expressions

are not symmetric and we first need to compute Imk.

Imk = − 1

τejσ
yVk +

(
y +

ysh

2

)
Vm (A.5)

= − 1

τ
(cosσ − j sinσ)(g + jb)(ek + jfk)

+
(
g + gsh/2 + j(b+ bsh/2)

)
(em + jfm)

= − 1

τ
(g + jb) [ek cosσ + fk sinσ + j(−ek sinσ + fk cosσ)]

+ (g + gsh/2)em − (b+ bsh/2)fm + j
[
(b+ bsh/2)em + (g + gsh/2)fm

]
. (A.6)

Therefore,

Re Imk = − g

τ
[ek cosσ + fk sinσ] +

b

τ
[−ek sinσ + fk cosσ]

+ (g + gsh/2)em − (b+ bsh/2)fm, and (A.7)

Im Imk = − g

τ
[−ek sinσ + fk cosσ]− b

τ
[ek cosσ + fk sinσ]

+ (b+ bsh/2)em + (g + gsh/2)fm. (A.8)

Finally, following the power flow equations we obtain

Pmk = ReVmI
∗
mk

= em

{
−g
τ

[ek cosσ + fk sinσ] +
b

τ
[−ek sinσ + fk cosσ]

}
+ fm

{
−g
τ

[−ek sinσ + fk cosσ]− b

τ
[ek cosσ + fk sinσ]

}
+ (g + gsh/2)(e2

m + f2
m)
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=

[
em −

1

τ
ek cosσ

]
(g , b)(emfm) +

[
fm −

1

τ
fk cosσ

]
(−b , g)(emfm)

+
gsh

2
(e2
m + f2

m)

+
−gemfk − bfmfk − bemek + gfmek

τ
sinσ

=

[
em −

1

τ
ek cosσ − 1

τ
fk sinσ

]
(g , b)(emfm) +

[
fm −

1

τ
fk cosσ +

1

τ
ek sinσ

]
(−b , g)(emfm)

+
gsh

2
(e2
m + f2

m), (A.9)

which is equation (2.43). We now turn to the representation of Pkm and Pmk using polar

coordinates.

Skm = VkI
∗
km = Vk

(
1

τ2
V ∗k −

1

τ
e−jσV ∗m

)
y∗ +

1

2τ2
(gsh − jbsh)VkV

∗
k (A.10)

= Vk

(
1

τ2
V ∗k −

1

τ
e−jσV ∗m

)
(g − jb) +

1

2τ2
(gsh − jbsh)VkV

∗
k

= |Vk|2
g

τ2
− |Vk||Vm|

g

τ
cos(θkm − σ)− |Vk||Vm|

b

τ
sin(θkm − σ) +

gsh

2τ2
|Vk|2

+ j

[
−|Vk|2

b

τ2
+ |Vk||Vm|

b

τ
cos(θkm − σ)− |Vk||Vm|

g

τ
sin(θkm − σ)− bsh

2τ2
|Vk|2

]
.

Similarly,

Smk = |Vm|2g − |Vk||Vm|
g

τ
cos(θmk + σ)− |Vk||Vm|

b

τ
sin(θmk + σ) +

gsh

2
|Vm|2

+ j

[
−|Vm|2b+ |Vk||Vm|

b

τ
cos(θmk + σ)− |Vk||Vm|

g

τ
sin(θmk + σ)− bsh

2
|Vm|2

]
.

Hence the active power loss equals

Pkm + Pmk

=

(
|Vk|2

τ2
+ |Vm|2

)
g − 2g

|Vk|
τ
|Vm| cos(θkm − σ) +

gsh

2τ2
|Vk|2 +

gsh

2
|Vm|2. (A.11)

Relaxing this to an inequality, and using the lifted variables V
(2)
k , we obtain

Pkm + Pmk ≥
(
|Vk|2

τ2
+ |Vm|2

)
g − 2g

|Vk|
τ
|Vm| cos(θkm − σ) +

gsh

2

(
V

(2)
k

τ2
+ V (2)

m

)

=

(
|Vk|2

τ2
+ |Vm|2

)
g − 2g

|Vk|
τ
|Vm| cos(θkm) cos(σ)

+ 2g
|Vk|
τ
|Vm| sin(θkm) sin(σ) +

gsh

2

(
V

(2)
k

τ2
+ V (2)

m

)



APPENDIX A. EXTRA DETAILS FOR CHAPTER 2 135

Thus, in order to prove the validity of (2.46) it suffices to show(
em −

1

τ
ek cosσ − 1

τ
fk sinσ

)2

+

(
fm −

1

τ
fk cosσ +

1

τ
ek sinσ

)2

(A.12)

=

(
|Vk|2

τ2
+ |Vm|2

)
− 2
|Vk|
τ
|Vm| cos(θkm) cos(σ) + 2

|Vk|
τ
|Vm| sin(θkm) sin(σ)

As e2
k + f2

k = |Vk|2, it can be easily seen that the term |Vk|2
τ2

+ |Vm|2 corresponds to the

pure quadratics terms in the expansion of (A.12). Thus, we only need to argue that

− |Vk|
τ
|Vm| cos(θkm) cos(σ) +

|Vk|
τ
|Vm| sin(θkm) sin(σ)

= − 1

τ
emek cosσ − 1

τ
emfk sinσ +

1

τ2
ekfk cosσ sinσ

− 1

τ
fmfk cosσ +

1

τ
fmek sinσ − 1

τ
ekfk cosσ sinσ

Which can be easily verified to be true. This concludes the proof of (2.46).

