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ABSTRACT

Security and Statistics on Power Grids

Mauro Cesar Escobar Santoro

Improving the functioning and the safety of the electrical grids is a topic of great concern,

given its magnitude and importance in today’s world. In this thesis, we focus in these

two subjects.

In the first part, we study undetectable cyber-physical attacks on power grids, which

are attacks that involve physical disruptions, including tripping lines and load modifica-

tions, and sensor output alterations. We propose a sophisticated attack model described

under the full Alternating Current (AC) power flow equations and show its feasibility on

large grids from a test cases library. As counter-measures, we propose different defensive

strategies that the network’s controller can apply under a suspected cyber attack. These

are random, simple and fast procedures that change the voltages across the network and

aim to unmask the current status of the system, assuming that the attacker cannot react

against their randomness.

Secondly, with access to data collected through Phasor Measurement Units (PMUs)

by a power utility in the United States, we perform statistical analyses on the frequency

and voltage time series that have been recorded at a rate of 30 Hz. We focus on intervals

of time where the sampled data shows to be in steady-state conditions and, with the use

of appropriate signal processing filters, we are able to extract hidden anomalies such as

spatio-temporal correlations between sensors and harmonic distortions.
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Chapter 1

Introduction

The electrical grid is one the largest and most complex infrastructures built by mankind.

It has a great importance in our lives, moreover, we have become daily dependent on

it: most jobs make use of electricity, as well as modern systems of telecommunication,

means of transportation, and important institutions —such as governments or hospitals.

In summary, the world’s economies rely on a solid system to supply power. Because of

this reason, it is crucial to maintain a stable and safe system that provides energy to its

customers in a reliable manner.

The existing power grid in the United States nowadays presents several challenges. It

has exponentially grown across the last century without planning its future development

and, consequently, faces weaknesses when it has to satisfy the increasing demand seen

nowadays. As detailed in Gretchen Bakke’s book [10] from 2016, more than 70 percent

of the transmission lines and transformers in the United States are twenty-five years

old and the average age of the power plants is thirty-four. As a result, the system has

large inefficiencies that have caused an increasing number of power outages across the

last decades: 15 in 2001, 78 in 2007, 307 in 2011. Additionally, the unpredictability of

renewable energy sources has contributed to the instability of the grid —where production

has to meet demand at all times. The current grid is not prepared to deal with this

uncertainty.
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These current challenges together with the complexity of the physics that supports

the generation and transmission of electricity throughout a system has motivated decades

of research on different topics related with the power network. The equations behind the

model of the power flows are not simple —they are, in its full and most realistic form,

non-linear and non-convex— and, therefore, difficult to understand and compute with.

Nevertheless, decades of investigation have lead us to have a trustworthy system that

works well most of the time.

The main goal of this thesis is to contribute towards a better understanding of the

power grid’s functioning and improving its safety. For that purpose we first study cyber-

physical attacks on the electrical grid, meaning that there is an adversary that has the po-

tential ability to cause physical damage or disruption in the system —such as, a tripping a

line, modifying demand in certain points, or changing the functioning of a transformer—

coordinated with a cyber attack. A cyber attack corresponds to a hack that blocks or

alters the data that the grid’s controller obtains from sensors distributed at several lo-

cations in the network. These sensors provide information used to estimate the status

and the state variables of the system and, this system is used by the controller to make

control decisions. The purpose of the hack perpetrated by the adversary, is to hide from

the controller his or her physical actions (the physical attack) in order that the controller

remains unaware of them and, potentially, executes inopportune decisions.

Diverse models of cyber and cyber-physical attacks have been proposed and studied

in the last years, most of them using a linear approximation of the power flow equations.

In this thesis, we analyze a new model where the adversary can modify demand of a

subset of nodes of the grid and at the same time alter the measurements sampled in that

zone. We use the full description of the power flow equations and show that the attack

can cause important overloads that, if kept hidden from the controller for long enough

time, would have unfavorable consequences.

We complement this section by also describing different strategies that the grid’s con-



CHAPTER 1. INTRODUCTION 3

troller (under the suspicion of an attack) can perform in order to unmask the real status

of the variables of the system. These strategies are simple generic procedures that can

be used in different kind of cyber attacks.

As a second theme of research, we center our attention on the measurements sampled

over the grid. With new technologies and the digital age, modernization of equipment and

control of the network has improved, which is giving an opportunity to enhance processes

and have a better understanding of the network behavior. One particular example is the

upgrade of the sensors that measure electro-physical quantities across the grid (voltage,

frequency, current): from the old RTUs (remote terminal units) that produce samples

every few seconds to the new PMUs (phasor measurement units) that sample as fast as

30 times per second. With this new volume of information being generated, we might be

able to get a new insight about the nature of the power flowing through the network.

We have at our disposal historical PMU measurements that cover a period of 15

months obtained from a US Independent System Operator; these data correspond to

sampling collected in approximately 200 locations at a rate of 30 measurements per

second. With this information we performed statistical analyzes using covariance (corre-

lation) matrices in order to understand several questions regarding the structure of the

data: Can we obtain useful information from the spetral decomposition of these matrices?

Or is the data temporarily correlated? We aim to answer these question by observing

graphical results of the statistical tools over selected periods of measurements.

This document is organized as follows: we begin by describing the basic properties

and models of the electrical grid and its power flow equations in Chapter 2, we continue

with the cyber-attack study in Chapter 3, and finalize with the statistical analysis of the

PMU sampling in Chapter 4.
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Chapter 2

Preliminaries

In this section we provide a description of a power system that we will use in the next

chapters. The mathematical model that is presented is widely used in the literature.

2.1 Power Grids

A power transmission system can be characterized by a graph, where the set of nodes

or buses represent the physical locations where the power is generated, consumed or

redistributed (see [13, 41]). We denote by N this set of buses and distinguish the set

G ⊂ N of generators ; buses that do not generate power are called load buses. The set

E of edges of the graph, also called branches, represent the transmission lines of the

network. For bus k ∈ N , we denote by δ(k) ⊂ E the set of branches that are incident

with k. For a set A ⊂ N of buses, AC denotes the complement of A with respect to N ,

that is N\A, and ∂A denotes the set of buses in A that are connected with some bus in

AC , i.e. the boundary of A. Notation: when x is a complex number, x will denote its

complex conjugate; and if X is a complex matrix, XH denotes its Hermitian transpose

(i.e. conjugate transpose, X>).

While complex power is generated and consumed throughout the system, transmission

lines are in charge of carrying the power across the different locations. In order to
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understand the equations that describe a power flow system, we need to introduce three

physical concepts present in the model: voltage, current and power.

The amount of power flowing from bus k to bus m connected by the branch km

depends on the physical characteristics of the branch and the voltages Vk and Vm, re-

spectively associated with both buses. Voltages at buses are the state variables of the

system, they are the result of the whole network configuration (physical characteristics,

generation, demand). The voltage at bus k is represented as a complex number, in any

of the three different forms:

Vk = |Vk|ejθk︸ ︷︷ ︸
exponential

= |Vk| θk︸ ︷︷ ︸
polar

= |Vk| cos(θk) + j|Vk| sin(θk)︸ ︷︷ ︸
rectangular

, (2.1)

where |Vk| is the magnitude of the voltage and θk is its (phase) angle. Voltage, also

called electric potential difference, makes sense when it is compared between two points

or with respect to a reference point, this difference is measured in volts or [V]. One volt

(as defined in [48]) “is the potential difference between two points of a conducting wire

carrying a constant current of one ampere, when the power dissipated between these

points is equal to one watt.”

The electric current —or simply current— is the flow of electric charge, in our case

electrons, moving in a wire. The unit for measurement is the ampere or [A] defined

as “constant current which, if maintained in two straight parallel conductors of infinite

length, of negligible circular cross-section, and placed one metre apart in vacuum, would

produce between these conductors a force equal to 2 · 10−7 [mks] unit of force (newton)

per metre of length” [48]. We denote by Ikm the complex current that flows from bus k

to bus m through branch km.

Finally, the electric power is the rate, per unit time, at which the electric energy is

transferred through a transmission line. The unit of measurement is the watt or [W] that

“is the power which in one second gives rise to energy of one joule” [48]. We denote by

Skm = Pkm + jQkm the complex power that flows from bus k to bus m, where the real

part Pkm is called active power and the imaginary part Qkm is known as reactive power .
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It is usually convenient to work with normalized units for the previously mentioned

quantities. For this purpose, we define a per-unit normalization as

quantity in per unit =
actual quantity

base value of quantity
, (2.2)

where the base value for quantities are picked to satisfy the same of relationship as the

actual variables [13].

Before making explicit the power flow equations we need to model the branches of

the system.

2.1.1 Transmission Lines

We now describe a model that characterizes the physical attributes of the transmission

lines (see [18, 101]), including the presence of transformers and shunt admittance. This

is also known as π-model.

Consider a branch between buses k and m, see Figure 2.1. Safety operational func-

tioning indicates that the difference of voltage phase angles θkm
.
= θk− θm between buses

k and m should not larger that a pre-established bounds θmin
km and θmax

km . In addition,

branch km has a series impedance

zkm = rkm + jxkm (2.3)

—that measures the opposition to the flow of current, where rkm is the resistance and

xkm is the reactance— and series admittance

ykm = (zkm)−1 = gkm + jbkm, (2.4)

where gkm = rkm/(r
2
km + x2

km) is the conductance and bkm = −xkm/(r2
km + x2

km) is the

susceptance. There is also a shunt —such as a capacitor or inductor, that creates low-

resistance— with shunt admittance

ysh
km = gsh

km + jbsh
km (2.5)
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and a transformer with ratio

Nkm = τkme
jσkm , (2.6)

where τkm > 0 is its magnitude and σkm is the phase shift angle. The transformer is

located on the branch next to bus k, it scales the voltages by a factor of 1/Nkm and

currents by a factor of Nkm.

Vk Vm

Nkm = τkme
jσkm

Vk
Nkm

Ikm ImkN∗
kmIkm

yskm =
1

rkm + jxkm

ysh

2

ysh

2

Figure 2.1: Branch Model.

In the rest of this section we will omit the subscript km so as to simplify the equations.

With these elements, the branch admittance matrix is defined as

Ykm =

 ykk ykm

ymk ymm

 =


(
y +

ysh

2

) 1

τ 2
−y 1

τe−jσ

−y 1

τejσ
y +

ysh

2

 . (2.7)

Therefore, the complex current injections Ikm and Imk at buses k and m of the branch,

respectively, can be expressed in terms of the voltages Vk and Vm and the admittance

matrix Ykm: Ikm

Imk

 = Ykm

 Vk

Vm

 =


(
y +

ysh

2

) 1

τ 2
Vk − y

1

τe−jσ
Vm

−y 1

τejσ
Vk +

(
y +

ysh

2

)
Vm

 . (2.8)

According to Omh’s law, the power injected at a branch is defined as the voltage of
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the bus times the complex conjugate of the injected current, in other words:

Skm = VkIkm =
(
y +

ysh

2

) 1

τ 2
|Vk|2 − ys

1

τejσ
VkVm, (2.9a)

Smk = VmImk = −y 1

τe−jσ
VkVm +

(
y +

ysh

2

)
|Vm|2, (2.9b)

from where we can deduce expressions for active and reactive power injected at both

ends:

Pkm =
(
g +

gsh

2

) |Vk|2
τ 2
− |Vk|

τ
|Vm|

(
g cos(θkm − σ) + b sin(θkm − σ)

)
, (2.10a)

Qkm = −
(
b+

bsh

2

) |Vk|2
τ 2

+
|Vk|
τ
|Vm|

(
b cos(θkm − σ)− g sin(θkm − σ)

)
, (2.10b)

Pmk =
(
g +

gsh

2

)
|Vm|2 −

|Vk|
τ
|Vm|

(
g cos(θkm − σ)− b sin(θkm − σ)

)
, (2.10c)

Qmk = −
(
b+

bsh

2

)
|Vm|2 +

|Vk|
τ
|Vm|

(
b cos(θkm − σ) + g sin(θkm − σ)

)
. (2.10d)

As we have seen, power can be specified as a function of the voltages at both ends of

a branch. Therefore, when convenient, we will denote it as Skm(|Vk|, |Vm|, θk, θm) and

Smk(|Vm|, |Vk|, θm, θk) the complex power injected at each bus connected by branch km,

respectively.

Power losses can also be computed taking into account the active power. The active

power loss at branch km is defined as

Losskm = Pkm + Pmk

=
(
g +

gsh

2

)( |Vk|2
τ 2

+ |Vm|2
)
− 2
|Vk|
τ
|Vm|g cos(θkm − σ). (2.11)

Finally, we define the apparent power to be the magnitude (as complex number) of

the power injected by k and m to branch km:

|Skm| =
√
P 2
km +Q2

km = ||(Pkm, Qkm)|| (2.12a)

and |Smk| =
√
P 2
mk +Q2

mk = ||(Pmk, Qmk)||, (2.12b)

respectively. The apparent power has the same units as active or reactive power, however

it is common to use the unit voltampere or [VA]. Moreover, the branch has a capacity

Smax
km that limits the amount of apparent power.
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2.1.2 Generation and Demand

Every generator in the system produces power that is injected into the network. We

denote by

Sgk = P g
k + jQg

k (2.13)

the amount of complex power produced by generator k ∈ G, which must lie inside its ca-

pacities of generation. Depending on the physical capabilities of the generator, generated

active power has as lower and upper bounds P g,min
k and P g,max

k , respectively. Analogously,

generated reactive power has as lower and upper bounds Qg,min
k and Qg,max

k , respectively.

Electrical power is also consumed across buses of the network. It is common to say

that the load of a bus is the amount of power that the bus demands, which is denoted

by

Sdk = P d
k + jQd

k (2.14)

for bus k ∈ N .

According to [7], power systems are split into balancing authority areas that are in

charge of maintaining the balance between load, generation, and interchange of power be-

tween the different balancing authority areas. This goal is accomplished through several

processes, including

• Unit Commitment (UC): determines which generators will be on and off in an

hourly based schedule, these generators are always ready to satisfy the forecasted

demand;

• Economic Dispatch (ED): assigns the production level of the generators that were

selected by the UC procedure, minimizing the cost, subject to meeting the demand

and physical constraints. The ED algorithm is run every hour using the day-ahead

load prediction, but also every 5-10 minutes, using the minute-ahead forecast;

• Primary Generation Control (PGC): performs on-line adjustments caused by gen-

eration outages, line tripping, demand fluctuations, or any spontaneous change in

the system;
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• Automatic Generation Control (AGC): returns the frequency —the angular speed of

generator’s rotors (see Section 2.3 for further details)— to its nominal value of 60 Hz

after PGC actions; this is obtained by reassigning the generation output across

different balancing authority areas; AGC updates commands every 2-4 seconds.