The details of the proof mentioned in the main body are as follows: consider point k1

in Figure 2.1. The power injection into the line, at k1, is equal to Pkm (i.e. it equals

Vk
N (N ∗ Ikm)∗ = VkI

∗
km = Pkm). Moreover by construction the voltage magnitude at k1 equals

|Vk|/τ and the phase angle difference from k1 to m equals θkm − σ. We can now recover

(A.11) from (2.20), with the last two terms account for shunts, as when deriving (2.35).

A.2 Proof of Theorem 2.4.4

Here we provide a proof of Theorem 2.4.4. For convenience of the reader we restate the

Theorem and the relevant definitions:

Definition 2.4.2 Let G be an undirected graph. A pseudo-flow is a vector P that assigns to

each edge {k,m} of G two reals, Pkm and Pmk. For any node k of G we write

δk
.
= set of nodes of G adjacent to k

and

ok(P )
.
=

∑
m∈δk

Pkm.
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We call ok(P ) the net output of k. We say that k is a source if ok(P ) > 0 and is a sink if

ok(P ) < 0. Likewise, an edge {k,m} is termed a sink-edge (or source-edge) if

Pkm + Pmk > 0 or, respectively Pkm + Pmk < 0.

Theorem 2.4.4 Let G be a graph and P be a pseudo-flow on G. Then

∑
k : ok(P )>0

ok(P ) =
∑

k : ok(P )<0

(−ok(P )) +
∑
{k,m}

(Pkm + Pmk).

Furthermore, P can be decomposed into directed flow paths, each originating at a source or

source-edge and terminating at a sink or sink-edge.

Proof: We obtain a directed graph D and a flow f on D as follows. First, we subdivide

each edge e = {k,m} of G by introducing a new node ve. Moreover

• If Pkm ≥ 0 the edge between k and e is directed from k to e and we write fke = Pkm.

• If Pkm < 0 we direct the edge from e to k and we set fek = −Pkm.

It follows that f ≥ 0. Moreover, for any node v of D write

δ+
v = set of arcs of D of the form (v, v′),

δ−v = set of arcs of D of the form (v′, v).

Then for any node k of G

ok(P ) =
∑

a∈δ+(k)

fa −
∑

a∈δ−(k)

fa

while for any edge e = {k,m} of G,

Pkm + Pmk =
∑

a∈δ+(e)

fa −
∑

a∈δ−(e)

fa.

Thus k is a source (sink) of P in G if and only if

∑
a∈δ+(k)

fa −
∑

a∈δ−(k)

fa > 0 (< 0 resp.)
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and edge e = {k,m} of G is a sink-edge (source-edge) for P if and only if

∑
a∈δ+(e)

fa −
∑

a∈δ−(e)

fa > 0 (< 0 resp.)

The theorem now follows from standard network flow concepts [1].
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Appendix B

Extra details for Chapter 3

B.1 Proof of part (b) of Theorem 3.2.3

Here we describe a procedure that constructs formulation LPz or LP-GB which requires

O(2ωm) oracle queries and with additional workload Õ(ωn2ω(m+ω)), as per Theorem 3.2.3

(b). Here, as per the formulation, we have a tree-decomposition (T,Q) of the intersection

graph of a problem GB, of width ω. The critical element in the procedure is the construction

of the sets Ft of Definition 3.5.1, and we remind the reader that for 1 ≤ i ≤ m constraint i

has support Ki and the set of feasible solutions for constraint i is indicated by Si ⊆ {0, 1}Ki .

Note that |Ki| ≤ ω + 1 for all i. The procedure operates as follows:

1. For each constraint i, enumerate each partition of Ki. Given a partition (A1, A0) if the

vector y ∈ {0, 1}Ki defined by yj = k if j ∈ Ak (k = 0, 1) is such that y /∈ Si (i.e., not

feasible) then we record the triple (i, A1, A0) as a vector of length |Ki|+ 1 (with some

abuse of notation). This process requires 2|Ki| oracle queries. This sum of all these

quantities is O(2ωm) but the more precise estimate will be needed.

2. Let L be the list of all vectors recorded in Step 1, sorted lexicographically; first by the

index i, then by A1 and then by A0. After post-processing if necessary, we can assume

that L contains no duplicates. These can be performed in time

O(ω|L| log |L|) = O(2ωm(ω + logm)).
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3. For each t ∈ V (T ) construct a list of all constraints i such that Ki ⊆ Qt. This can be

done in time O(ωmn).

4. For each t ∈ V (T ) we form the sub-list of L consisting of all vectors (i, A1, A0) (con-

structed in Step 1) such that Ki ⊆ Qt. Note that for any such i the total number of

such vectors is at most 2|Ki|. Given a vector (i, A1, A0) thus enumerated, we form all

vectors of the form (A′1, A
′
0) such that A′1 ∪ A′0 = Qt and Ak ⊆ A′k for k = 0, 1. Let

Lt be the list of all vectors obtained this way. Clearly, |Lt| ≤ 2ω| {i : Ki ⊆ Qt} |. We

lexicographically sort Lt.