2.1.3 Operational Considerations

As described in [13, p. 327], operational consideration must be taken into account with

the objective of understanding state and control variables of the system:

• For generators, the active power P g
k and the voltage magnitude |Vk| can be specified

—by varying turbine power and generator field current.

• Complex load Sdk at every bus is known (by previous estimation), thus, is considered

as a parameter of the system.

We see then that active power can be set for all buses, however, this cannot be done

independently, the sum of all the P g
k ’s must equal the sum of active power loads and

losses. One generator is designated to have unspecified active power generation, and this

amount comes as the result of the system’s active power balance. This specific bus is

called a slack bus or swing bus (for which we will reserve the index k = 0), that instead of

having specified P g
0 , both magnitude |V0| and angle θ0 voltage values are indicated. Since

power flow equations (2.10) always depend on the difference between the angle phases of

two buses, by specifying the slack bus phase angle, we just set an angle reference for the

rest of the buses.

In summary, we have three types of buses, depending on the specified variables:

1. A voltage V source. At the slack bus.

2. P, |V | sources. At the other generators, also called voltage control buses.

3. P,Q sources. At the load buses.



CHAPTER 2. PRELIMINARIES 11

2.2 Optimal Power Flow Problems

2.2.1 AC-OPF

The Alternative Current Optimal Power Flow (AC-OPF) problem is formulated in order

to find an optimal solution of a power flow that minimizes the generated power subject

to physical laws of energy conservation. AC-OPF was introduced in 1962 as the problem

of economic dispatch [26].

Summarizing the previous sections, we have as parameters of the system:

• V min
k and V max

k , voltage magnitude bounds for every bus k ∈ N ;

• Sdk = P d
k + jQd

k, the complex load at every bus k ∈ N ;

• P g,min
k and P g,max

k , active power generation bounds for every generator k ∈ G;

• Qg,min
k and Qg,max

k , reactive power generation bounds for every generator k ∈ G;

• Ykm = [ ykk ykm
ymk ymm

], the branch admittance matrix, for every transmission line km ∈ E ;

• Smax
km , the apparent power capacity for every branch km ∈ E ;

• θmin
km and θmax

km , bounds of the voltage angle difference for every branch km ∈ E ;

• slack bus phase angle, usually specified as 0.

The control variables of the systems are:

• |Vk|, voltage magnitude at every generator k ∈ G;

• θ0, voltage phase angle of the slack bus;

• P g
k , active power generation at every non-slack generator k ∈ G\{0}.

And the state variables are:

• |Vk|, voltage magnitude at every load bus k ∈ N\G;
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• θk, voltage phase angle at every non-slack bus k ∈ N\{0};

• P g
0 , active power generation at the slack bus;

• Qg
k, reactive power generation at every generator k ∈ G;

• Pkm and Pmk, active power injection at both ends of every branch km ∈ G;

• Qkm and Qmk, reactive power injection at both ends of every branch km ∈ G.

The AC-OPF problem is then formulated as follows:

minimize f({P g
k }k∈G) (2.15a)

subject to ∀k ∈ G, (P g
k − P

d
k ) + j(Qg

k −Q
d
k) =

∑
km∈δ(k)

(Pkm + jQkm) (2.15b)

P g,min
k ≤ P g

k ≤ P g,max
k , Qg,min

k ≤ Qg
k ≤ Qg,max

k (2.15c)

∀k ∈ N\G, −(P d
k + jQd

k) =
∑

km∈δ(k)

(Pkm + jQkm) (2.15d)

∀km ∈ E , Pkm + jQkm = ykk|Vk|2 + ykm|Vk||Vm|ej(θk−θm) (2.15e)

Pmk + jQmk = ymm|Vm|2 + ymk|Vk||Vm|e−j(θk−θm) (2.15f)

P 2
km +Q2

km ≤ (Smax
km )2, P 2

mk +Q2
mk ≤ (Smax

km )2 (2.15g)

θmin
km ≤ θk − θm ≤ θmax

km (2.15h)

∀k ∈ N , V min
k ≤ |Vk| ≤ V max

k (2.15i)

θ0 = 0. (2.15j)

The objective function f depends on the active power generation at all generators, convex

functions —typically quadratic— are commonly used so as to minimize the amount of

power generated.

Constraints (2.15b) and (2.15d) describe the complex power balance at generators

and load buses, respectively; generated power minus demand must equal the sum of

power injected into the branches incident to the bus. Whereas constrain (2.15c) states

the bounds for the power that a generator can produce.



CHAPTER 2. PRELIMINARIES 13

Constrains (2.15e)-(2.15f) summarize the power equations that buses inject at their

incident branches. These equations are explicitly stated in (2.10). Constraint (2.15g)

limits the amount of apparent power that can be injected at each branch, while con-

straint (2.15h) states the bounds for the difference of voltage phase angles between two

adjacent buses.

Finally, constraint (2.15i) established the bounds for the voltage magnitude and con-

straint (2.15j) sets the reference phase angle for the slack bus.

The AC-OPF problem formulated as in (2.15) is non-linear and non-convex; the

source of non-linearity is mainly provided by the power flow equations (2.15e)-(2.15f),

since they depends though trigonometric functions and products of the problem variables

{|Vk|, θk}k∈N . It is proved in [24] that finding feasible flows for the AC-OPF problem

in general graphs is strongly NP-hard. However, numerical solvers can find approximate

solutions for test networks with few thousand buses.

Approximations and relaxations of the AC-OPF problem are widely analyzed. The

most simple and used one is the linear approximation, the so-called DC approximation,

that will be described in the next section. [55] and [54] provide several relaxations using

Second Order Cone Programming (SOCP) and Semidefinite Programming (SDP).

2.2.2 DC-OPF

In this section we describe a linear approximation of the AC-OPF problem (2.15). Given

its simplicity and fast implementation, the DC-OPF is the problem that the economic

dispatch procedure solves every 5-10 minutes.

Under normal conditions, the following observations are made in order to simplify

constraints (2.15e)-(2.15f):

• for every bus k ∈ N , |Vk| ≈ 1 (using per-unit system),

• for every branch km ∈ E ,

– θkm = θk − θm is small so that sin(θkm) ≈ θkm and cos(θkm) ≈ 1,
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– resistance is much smaller that reactance, meaning that rkm � xkm. In con-

sequence, gkm ≈ 0 and bkm ≈ −1/xkm,

– shunt admittance and transformer effects are ignored, that is, ysh
km = 0 and

Nkm = 1.

With these observations, expressions (2.10) for active and reactive power become:

Pkm = −bkm(θk − θm) =
θk − θm
xkm

, Qkm = 0, (2.16a)

Pmk = bkm(θk − θm) = −θk − θm
xkm

, Qmk = 0. (2.16b)

In other words, in the DC approximation the transmission lines are lossless (Pkm +

Pmk = 0) and carry only active power and, therefore, the reactive power —and imaginary

part of variables and equations— is completely ignored. The balance equations (2.15b)

and (2.15d) are simplified to

∀k ∈ N , P g
k − P

d
k =

∑
km∈δ(k)

θk − θm
xkm

, (2.17)

where we define as P g
k = 0 when k /∈ G. For each choice of nonnegative values P g

k and P d
k

such that
∑

k∈N P
g
k =

∑
k∈N P

g
k , the system (2.16)-(2.17) has a unique solution in the

Pkm (Lemma 1.1 in [23]).

An equivalent formulation is given by defining the vectors θ = (θk : k ∈ N ), Pg =

(P g
k : k ∈ N ) and Pd = (P d

k : k ∈ N ) and the |N | × |N | bus susceptance matrix B as

∀k ∈ N , Bkk =
∑

km∈δ(k)

1

xkm
, ∀km ∈ E , Bkm = Bmk = − 1

xkm
, (2.18)

and Bkm = 0, otherwise, we can restate the power balance system (2.17) as the |N |×|N |

linear system

Pg − Pd = B θ. (2.19)

Because of the construction of B, the set of equations of the linear system (2.19) is linearly

dependent and is feasible only if
∑

k∈N (P g
k − P d

k ) = 0. By adding the equation θ0 = 0

that sets the phase angle for the slack bus, the system becomes linearly independent
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when the underlying network is connected. In this case, the solution to system (2.19)

has a unique solution, of the form

θ = B̆0(Pg − Pd) (2.20)

where B̆0 is an appropriate pseudo-inverse of B which depends on the choice of the

reference (slack) bus.

As in the case of the AC formulation, P g
k for k ∈ G\{0} are control variables, and the

generation at the slack bus is set to be P g
0 =

∑
k∈N P

d
k −

∑
k∈G\{0} P

g
k .

The DC-OPF problem is formulated as the following linearly constrained system:

minimize f(Pg) (2.21a)

subject to Pg − Pd = B θ, θ0 = 0 (2.21b)

∀k ∈ G, P g,min
k ≤ P g

k ≤ P g,max
k (2.21c)

∀km ∈ E , −Smax
km ≤ (θk − θm)/xkm ≤ Smax

km (2.21d)

θmin
km ≤ θk − θm ≤ θmax

km . (2.21e)

If f is a convex function, then program (2.21) is a convex optimization problem.

2.2.3 Numerical Solutions

There exist solvers that find the solution (or an approximate optimum when the problem

is difficult) to the optimization problems stated above; either in their OPF form —that

finds the optimum flow— or in their PF version, that just finds an (approximate) feasible

solution to a power flow.

Matpower [101] is a Matlab toolbox widely used in the literature that solves

optimization power flow instances and has a library of cases —usually known as IEEE test

cases— with different number of buses, from 10 to 10,000, and serves to test algorithms,

theory and their implementation.
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2.3 Time-Varying Elements

In this section we describe how the elements detailed in the previous sections evolve as

time varies. The optimization problems stated in Section 2.2 that find optimal power

flows are solved considering one particular instant of time, however, as generation must

match demand —plus losses— at every moment, variables and parameters evolve dy-

namically with time.

We introduce a time dependent argument to the following variables and parameters:

• voltage Vk(t) = |Vk(t)|ejθk(t),

• demand Sdk(t) = P d
k (t) + jQd

k(t) and

• generation Sgk(t) = P g
k (t) + jQg

k(t).

In consequence, since current and power depend on the voltages, they are also time

dependent, denoted as Ikm(t) and Skm(t) = Pkm(t) + jQkm(t), respectively.

In steady state, voltages and currents are sinusoidal functions of time. That is, voltage

of bus k can be written as

Vk(t) = |Vk(t)|ejθk(t) with θk(t) = ωk(t) · t+ δk(t), (2.22)

where ωk(t) is the voltage angular frequency —or, simply, frequency— and δk(t) the volt-

age phase angle referenced to ωk(t)·t. For steady state analyses it is usual to consider that

ωk(t) and δk(t) slowly change through time or do not change at all and, in consequence,

they are assumed to be constant functions. Moreover, the frequency is considered equal

for all buses at ωk(t) = ω0 = 60 Hz. This is explained by the fact the power injected into

the system is produced by generators that spin at approximately 60 Hz, see Figure 2.2

(detailed description of generators can be found in [13]).

The grid has been built in such a way that the generators’ rotor must synchronously

spin at a regulated frequency —60 Hz— to avoid mechanical resonances. However, in

practice, the frequency deviates from 60 Hz by small amounts, that is, ωk(t) = 60 + εk(t)
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stator

steam

energy
source

conductor

rotor

turbine

ω, Voltage, Current

Figure 2.2: Turbine-Generator Model. A turbine converts different type of energy —such as

steam or burnt natural gas— into rotation. The turbine shaft is connected to a generator shaft.

A generator typically consists in a rotor (rotating part) that spins at a frequency ω(t) inside a

stator (static part). The rotation of the rotor creates a magnetic field that induces current into

the conductor at frequency ω(t).

with |εk(t)| small. In normal operation, the frequency is controlled such that |εk(t)| < 0.05

Hz. Nevertheless, frequency can deviate as much as 5% for short periods without causing

load shedding, generator tripping, damaged equipment, or threatening the stability of the

system [53].

Fluctuations of frequency are caused by generation outages, tripping lines, intermit-

tent generation or fluctuations of demand. When demand suddenly increases, the inertia

maintained by spinning rotors —mechanical energy— is transferred into electrical energy

to overcome the power imbalance, therefore, rotors slow down and frequency decreases.

Figure 2.3 shows a contingency where 2,600 [MW] of generation is lost, as a consequence,

the frequency drops almost instantaneously but it is afterwards recovered by automated

measures (Automatic Generation Control).
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Figure 2.3: Contingency reserves rebalance the system after the sudden loss of generation [53].

2.4 State Estimation

State estimation (SE) has served as a tool to supervise and control the functioning of

a power system. Thanks to SE, the grid’s controller can take on-line decisions with the

objective of optimizing processes, adjusting generation, and detecting bad data [46].

As we have seen, the state of the system can be described by their state variables

(voltages at all buses) together with the physical characteristics of the grid. A set of

sensors located through the network make measurements of some of these variables, and

send this information to the control center. A computational tool uses this data to per-

form SE in the following way: first, it undertakes an observability analysis that concludes

if the received data is enough to get a good state estimation of the system; next, bad

measurements are identified and eliminated of the data set; finally, an optimization prob-

lem is solved to extrapolate the measured and trusted sampling to the rest of variables

that cannot be observed.

The most advanced sensors are the PMUs (phasor measurement units) that are lo-

cated on branches next to a bus. They are synchronized by a GPS clock and report,

30 times a second, data that includes time of the measurement, frequency ωk(t), voltage

phase angle θk(t) and voltage magnitude |Vk(t)| of the adjacent bus, status of the branch
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(active or inactive), complex current Ikm(t) of the branch, and other data.

Traditional methods for determining the state variables are solved by using the

weighted least-squares (WLS) method. For that purpose, if z is a vector of observable

quantities, then the solution x of the system

z = h(x) + e, (2.23)

gives us the state variables (voltage phase angles and voltage magnitudes) of the network,

where h is a set of nonlinear functions of the state variables and e is a zero-mean Gaussian

measurement noise vector with covariance matrix C.