5. For each t ∈ V (T ) we enumerate all vectors y ∈ {0, 1}Qt . For any such vector y, we have

that y ∈ Ft if and only if y is not found in the list Lt; and this test can be performed

in time O(ω log |Lt|) after lexicographically sorting the list.

The total amount of work entailed in Step 4, using |Qt| ≤ ω + 1 for each t ∈ V (T ), is

O

(∑
t

ω|Lt| log |Lt|

)
= Õ

(
2ωω

∑
t

| {i : Ki ⊆ Qt} |

)
.

Likewise, Step 5 requires O(ω2ω
∑

t log |Lt|) = Õ(nω22ω). This completes the proof.
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Appendix C

Extra details for Chapter 4

C.1 Scaled feasiblity in Theorem 4.1.2

In this section we will prove that the ε-scaled characteristic of Theorem 4.1.2 cannot be

avoided in general.

Suppose that there is an algorithm A such that any PO, whose intersection graph has

tree-width ≤ 2, can be solved in polynomial time to some given feasibility tolerance ε < 1.

That is to say, the algorithm guarantees fi(x) ≥ −ε for any constraint fi(x) ≥ 0 (as opposed

to the ε-scaled feasibility notion). Note that since ε is fixed in this case, the formulation in

Theorem 4.1.2 yields an algorithm that runs in polynomial time (see the result on Theorem

3.2.3 for the time it takes to build the LP formulation) but with a weaker approximation

guarantee than the hypothetical algorithm A.

We claim that the existence of algorithm A implies P = NP. Consider the subset-sum

problem: given n ≥ 2 positive integers a1, . . . , an find I ⊆ {1, . . . , n} such that
∑

j∈I aj =∑
j /∈I aj . Denoting

S
.
=

1

2

n∑
j=1

aj and M
.
= 4nS,

the subset-sum problem can be cast as the following (pure feasibility) PO:

MSy1 = Ma1x1, (C.1a)

MSyi = Maixi + MSyi−1, 2 ≤ i ≤ n, (C.1b)

Myn = M, (C.1c)
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Mxj(1− xj) = 0, 1 ≤ j ≤ n, (C.1d)

0 ≤ yj ≤ 1, 1 ≤ j ≤ n, (C.1e)

0 ≤ xj ≤ 1, 1 ≤ j ≤ n. (C.1f)

Given a solution (x, y) to (C.1) it is clear that x ∈ {0, 1}n and that
∑

j ajxj = 1
2

∑n
j=1 aj .

Moreover, the intersection graph of (C.1) has tree-width 2.

By assumption, algorithm A will produce a solution (x̂, ŷ) that violates each of the con-

straints (C.1a)-(C.1d) by at most ε and that satisfies (C.1e)-(C.1f). Then adding (C.1a)-

(C.1c) yields ∣∣∣∣∣∣
n∑
j=1

aj x̂j − S

∣∣∣∣∣∣ ≤ εn

M
. (C.2)

Moreover, by (C.1d) and (C.1f) for each 1 ≤ j ≤ n,

either 0 ≤ x̂j ≤ 2ε
M or 1− 2ε

M ≤ x̂j ≤ 1.

This follows from the fact g(x) = x(1−x) is strictly increasing in [0, 1/2), strictly decreasing

in (1/2, 1], and g(2ε/M) > ε/M . Thus, suppose we round each x̂j to the nearest integer,

obtaining binary values x̃j for 1 ≤ j ≤ n. Using (C.2) we obtain∣∣∣∣∣∣
n∑
j=1

aj x̃j − S

∣∣∣∣∣∣ ≤ εn

M
+

 n∑
j=1

aj

 2ε

M
=
εn

M
+

4Sε

M

and therefore ∣∣∣∣∣∣
n∑
j=1

aj x̃j − S

∣∣∣∣∣∣ < 1.

Since the left hand side of the inequality must be an integer, we conclude that

n∑
j=1

aj x̃j = S.

This proves that, unless P = NP , algorithm A does not exist.

C.2 LP size dependency on ε of Theorem 4.1.2

Now we will prove that the dependency on ε−1 of the resulting LP size cannot be improved

in general. Suppose that there is an algorithm A that, for any ε < 1, solves PO problems to
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ε-scaled tolerance (i.e. the violation of any constraint fi(x) ≥ 0 is at most ε‖f‖1) but whose

running time is polynomial, i.e. in particular it depends polynomially on log ε−1. This is in

contrast with the formulation in Theorem 4.1.2 yields an algorithm that runs time polynomial

on n, m and ε−1. Consider an unscaled version of the previous formulation of the subset-sum

problem, i.e:

Sy1 = a1x1, (C.3a)

Syi = aixi + Syi−1, 2 ≤ i ≤ n, (C.3b)

yn = 1, (C.3c)

xj(1− xj) = 0, 1 ≤ j ≤ n, (C.3d)

0 ≤ yj ≤ 1, 1 ≤ j ≤ n, (C.3e)

0 ≤ xj ≤ 1, 1 ≤ j ≤ n. (C.3f)

Define ε = 1/(3SM) and use algorithm A to find a solution (x̂, ŷ) that is ε-scaled feasible.