Then, the SE problem finds

x̂ = arg min
x

[z − h(x)]>W−1[z − h(x)],

where the weighting matrix W is usually taken diagonal and it is related with the noise

covariance matrix C.
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Chapter 3

Cyber-Physical Attacks

In this section we introduce the notion of a cyber-physical attack on power systems.

We also model a complex attack that we demonstrate to be feasible on large networks.

Finally, we describe defense mechanisms against these and more general attacks.

3.1 Introduction

Cyber-physical attacks have been widely analyzed in the last decade. The main purpose

of this study is to investigate complex weaknesses of the grid and elaborate mechanisms

to strengthen the security of the system.

The cyber adjective of the attacks correspond to the notion that sensor measurements

used to estimate the state of the system are perturbed or deleted. Voltage and current

throughout the network are periodically measured with sensors (PMUs, RTUs) and sent

to the control center of the grid. Using this data, the control center performs state

estimation, that is, using incomplete knowledge of the all the variables of the system,

unknown parameters and variables are estimated (typically by minimizing square errors)

with the objective of supervising normal operation and plan-ahead future control actions

(see Section 2.4 for details). If the information received by the control center is modified,

actions that can be damaging to the network stability might be taken.
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A physical attack consists on a physical alteration of the system or a portion of it, such

as changes in generation or demand (e.g. by shutting down a generator or coordinated

activation of many air conditioners), line tripping, alteration of physical properties of

lines or renewable energy generation, among others.

Thus, a cyber-physical attack has both events happening together and it is typically

performed by an adversarial agent. One of the iconic examples of a cyber-physical attack

that has recently taken place is the attack on the Ukrainian electrical system on 23

December 2015 where attackers gained access to the data acquisition system, were able

to delete and modify data, and also changed the grid topology by activating circuit

breakers [34]. In consequence, 225,000 customers lost power for a period of 1 to 6 hours.

In this work, we propose defensive techniques to be deployed when a high-fidelity

attack on a power grid is suspected. The attack is assumed to be partial in the sense

that only a subset of buses and lines are attacked, but this subset is unknown by the

system controller. These techniques involve two ideas:

(a) using network resources to randomly change power flow quantities, especially volt-

ages and, in particular

(b) changing the covariance structure of e.g. voltages in a manner unpredictable by the

attacker. The specific version of this idea that we analyze introduces a low-rank

adjustment to the covariance of phase angles.

A precise definition of the attack is given in Section 3.3. These defensive techniques

focus on the phase following the initial attack, and aim to expose inconsistencies in the

modified sensor data stream which is output by the attacker. We describe conditions

under which the defense succeeds in discovering the boundary of the attacked zone.

We justify such defenses by pointing out that the possibility of dangerous “cyber-

physical” attacks of high-fidelity and with sparse signatures has already been indicated

in the literature (see Section 3.2). The data component of the attacks is designed to pass

a stringent test, namely that the falsified data satisfies the full AC power flow equations
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at every bus and line. The data attack is coordinated with a physical attack encom-

passing various types (in particular, line tripping, or load modifications as considered in

this paper) that results in a dangerous system condition, e.g. a line overload. The data

modification hides this overload, with the result that sensor data received by operators is

both unimpeachable and portrays safe system operation. We term these attacks “ideal”

because, while sparse, they do assume technical sophistication and the ability to coor-

dinate physical action and computation. Sparsity is a goal for the attacker because it

increases the likelihood of undetectability long enough for the overload to lead to line

tripping (typically several minutes). Putting aside the actual feasibility of such attacks,

the computational challenge is significant.

We will start by giving a summary of related work. Then, we develop a new optimiza-

tion procedure that successfully computes cyber-physical attacks on large transmission

systems with thousands of buses. Finally, we will focus on the defensive mechanisms

against ideal cyber-physical attacks.

3.2 Previous Work

Early work on full observability of grid sensor data [66] and bad data detection has been

done in [11,30,61,68,69]. These works have developed techniques to detect bad measure-

ments and remove them from the data set. The principal tool that they use is based on

the fact that the objective function minimized (e.g. squared errors) during state estima-

tion becomes significantly high when arbitrary bad measurements are present. As shown

in [64], these techniques do not work well when an adversary —having enough knowledge

of the system— introduces false data, since it could make the injected information look

coherent with some state of the grid. [64] was the first to introduce the false data injection

(FDI) attacks, where they use the DC power flow model for attack analysis, arguing that

it is less accurate, but more simpler and robust than the AC model [90].
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False Data Injection Attacks

As explained before, this kind of attacks rely on the modification of the measurements

received by the control center affecting a subset of observable variables. [64, 87] study

cyber attacks where an attack vector a is added by the adversary to the observed vector

z in the system of equations (2.23) to create a malicious measurement vector za = z + a

(the vector a has non-zero entries only in the components related with the sensors that

the attacker has access to). Ideally, the attacker expects that a vector xa minimizes the

errors of the system, with low weighted least-squares error, so that xa appears to be a

reasonable state variables vector. They describe results that apply when the attacker

has limited access to certain sensors or when he has a budget of how large the changes

can be. [51] also proves the existence of attack vectors that belong to a subspace of the

observable vector domain, which becomes relevant when the attacker does not have full

observability of the sensor’s readings. In [47], this class of attacks are extended to AC

state estimation, creating unobservable attacks on specific sub-graphs of the network.

In [35] and [73] consider an attacker with no information about the grid topology.

Under certain assumptions, the attacker can learn the topology from the power flow

observations an still launch undetectable cyber attacks.

In [50] the authors study an FDI attack including topology modification, in particular,

it is consistent with a solution where branches are either not working but in reality

they are, and viceversa. The paper considers cases when either the attacker has full

information (observability) of the network or just some local knowledge. Meanwhile,

the attacks proposed in [59] based in the AC SE can lead to generation re-dispatch and

line overflows. The work presented in [63, 95] analyzes FDI attacks that cause a load

redistribution in the SE using the DC power flow model.

Authors in [32] and [52] propose different algorithms to establish a minimum-cost

set of sensors should be secured in order to prevent the kind of cyber attacks described

above. Whereas [91] defines two metrics to quantify the importance of substations (how

many different attack vectors can involve a particular sensor) and the cost of the attacks
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on specific measurements (how many sensors are needed to be perturbed in order to alter

the measurement); and proposes strategies improve the system security with respect to

these metrics.

Cyber-Physical Attacks

The study in [80] considers a cyber-physical attack under the DC model where an adver-

sary attacks a zone H of nodes by disconnecting some lines (without disconnecting the

graph) and obstructing the measurements within H. (They assume that after the attack

there is no edge {i, j} ∈ EH such that θ′i = θ′j.) As a first step, they show that if there is

a matching between nodes outside H and inside H that covers the nodes in H, the phase

angles can be recovered almost surely (in the sense that for very specific combination of

reactance values of the edges in the matching the phase angles could not be recovered).

Secondly, the authors prove that the support of a linear system solution coincides with

the set of lines that failed (disconnected lines), and this solution is unique if and only if

the subgraph induced by nodes in the attacked zone H is acyclic. Also, if H is a cycle

and strictly less than half of its edges are disconnected, the support of a linear program

gives the set of failed lines. Other sufficient conditions are developed for planar graphs.

They extend these results in the presence of noisy data.

In [82] the authors propose an algorithm to estimate the phase angle after attacks

(that trip “any number” of lines and obstruct information from the attacked zone) using

a convex relaxation of the estimation for DC power flows (relaxing equalities to second

order cone inequalities), no specific/theoretical use of AC power flow equations.

The work presented in [83] also study cyber-physical attacks affecting the physical

infrastructure and the SCADA (Supervisory Control And Data Acquisition) system of the

network. This work is an extension of the results showed in [80] but using the AC power

flow model: an attacker disconnects lines from an area and obstructs the information

measured in that area, here generation and load remain the same after the attack for all

nodes. The paper introduces the EXPOSE Algorithm to detect line failures using the AC
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power flow equations, the algorithm is independent of the size of the grid and the number

of line failures. Together with [82], the authors claim to have the only methods that scale

with the size of the grid to detect any number of line failures with the AC power flow

equations. Using a similar idea than in [80], they show that the complex voltages of

the attacked zone can be recovered almost surely if there is a matching that covers the

attacked zone nodes by solving a linear system. Also, the authors state the same result

than in [80] when the attacked zone is a cycle. In more general cases, they propose the

EXPOSE Algorithm that solves a convex minimization problem that assuming that the

voltage magnitude of the attacked buses remain constant after the attack.

The authors in [96] study cyber-physical attacks with the following characteristics:

an intelligent attacker has access and gets knowledge of the network (topology, operation

costs, historical data, observable measurements), the attacker performs an attack that

trips a specific transmission line with the objective of overload another chosen line, this

physical attack is coordinated with a cyber attack that masks the tripped branch and

avoids its detection. The proposed strategy has two steps: first, the detection of a set of

buses able to attack and a target line to trip; and second, the computation of an attack

vector to inject as false data. As in [60], the authors compute first a DC attack vector by

solving a linear optimization problem, and then, using AC state estimation corresponding

to the DC attack vector, they compute a more accurate AC attack vector. They test

their results in the IEEE 24-bus test case. An attack of similar characteristics using

the DC power flow model is proposed in [33] together with countermeasures to detect

the intrusion: the availability of trusted PMUs and tracking of power system equivalent

impedance. Tests in the IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-bus test power

systems are shown.

[58] also study cyber-physical attacks that, in this case, the physical attack preserves

the grid topology but redistributes loads (see also [63, 95]) within certain budget across

the network and hides it through manipulated injection of data, under the DC model.

The paper bases the analysis on the computation of the generation shift factors that
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capture sensitivity of power flow changes on lines when bus injections are altered. Two-

stage mixed-integer linearized optimization problems are proposed to obtain the set of

lines and buses that will be affected by the attack. Given the dimensionality of the

problem, the authors show results of coordinated cyber-physical attacks on small IEEE

test systems with 14 and 118 buses.

Other Related Literature

The work in [28] proposes a game theory model in where an attacker and a defender of

the network have limited budget that allow them to attack targeted elements of the grid

(trip a line, break a transformer) o to secure them, respectively. They implement an

algorithm and show that when defenders deploy an strategy before an attack is initiated,

the loss can be predictable and limited to a minimum level.

Other works have focused on the system vulnerability to line outage, see e.g. [14,

18, 29, 39, 72, 85, 86, 97, 98, 100]. The objective of these studies is to identify from the

data when line tripping has happened, but also analyze the consequence that they could

caused, for example, cascade line failures. In particular, [72] uses a bilevel mixed integer

nonlinear programming to formulate the problem of finding a small set of lines whose

removal from the network would cause severe blackouts.

3.3 Attack Model

We will now describe and formulate the cyber-physical attacks that we considerate, com-

bining physical disruption and data intrusion. We will show that the numerical solution

to this problem scales well to systems with thousands of buses, with running times in

the tens of seconds or less on a standard computer. These experiments do not prove that

the attacks, though sparse, could easily be executed. Rather they show that the attack

computation is tractable, thus providing added justification for studying sophisticated

and scalable defense mechanisms.
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Attack models considered in prior work allow the attacker different capabilities. Re-

gardless of the model, Template 1 given below (similar to one in [96]) broadly outlines the

structure of an AC-undetectable attack. We use the term “initial” to indicate that the

attack comprises actions taken at one point in time. Later we will discuss a “follow-up”

phase that follows the initial attack.

Template 1. Initial Attack

(a) It is assumed that at each bus k there is a sensor measuring voltage at k and

current at each line km ∈ δ(k).

(b) The attacker has selected a (sparse) subset A of buses, as well as a target line

uv within A that will be overloaded.

(c) For any bus k ∈ A, the attacker can modify data provided by a sensor located

at k.

(d) The attacker’s physical actions are of two types. First, the attacker can modify

loads at buses in A. Additionally the attacker can disconnect lines with both

ends in A.

(e) Actions (c)-(d) are performed in a single step.

(f) The data received by the control center satisfies complete fidelity as per AC

power flow equations (2.7)-(2.10) and shows all system limits being satisfied,

while in actuality line uv is overloaded.

(g) When the attack includes load changes, secondary response (i.e. AGC re-

sponse) is taken into account by the attacker.

Conditions (a), (f) and (g) amount to a strong form of undetectability. Nevertheless,

we provide examples of large scale systems that are susceptible to attacks of the form
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(a)-(g). Note that we allow loads to be modified, but not generation. In our numerical

examples we enforce that G ∩ A = ∅, out of a perception that generator sites are more

carefully protected.

Point (e) requires some discussion. Immediately following any physical modification

to a system, we can expect a change in voltages (magnitudes and phase angles) and even

to system frequency, the latter especially when net loads are changed. More properly,

system dynamics will undergo a change. Understanding the precise nature of that change

is a substantial computational task. The current state-of-the-art involves a numerical

simulation that alternates between simulation of true dynamical behavior at generators

(the so-called swing equation) with AC power flow updates. This combined computation

will typically run much slower than the actual dynamics, and assumes correct knowledge

of the underlying transmission system. Under adversarial attack that e.g. modifies the

topology, the rapid success of such a computational approach to identifying the current

grid state seems uncertain. And once action (d) (i.e. modification of sensor data) is taken

a completely falsified, and consistent view of the system is being presented.

We next present conditions that we will impose so as to guarantee undetectability.

True data will be the true physical data. In contrast, reported data is that which is

actually received by the control center and includes the attacker’s modifications. The

true data will be given by the (voltage, current) pair of vectors (V T, IT) whereas the

reported data will be given by (V R, IR).

An important requirement for the reported data is

current-voltage consistency:

 IR
km

IR
mk

 = Ykm

 V R
k

V R
m

 , (3.1)

i.e. equation (2.8), should be satisfied at all branches. This condition will be enforced in

the computation given below in an indirect fashion (also see [67] for a different use of this

requirement). In general, of course, an attacker might only seek approximate consistency,

using ambient noise to hide errors. Additionally to (3.1):

(s.1) On a bus k /∈ A the true and reported data agree (no data modification outside A,
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by definition).

(s.2) At a boundary bus1 k ∈ ∂A the attacker is constrained by the condition V R
k =

V T
k . This condition is applied to avoid attack detection, given (a) and the second

equation in (3.1) applied to a line km where m /∈ A.

(s.3) On buses k ∈ A\∂A we may have V R
k 6= V T

k and on lines with at least one end in

A\∂A the true and reported currents may also differ.