Since the 1-norm of any polynomial in constraints (C.3) is at most 2S + 1, we get that for

each constraint fi(x, y) ≥ 0

fi(x̂, ŷ) ≥ −ε‖fi‖1 ≥ −ε(2S + 1) ≥ 1

M

This way we can reuse the same argument as before to obtain a solution to the subset-sum

problem. Since we assume the running time depends on log(ε−1) we get a running time that

depends polynomially on log(nS) yielding the same contradiction as before.
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Appendix D

Supplementary Experiments on

Intersection Cuts

Table D.1 details results for GLOBALLib instances using the 2× 2+OA configuration; Table

D.2 shows results for BoxQP instances. OPT is the best known primal solution. RLT is the

standard RLT relaxation optimal value. RLT-BT is the RLT optimal value after applying

bound tightening (only applied to GLOBALLib instances). Final LB is the final lower bound

obtained by the cutting plane algorithm. OA and 2×2 are the number of outer approximation

and 2× 2 cuts added in total, respectively. All other columns are as described in Table 6.2.4.

Table D.3 and Table D.1 compare the 2×2+OA configuration with the reported values of

algorithm V2 by Saxena, Bonami, and Lee [97, 98]. For certain instances of GLOBALLib we

did not obtain the same initial bound and thus excluded these from comparison. For BoxQP

we start with a weak RLT relaxation (with optimal values in the wRLT column of Table D.1)

to match the setup of Saxena et al. Furthermore, result for V2 were reported only for the

smaller instances of BoxQP. V2 uses a RLT relaxation for QCQP problems and applies two

types of cuts in standard cutting plane algorithm fashion. The first is an outer-approximation

of the PSD constraint of Shor’s relaxation; these are convex quadratic cuts unlike the linear

cuts we are adding with OA and hence provide stronger but more expensive approximations

of SDP+RLT. The second is disjunctive cuts for which the separation procedure involves a

mixed-integer linear program.
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On GLOBALLib instances our algorithm terminates with slightly smaller gap closed on

average, with much smaller running times. In Table D.1 we run the 2× 2+OA configuration

with both 600 and 3600 second time limits. Due to the strong performance of RLT+SDP

on these BoxQP instances, much of the difference could be attributed to differences in the

outer-approximation methods used for the PSD constraint.



A
P

P
E

N
D

IX
D

.
S

U
P

P
L

E
M

E
N

T
A

R
Y

E
X

P
E

R
IM

E
N

T
S

O
N

IN
T

E
R

S
E

C
T

IO
N

C
U

T
S

145

Instance OPT RLT RLT-BT Final LB Initial Gap End Gap Gap Closed OA 2x2 Iters Time LPTime

Ex2 1 1 -17.00 -18.90 -18.90 -17.89 10.6% 4.9% 53.2% 8 228 67 0.41 2.4%

Ex2 1 5 -268.01 -269.45 -269.08 -268.01 0.4% 0.0% 99.6% 2 12 4 0.14 0.0%

Ex2 1 6 -39.00 -44.40 -40.94 -39.04 5.1% 0.1% 97.8% 5 132 39 0.64 1.6%

Ex2 1 7 -4150.41 -13698.36 -5820.01 -5085.63 40.2% 22.5% 44.0% 90 127 52 7 1.0%

Ex2 1 8 15639.00 -82460.00 14439.00 15626.96 7.7% 0.1% 99.0% 222 73 59 13.82 7.2%

Ex2 1 9 -0.38 -2.20 -2.20 -1.66 131.9% 92.5% 29.9% 1400 891 474 36.9 69.8%

Ex3 1 1 7049.25 2533.20 2766.73 2788.77 60.7% 60.4% 0.5% 149 141 58 1.11 37.8%

Ex3 1 2 -30665.54 -30802.76 -30709.10 -30665.55 0.1% 0.0% 100.0% 4 8 5 0.03 0.0%

Ex3 1 3 -310.00 -310.00 -310.00 - - - - - - - - -

Ex3 1 4 -4.00 -6.00 -6.00 -5.41 40.0% 28.2% 29.5% 39 228 69 0.26 7.7%

Ex5 2 2 case1 -400.00 -599.90 -599.90 -598.97 49.9% 49.6% 0.5% 417 353 154 4.65 47.7%

Ex5 2 2 case2 -600.00 -1200.00 -1200.00 -1200.00 99.8% 99.8% 0.0% 27 28 11 0.3 3.3%

Ex5 2 2 case3 -750.00 -875.00 -874.80 -873.60 16.6% 16.5% 1.0% 188 182 74 1.67 37.7%

Ex5 2 4 -450.00 -2933.33 -2933.33 -2224.97 550.6% 393.6% 28.5% 402 744 256 3.66 15.6%

Ex5 2 5 -3500.00 -9700.00 -9700.00 -9700.00 177.1% 177.1% 0.0% 38 17 11 5.64 2.8%

Ex5 3 2 1.86 1.00 1.00 1.00 30.1% 30.1% 0.0% 38 17 11 1.97 1.5%

Ex5 3 3 3.23 1.63 1.63 1.68 37.9% 36.7% 3.1% 52 3 11 57.97 2.0%

Ex5 4 2 7512.23 2598.25 3010.67 3022.14 59.9% 59.8% 0.3% 94 81 35 0.57 22.8%

Ex8 4 1 0.62 -4.75 -3.84 -0.84 275.1% 90.0% 67.3% 5357 28 1077 600.69 63.8%

Ex9 1 4 -37.00 -63.00 -62.96 -62.85 68.3% 68.0% 0.4% 389 421 162 3.84 21.1%

Ex9 2 1 17.00 -16.00 1.00 1.00 88.9% 88.9% 0.0% 21 34 11 0.25 0.0%

Ex9 2 2 100.00 -50.00 66.67 89.79 33.0% 10.1% 69.4% 297 348 129 2.62 11.8%

Ex9 2 3 0.00 -30.00 -30.00 -30.00 3000.0% 3000.0% 0.0% 35 19 11 0.88 1.1%

Ex9 2 4 0.50 -597.00 -296.50 -296.50 19800.0% 19800.0% 0.0% 25 30 11 0.22 0.0%

Ex9 2 6 -1.00 -406.00 -201.50 -18.31 10025.2% 865.5% 91.4% 623 127 150 14.37 16.8%
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Ex9 2 7 17.00 -16.00 1.00 1.00 88.9% 88.9% 0.0% 21 34 11 0.3 0.0%

Ex9 2 8 1.50 0.50 1.50 - - - - - - - - -

Table D.1: Detailed results for 2x2 + OA on GLOBALLib instances
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Instance OPT RLT Initial Gap End Gap Gap Closed OA 2x2 Iters Time LPTime %

spar020-100-1 -706.50 -1066.00 50.81% 0.01% 99.97% 121 63 37 5.64 6.91%

spar020-100-2 -856.50 -1289.00 50.44% 0.10% 99.80% 360 146 102 16.87 14.82%

spar020-100-3 -772.00 -1168.50 51.29% 0.00% 100.00% 30 5 7 1.23 5.69%

spar030-060-1 -706.00 -1454.75 105.91% 1.13% 98.94% 3450 15 693 600.35 58.32%

spar030-060-2 -1377.17 -1699.50 23.39% 0.00% 99.99% 93 77 34 13.41 9.55%

spar030-060-3 -1293.50 -2047.00 58.21% 0.37% 99.36% 2074 470 521 557.87 68.14%

spar030-070-1 -654.00 -1569.00 139.69% 2.87% 97.94% 3402 18 684 601.30 60.23%

spar030-070-2 -1313.00 -1940.25 47.74% 0.00% 99.99% 160 73 47 19.61 11.32%

spar030-070-3 -1657.40 -2302.75 38.91% 0.01% 99.97% 459 203 135 57.93 20.40%

spar030-080-1 -952.73 -2107.50 121.08% 1.31% 98.92% 3274 66 668 601.38 60.68%

spar030-080-2 -1597.00 -2178.25 36.37% 0.00% 100.00% 65 20 17 7.18 6.55%

spar030-080-3 -1809.78 -2403.50 32.79% 0.00% 99.99% 71 26 20 8.42 6.18%

spar030-090-1 -1296.50 -2423.50 86.86% 0.01% 99.99% 355 137 102 42.96 20.25%

spar030-090-2 -1466.84 -2667.00 81.76% 0.01% 99.99% 335 90 89 39.40 20.76%

spar030-090-3 -1494.00 -2538.25 69.85% 0.00% 99.99% 118 74 40 16.25 11.45%

spar030-100-1 -1227.13 -2602.00 111.95% 0.01% 99.99% 756 60 165 79.32 27.84%

spar030-100-2 -1260.50 -2729.25 116.43% 0.02% 99.99% 1808 222 410 257.54 44.54%

spar030-100-3 -1511.05 -2751.75 82.05% 0.15% 99.82% 793 354 234 121.12 33.78%

spar040-030-1 -839.50 -1088.00 29.57% 0.00% 99.99% 945 77 205 270.48 45.74%

spar040-030-2 -1429.00 -1635.00 14.41% 0.00% 99.99% 693 110 165 188.59 37.53%
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spar040-030-3 -1086.00 -1303.25 19.99% 0.00% 99.99% 986 114 220 305.45 46.79%