(s.4) The reported voltages and currents must be consistent with meaningful (complex)

power injections. Specifically, consider a bus k. Then
∑

km∈δ(k) V
R
k I

R∗
km equals the

power injected into the system at bus k, according to the reported data. If k /∈ A

by definition (of reported and true data) this sum equals
∑

km∈δ(k) V
T
k I

T∗
km which is

the true power injected by bus k. On the other hand if k ∈ A the sum may differ

from the true injection at k.

(s.5) If the attack causes a net change in the sum of loads, the resulting AGC-mandated

change in generator output must be taken into account.

We call condition (s.4) power-injection consistency, that is:∑
km∈δ(k)

V R
k I

R∗
km = net injection at k ∀k, (3.2)

where “net injection” is the reported net injection on buses inA and the true net injection

for buses not in A.

Subject to these requirements, the attacker seeks to create a (true) line overload on

uv with both ends in A, while the reported data shows safe system operation (voltage,

angle, and power flow limits are satisfied). In other words, for η > 1 (e.g. η = 1.2 or

1Recall that k ∈ A is a boundary bus if it has a neighbor outside of A.
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η = 1.5), the attacker would try to satisfy

(PT
uv)

2 + (QT
uv)

2 = (ST
uv)

2 > (ηSmax
uv )2 (3.3)

∀km ∈ E , (PR
km)2 + (QR

km)2 = (SR
km)2 ≤ (Smax

km )2 (3.4)

θmin
km ≤ θR

k − θR
m ≤ θmax

km (3.5)

∀k ∈ N , V min
k ≤ |V R

k | ≤ V max
k (3.6)

where (PT
km, Q

T
km) and (PR

km, Q
R
km) are the true and reported flows given by the expres-

sions in (2.10) using {V T
k }k and {V R

k }k, respectively. In the next section we present a

mathematical formulation for this problem.

3.3.1 Formulation

As input to the problem we have a set A ⊂ N\G of buses, a set of lines L to be

disconnected, all with both ends in A, and a line uv /∈ L with both ends in A. Write

AC = N \ A. Let (Ŝgk = P̂ g
k + jQ̂g

k)k∈N and (Ŝdk = P̂ d
k + jQ̂d

k)k∈N be the complex power

generation and loads, respectively, at the time of the attack. We assume that the attacker

observes all these quantities.

The initial attack problem uses the following real-valued variables, where “T” indi-

cates true and “R”, reported:

• ∀ bus k ∈ N : |V T
k |, θT

k denote the true voltage magnitude and voltage angle;

• ∀ bus k ∈ N : |V R
k |, θR

k denote the reported voltage magnitude and voltage angle;

• ∀ bus k ∈ A: P d,T
k , Qd,T

k denote the active and reactive true loads in A;

• ∀ bus k ∈ A: P d,R
k , Qd,R

k denote the active and reactive reported loads in A;

• ∀ bus k ∈ R: P g
k , Q

g
k denote active and reactive generation at participating buses;

• ∀ line km ∈ E\L : PT
km, Q

T
km denotes the active and reactive true power flows;

• ∀ line km ∈ E : PR
km, Q

R
km denotes the active and reactive reported power flows;
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• ∆ denotes the net change in active power generation.

Therefore, the problem is formulated as follows:

maximize (PT
uv)

2 + (QT
uv)

2 (3.7a)

subject to ∀k ∈ AC ∪ ∂A, |V T
k | = |V R

k |, θT
k = θR

k (3.7b)

∀k ∈ A, −(P d,R
k + jQd,R

k ) =
∑

km∈δ(k)

(PR
km + jQR

km), (3.7c)

− (P d,T
k + jQd,T

k ) =
∑

km∈δ(k)\L

(PT
km + jQT

km), (3.7d)

P d,R
k ≥ 0, P d,T

k ≥ 0 (3.7e)

∀k ∈ AC\R, P̂ g
k − P̂

d
k + j(Q̂g

k − Q̂
d
k) =

∑
km∈δ(k)

(PT
km + jQT

km) (3.7f)

∀k ∈ R, P g
k − P̂

d
k + j(Qg

k − Q̂
d
k) =

∑
km∈δ(k)

(PT
km + jQT

km) (3.7g)

P g
k − P̂

g
k = αk∆ (3.7h)

∀k ∈ G, P g,min
k ≤ P g

k ≤ P g,max
k , Qg,min

k ≤ Qg
k ≤ Qg,max

k (3.7i)

∀k ∈ N , V min
k ≤ |V T

k |, |V R
k | ≤ V max

k (3.7j)

∀km ∈ E , |θR
k − θR

m| ≤ θmax
km ; |θT

k − θT
m| ≤ θmax

km if km /∈ L, (3.7k)

max{ ‖(PR
km, Q

R
km)‖ , ‖(PR

mk, Q
R
mk)‖ } ≤ Smax

km , (3.7l)

PT
km + jQT

km = Skm(|V T
k |, |V T

m |, θT
k , θ

T
m) km /∈ L (3.7m)

PT
mk + jQT

mk = Smk(|V T
m |, |V T

k |, θT
m, θ

T
k ) km /∈ L (3.7n)

PR
km + jQR

km = Skm(|V R
k |, |V R

m |, θR
k , θ

R
m) (3.7o)

PR
mk + jQR

mk = Smk(|V R
m |, |V R

k |, θR
m, θ

R
k ) (3.7p)

In this formulation, power flows are represented through the quadratic functions

Skm, Smk (see equations (2.9)-(2.10)) which appear in the formulation as (3.7m)-(3.7p).

Note that we include voltage variables but no current variables. However, having solved

the above optimization problem, the attacker reports, for each line km with both ends
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in A, a current pair (IR
km, I

R
mk) computed using the formula IR

km

IR
mk

 = Ykm

 |V R
k |ejθ

R
k

|V R
m |ejθ

R
m

 ,

thereby attaining current-voltage consistency (3.1). Note that if either k ∈ ∂A or m ∈ ∂A

the true and reported voltage values are identical —see Lemma 3 below.

Lemma 1. Consider a feasible solution to problem (3.7). Let H denote either T or R

(i.e. true or reported). Then the voltages |V H
k |ejθ

H
k for all k ∈ N yield a solution to the

power flow problem where

(1) Bus k has load P d,H
k + jQd,H

k for k ∈ A and P̂ d
k + jQ̂d

k if k ∈ AC.

(2) Bus k ∈ G has generation P g
k + jQg

k if k ∈ R and P̂ g
k + jQ̂g

k if k ∈ G \ R.

(3) Line km has power flow PH
km + jQH

km when H = R and also when H = T and

km /∈ L.

(4) When H = R (reported data) the solution is fully feasible, i.e. it satisfies voltage,

generation, phase angle and power flow limits.

(5) When H = T (true data) the solution satisfies voltage, generator and phase angle

limits, but only satisfies power flow limits on lines km with both k,m ∈ AC ∪ ∂A.

The solution is also consistent with lines in L being cut.

Proof. Property (3) follows from constraints (3.7m)-(3.7p). Hence, (1) and (2) follow

from constraints (3.7c)-(3.7f). Properties (4)-(5) follow from constraints (3.7i)-(3.7l).

As a corollary to (1)-(2) of Lemma 1, a feasible solution to problem (3.7) satisfies,

exactly, power-injection consistency, i.e. condition (s.4) above.

Lemma 2. Consider a feasible solution to problem (3.7). The solution is consistent with

a secondary-response adjustment of active power generator amounting to ∆ units.