spar040-040-1 -837.00 -1606.25 91.80% 6.16% 93.29% 1669 26 339 600.73 60.30%

spar040-040-2 -1428.00 -1920.75 34.48% 0.00% 99.99% 418 112 111 115.38 32.72%

spar040-040-3 -1173.50 -2039.75 73.75% 2.44% 96.69% 1591 24 323 602.73 62.16%

spar040-050-1 -1154.50 -2146.25 85.83% 2.07% 97.59% 1659 16 335 602.55 60.50%

spar040-050-2 -1430.98 -2357.25 64.68% 0.63% 99.03% 1775 10 357 602.23 57.78%

spar040-050-3 -1653.63 -2616.00 58.16% 0.41% 99.30% 1658 7 333 600.21 61.12%

spar040-060-1 -1322.67 -2872.00 117.05% 4.77% 95.92% 1667 18 337 602.26 61.10%

spar040-060-2 -2004.23 -2917.50 45.54% 0.00% 100.00% 984 48 207 268.05 45.09%

spar040-060-3 -2454.50 -3434.00 39.89% 0.00% 100.00% 165 64 47 42.73 13.95%

spar040-070-1 -1605.00 -3144.00 95.83% 0.00% 100.00% 1353 79 288 426.26 51.88%

spar040-070-2 -1867.50 -3369.25 80.37% 0.00% 100.00% 853 60 187 232.35 41.41%

spar040-070-3 -2436.50 -3760.25 54.31% 0.00% 99.99% 1368 159 313 448.92 50.06%

spar040-080-1 -1838.50 -3846.50 109.16% 0.06% 99.94% 1649 11 332 602.62 61.57%

spar040-080-2 -1952.50 -3833.00 96.26% 0.00% 100.00% 985 85 215 277.94 44.40%

spar040-080-3 -2545.50 -4361.50 71.31% 0.03% 99.96% 1776 179 391 601.69 54.47%

spar040-090-1 -2135.50 -4376.75 104.90% 0.07% 99.93% 1737 8 349 602.56 59.09%

spar040-090-2 -2113.00 -4357.75 106.18% 0.15% 99.86% 1789 1 358 601.22 58.01%

spar040-090-3 -2535.00 -4516.75 78.14% 0.00% 100.00% 441 117 117 118.24 27.11%

spar040-100-1 -2476.38 -5009.75 102.26% 0.00% 100.00% 808 92 183 228.66 42.57%

spar040-100-2 -2102.50 -4902.75 133.12% 0.64% 99.52% 1687 3 338 600.02 60.07%



A
P

P
E

N
D

IX
D

.
S

U
P

P
L

E
M

E
N

T
A

R
Y

E
X

P
E

R
IM

E
N

T
S

O
N

IN
T

E
R

S
E

C
T

IO
N

C
U

T
S

149
spar040-100-3 -1866.07 -5075.75 171.91% 4.35% 97.47% 1617 13 326 600.11 61.83%

spar050-030-1 -1324.50 -1858.25 40.27% 2.31% 94.27% 925 15 188 603.07 52.48%

spar050-030-2 -1668.00 -2334.00 39.90% 4.45% 88.84% 936 14 190 601.47 52.07%

spar050-030-3 -1453.61 -2107.25 44.94% 7.22% 83.94% 911 14 185 600.67 53.98%

spar050-040-1 -1411.00 -2632.00 86.47% 7.56% 91.26% 906 19 185 602.20 51.35%

spar050-040-2 -1745.76 -2923.25 67.41% 5.23% 92.24% 919 11 186 602.88 53.03%

spar050-040-3 -2094.50 -3273.50 56.26% 1.09% 98.07% 890 5 179 603.93 50.85%

spar050-050-1 -1198.41 -3536.00 194.89% 50.26% 74.21% 920 65 197 601.70 49.24%

spar050-050-2 -1776.00 -3500.50 97.05% 8.48% 91.26% 968 22 198 602.63 50.32%

spar050-050-3 -2106.10 -4119.75 95.56% 6.83% 92.86% 888 17 181 603.60 54.05%

spar060-020-1 -1212.00 -1757.25 44.95% 44.95% 0.00% 54 1 11 43.39 2.72%

spar060-020-2 -1925.50 -2238.25 16.23% 16.23% 0.00% 52 3 11 42.36 3.05%

spar060-020-3 -1483.00 -2098.75 41.49% 16.44% 60.38% 551 24 115 600.17 45.57%

spar070-025-1 -2538.91 -3832.75 50.94% 17.53% 65.58% 354 36 78 603.14 31.70%

spar070-025-2 -1888.00 -3248.00 72.00% 34.35% 52.29% 355 35 78 600.63 30.92%

spar070-025-3 -2812.28 -4167.25 48.16% 13.91% 71.12% 346 39 77 609.45 32.52%

spar070-050-1 -3252.50 -7210.75 121.66% 18.93% 84.44% 350 35 77 609.62 30.01%

spar070-050-2 -3296.00 -6620.00 100.82% 14.28% 85.84% 355 25 76 607.55 30.33%

spar070-050-3 -4306.50 -7522.00 74.65% 3.60% 95.17% 364 16 76 605.96 29.81%

spar070-075-1 -4655.50 -11647.75 150.16% 12.75% 91.51% 357 13 74 603.94 30.52%

spar070-075-2 -3865.15 -10884.75 181.57% 19.27% 89.39% 350 15 73 600.17 29.43%
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spar070-075-3 -4329.40 -11262.25 160.10% 15.57% 90.27% 343 37 76 601.31 27.61%

spar080-025-1 -3157.00 -4840.75 53.32% 25.75% 51.71% 224 21 49 603.39 20.23%

spar080-025-2 -2312.34 -4378.50 89.32% 54.23% 39.28% 240 15 51 601.91 20.41%

spar080-025-3 -3090.88 -5130.25 65.96% 31.26% 52.60% 237 18 51 610.58 22.29%

spar080-050-1 -3448.10 -9783.25 183.68% 48.85% 73.41% 220 30 50 609.10 17.83%

spar080-050-2 -4449.20 -9270.00 108.33% 15.77% 85.45% 229 16 49 607.95 20.13%

spar080-050-3 -4886.00 -10029.75 105.25% 15.37% 85.39% 229 26 51 608.64 19.83%

spar080-075-1 -5896.00 -15250.75 158.64% 14.65% 90.77% 220 20 48 610.97 18.21%

spar080-075-2 -5341.00 -14246.50 166.71% 17.20% 89.68% 222 18 48 605.51 17.49%

spar080-075-3 -5980.50 -14961.50 150.15% 16.46% 89.04% 217 28 49 604.13 17.64%

spar090-025-1 -3372.50 -6171.50 82.97% 55.94% 32.58% 147 28 35 611.75 13.68%

spar090-025-2 -3500.29 -6015.00 71.82% 50.93% 29.09% 145 30 35 608.43 12.53%

spar090-025-3 -4299.00 -6698.25 55.80% 32.76% 41.29% 144 31 35 616.69 15.60%

spar090-050-1 -5152.00 -12584.00 144.23% 42.44% 70.57% 133 37 34 605.23 13.35%

spar090-050-2 -5386.50 -11920.50 121.28% 33.83% 72.11% 131 44 35 613.62 12.83%

spar090-050-3 -6151.00 -12514.00 103.43% 23.61% 77.17% 137 33 34 619.27 15.37%

spar090-075-1 -6267.45 -19054.25 203.99% 52.30% 74.36% 113 47 32 610.76 9.80%

spar090-075-2 -5647.50 -18245.50 223.03% 56.16% 74.82% 116 44 32 615.87 10.41%

spar090-075-3 -6450.00 -18929.50 193.45% 40.61% 79.01% 130 35 33 608.45 12.21%

spar100-025-1 -4027.50 -7660.75 90.19% 76.91% 14.72% 100 20 24 608.35 7.84%

spar100-025-2 -3892.56 -7338.50 88.50% 76.29% 13.79% 108 12 24 610.50 8.82%
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spar100-025-3 -4453.50 -7942.25 78.32% 64.89% 17.15% 109 11 24 604.63 9.01%

spar100-050-1 -5490.00 -15415.75 180.76% 98.98% 45.25% 81 34 23 610.73 6.89%

spar100-050-2 -5866.00 -14920.50 154.33% 79.56% 48.45% 89 26 23 606.93 8.30%

spar100-050-3 -6485.00 -15564.25 139.98% 71.68% 48.79% 87 33 24 620.59 8.42%

spar100-075-1 -7384.20 -23387.50 216.69% 78.70% 63.68% 79 26 21 622.82 6.96%

spar100-075-2 -6755.50 -22440.00 232.14% 93.17% 59.86% 71 24 19 607.02 6.05%

spar100-075-3 -7554.00 -23243.50 207.67% 88.07% 57.59% 70 20 18 607.93 5.51%

spar125-025-1 -5572.00 -12251.00 119.85% 119.76% 0.07% 43 2 9 632.22 0.98%

spar125-025-2 -6156.06 -12732.00 106.80% 106.80% 0.00% 44 1 9 633.90 1.08%

spar125-025-3 -6815.50 -12650.75 85.60% 85.61% 0.00% 45 0 9 640.70 1.07%

spar125-050-1 -9308.38 -24993.00 168.48% 156.65% 7.03% 31 4 7 612.13 2.84%

spar125-050-2 -8395.00 -24810.50 195.52% 190.86% 2.38% 22 8 6 632.91 1.65%

spar125-050-3 -8343.91 -24424.50 192.70% 178.70% 7.27% 31 9 8 648.46 2.89%

spar125-075-1 -12330.00 -38202.00 209.81% 190.70% 9.11% 14 6 4 609.09 1.01%

spar125-075-2 -10382.47 -37466.75 260.84% 244.29% 6.34% 15 0 3 616.68 1.02%

spar125-075-3 -9635.50 -36202.25 275.69% 272.41% 1.19% 7 3 2 607.65 0.46%

Table D.2: Detailed results for 2x2 + OA cuts on BoxQP instances
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Instance V2 Gap V2 Time Gap Closed Time

Ex2 1 1 72.62% 704.40 53.21% 0.41

Ex2 1 5 99.98% 0.17 99.68% 0.13

Ex2 1 6 99.95% 3397.65 93.87% 0.95

Ex2 1 8 84.70% 3632.28 73.23% 19.13

Ex2 1 9 98.79% 1587.94 29.87% 36.9

Ex3 1 1 15.94% 3600.27 0.34% 0.55

Ex3 1 2 99.99% 0.08 99.98% 0.04

Ex3 1 4 86.31% 21.26 29.49% 0.26

Ex5 2 2 case1 0.00% 0.02 2.05% 0.47

Ex5 2 2 case2 0.00% 0.05 0.00% 0.26

Ex5 2 2 case3 0.36% 0.36 0.00% 0.16

Ex5 2 4 79.31% 68.93 29.04% 5.69

Ex5 3 2 7.27% 245.82 0.00% 2.33

Ex5 4 2 27.57% 3614.38 0.24% 0.59

Ex9 1 4 0.00% 0.60 0.00% 0.34

Ex9 2 1 60.04% 2372.64 54.17% 28.37

Ex9 2 2 88.29% 3606.36 77.90% 30.84

Ex9 2 6 87.93% 2619.02 90.45% 0.12

Ex9 2 8 - - 83.27% 0.12

Table D.3: Comparison with V2 on GLOBALLib instances
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OPT wRLT V2 Gap V2 Time Gap Closed Time Gap Closed Time

spar020-100-1 -706.5 -1137 95.40% 3638.2 78.32% 600.45 78.34% 3600.97

spar020-100-2 -856.5 -1328.5 93.08% 3636.665 78.61% 600.68 78.61% 1083.09

spar020-100-3 -772 -1224 97.47% 3632.56 83.68% 600.52 83.76% 3600.58

spar030-060-1 -706 -1472.5 60.00% 3823.051 58.38% 600.97 58.51% 3603.02

spar030-060-2 -1377.17 -1741 91.16% 3715.979 88.55% 601.22 88.76% 3601.78

spar030-060-3 -1293.5 -2073.5 77.41% 3696.495 77.14% 600.98 77.22% 3602.11

spar030-070-1 -654 -1647 57.39% 3786.025 53.10% 600.64 53.29% 3610.13

spar030-070-2 -1313 -1989.5 86.60% 3708.212 81.52% 601.14 81.62% 3600.68

spar030-070-3 -1657.4 -2367.5 88.66% 3744.044 86.29% 601.01 86.38% 3600.67

spar030-080-1 -952.729 -2189 69.67% 3600.777 56.96% 600.4 57.04% 3602.02

spar030-080-2 -1597 -2316 86.25% 3627.132 73.92% 601.11 73.97% 3600.21

spar030-080-3 -1809.78 -2504.5 91.42% 3666.392 85.14% 601.34 85.28% 3601.93

spar030-090-1 -1296.5 -2521 81.15% 3676.815 70.02% 600.85 70.09% 3600.91

spar030-090-2 -1466.84 -2755 82.66% 3646.756 71.56% 601.03 71.62% 3600.09

spar030-090-3 -1494 -2619.5 86.37% 3701.849 75.33% 600.57 75.56% 3602.01

spar030-100-1 -1227.13 -2683.5 81.10% 3692.504 69.68% 601.17 69.78% 3602.26

spar030-100-2 -1260.5 -2870.5 72.87% 3697.329 63.60% 600.05 63.66% 3601.47

spar030-100-3 -1511.05 -2831.5 84.10% 3606.496 75.06% 600.42 75.13% 3602.89

spar040-030-1 -839.5 -1162 31.05% 3719.223 50.80% 600.67 57.21% 3605.46

spar040-030-2 -1429 -1695 27.74% 3937.898 17.58% 15.57 17.58% 15.49
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spar040-030-3 -1086 -1322 28.00% 3798.683 7.73% 15.88 7.73% 16.97

spar040-040-1 -837 -1641 33.31% 3817.844 39.77% 600.53 42.76% 3602.06

spar040-040-2 -1428 -1967.5 35.19% 3968.111 56.73% 600.08 61.35% 3600.24

spar040-040-3 -1173.5 -2089 26.71% 3972.902 43.30% 600.42 47.36% 3603.8

spar040-050-1 -1154.5 -2204 36.72% 3819.72 46.05% 600.54 49.94% 3602.77

spar040-050-2 -1430.98 -2403.5 40.87% 3610.64 50.39% 601.65 53.90% 3602.41

spar040-050-3 -1653.63 -2715 33.95% 3639.977 46.20% 600.35 48.93% 3604.85

spar040-060-1 -1322.67 -2934 47.75% 3760.964 51.73% 601.64 54.33% 3604.92

spar040-060-2 -2004.23 -3011 55.79% 3707.992 68.04% 601.1 71.04% 3600.39

spar040-060-3 -2454.5 -3532 72.63% 3764.079 74.36% 601.57 76.45% 3600.44

spar040-070-1 -1605 -3194.5 64.03% 3642.681 67.37% 601.47 69.39% 3602

spar040-070-2 -1867.5 -3446.5 57.91% 3756.377 62.79% 601.51 64.77% 3605.11

spar040-070-3 -2436.5 -3833.5 62.94% 3693.666 68.40% 600.45 70.59% 3604.16

spar040-080-1 -1838.5 -3969 58.37% 3808.258 59.04% 601.59 61.09% 3600.31

spar040-080-2 -1952.5 -3902.5 66.96% 4062.433 63.85% 600.69 65.25% 3602.2

spar040-080-3 -2545.5 -4440 72.31% 4057.149 73.35% 600.42 74.94% 3601.66

spar040-090-1 -2135.5 -4490 66.64% 3781.044 66.03% 600.92 67.48% 3603.5

spar040-090-2 -2113 -4474 66.46% 3931.349 65.74% 600.33 67.12% 3603.76

spar040-090-3 -2535 -4641 73.49% 4003.706 73.80% 601.32 75.18% 3600.81

spar040-100-1 -2476.38 -5118 76.24% 3853.573 74.81% 601.45 76.31% 3605.11

spar040-100-2 -2102.5 -5043 63.89% 3658.261 64.80% 601.7 66.14% 3603.14
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spar040-100-3 -1866.07 -5196.5 59.92% 3842.685 61.46% 602.01 63.58% 3600.51

Table D.4: Comparison with V2 on BoxQP instances
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