Proof. Follows from constraint (3.7h).
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Lemma 3. Consider a feasible solution to problem (3.7). Then (a) the true and reported

voltages agree on AC ∪∂A. Further, (b) the true and reported currents on a line km are

identical if k,m ∈ AC ∪ ∂A.

Proof. (a) Follows from constraint (3.7b), and (b) is a consequence of (a).

Corollary 4. Suppose we compute a feasible solution to problem (3.7) whose objective

value is strictly greater than (Smax
uv )2. Then the reported solution amounts to an unde-

tectable attack that hides an overload on line uv.

3.3.2 Computational Viability

Above we have presented a mathematically correct version of the initial attack problem

that would lead to an (initially) undetectable attack, via problem (3.7) which is a nonlin-

ear, nonconvex optimization problem, and thus, in principle, a challenging computational

task. Nevertheless this problem is similar to the standard ACOPF or PF problem and

(at least) a local optimum should be efficiently computable; this expectation is borne

out by our experiments. Strict maximization in (3.7) is not required for an attack to

be successful (all that is needed is an overload of the line uv), it is easy to see that the

objective function (3.7a) can be replaced by a feasibility constraint

(PT
uv)

2 + (QT
uv)

2 > (ηSmax
uv )2,

for some η > 1, and solve a feasibility problem instead of an optimization problem.

A broader issue concerns the selection of the sets A and L. This is a combinatorial

problem which is bound to be intractable. In fact [81] describes a number of strong

NP-hardness results in the DC setting, e.g. given vectors of phase angles θ and θ′ it is

NP-hard to compute a set L such that B′θ′ = Bθ where B′ is the bus susceptance matrix

of the network with L removed.

Nevertheless, as discussed in the literature, an attacker may be willing to incur signif-

icant computational costs in order to compute a successful attack. While it is reasonable
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to assume that an attacker’s ability to take physical action or to modify data is limited

(see the discussion in [52,64]), not assuming computational intelligence on the part of an

attacker amounts to a limitation on the part of the defender.

We separate two distinct issues here: first the identification of the set A, which

is done in advance and may be computationally intensive, and second, the solution to

problem (3.7) which only requires a few seconds. Let us assume that the attacker has had

(undetected) access to system and sensor data long enough to identify a weak sector of the

transmission system, i.e. the set A. In this task the attacker would rely on the fact that

typical (time- and day-dependent) load and generation profiles for transmission systems

are statistically predictable with some accuracy. This fact would help the attacker in

the computation of a target set A, perhaps using enumeration, using load estimates in

problem (3.7).

Having identified a particular set A, problem (3.7) would be run once again just prior

to the attack, now using close estimates of the loads obtained from ambient conditions.

Assuming that the attack is perpetrated during a period of slowly changing loads, and not

close in time to a generator redispatch2, the attack will likely be sufficiently numerically

accurate so as to become difficult to detect.

3.3.3 Computational Implementation

Our experiments and implementations are based on the Matpower test cases. Mat-

power [101] is an open-source package for Matlab that solves optimization problems and

power system simulations, such as the DC- and AC-OPF. Matpower has a built-in op-

timization solver called MIPS (Matpower Interior Point Solver), a primal/dual interior

point method, but other solvers and toolboxes are also supported, such as fmincon (from

the Matlab Optimization Toolbox), IPOPT [92], GUROBI [43], CPLEX, MOSEK [6],

and others. These solver can be used with Matpower if they are properly installed for

2A generator redispatch is a request made by the control center to a generator to adjust its real power

injection to the network.
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running in Matlab.

In other to implement the type of attacks that have previously been described, we

have coded our own optimization/feasibility problems that find solutions to power flow

instances. Our code reads test case files that are structured in the same shape as Mat-

power test cases, and creates a Matlab file where the state variables are the ones

described in the previous sections and the objective function and constraints, with their

corresponding Jacobian and Hessian, are explicit (in contrast with Matpower func-

tions that are difficult to read and modify). The code can be found in the website

github.com/me2533/acopf and its performance is in some cases better than Mat-

power.

3.3.4 Examples

In the following instances we consider the case2746wp and the case1354pegase (that

have 2746 and 1354 buses, respectively) from the Matpower case library [101].

For the first case, the adversary attacks the set of buses

A = {1137, 1138, 1139, 1141, 1361, 1491}

with A1 − ∂A1 = {1137, 1138, 1141, 1491}.

See Figure 3.1. In this attack the quantity ∆ in (3.7h) equals 135.09. We also have L = ∅

(no lines are cut). The set of generators participating in secondary response is R1 = {17,

18, 55, 57, 150, 383, 803, 804, 1996} with participating factors αk = 1/9 for all k ∈ R1.

Table 3.1 shows the true and reported flow for lines where the solutions differ, with

a strong overload on line (1361, 1141) and (1138, 1141).

Table 3.2 displays the load and generation of the buses involved in the attack.



CHAPTER 3. CYBER-PHYSICAL ATTACKS 36

1110

135816511041844 1252 1295162585

1287 1512

1137 1361 1141

1138
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Figure 3.1: Attacked zone A1 (in red) and its neighborhood. Generators are shown in blue.

Table 3.1: True and reported flow for attacked lines. (Overflow in bold)

bus k bus m
pT
km qT

km ‖(pT
km, q

T
km)‖

SmaxkmpR
km qR

km ‖(pR
km, q

R
km)‖

1139 1137
3.36 2.66 4.29

114.00
3.36 2.66 4.28

1361 1141
229.01 10.49 229.25

114.00
108.51 10.49 109.02

1141 1491
13.46 2.41 13.68

114.00
6.20 2.39 6.64

1141 1138
209.25 4.44 209.29

114.00
98.06 5.24 98.20
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Table 3.2: Load and generation before and after the attack.

Before Attack After Attack

bus k P̂ d
k Q̂d

k P d,T
k Qd,T

k P d,R
k Qd,R

k

1137 0 0 3.36 2.68 14.74 1.37

1138 103.29 29.84 208.91 3.32 20.82 1.46

1139 0 0 3.36 2.68 15.80 1.37

1141 0 0 5.97 2.64 24.20 1.45

1361 0 0 1.58 2.39 91.90 1.45

1491 4.76 1.12 13.45 2.65 20.58 1.48

gen k P̂ g
k Q̂g

k P g
k Qg

k αk∆

17 140.00 120.00 155.01 116.90 15.01

18 140.00 41.01 155.01 61.33 15.01

55 130.00 −20.00 145.01 19.29 15.01

57 130.00 −20.00 145.01 38.33 15.01

150 90.00 0 105.01 26.65 15.01

383 21.27 10.54 36.28 13.78 15.01

803 0 0 15.01 6.47 15.01

804 0 10.00 15.01 8.27 15.01

1996 90.00 62.86 105.01 77.28 15.01
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For the second instance we consider the case1354pegase and two different attacks.

First

A2 = {44, 367, 1027, 1172, 1833, 1923, 1973, 2372, 2458, 2644, 2919, 2928, 3243,

3543, 3610, 3657, 3855, 4885, 5308, 5477, 5648, 7148, 7865, 8104, 8722, 9191}

with responding generator set R2 = {352, 757, 1794, 2421, 2816, 4918, 7267, 7808}. See

Figure 3.2. The participating factors are the same for all generators.

6313

3541

1545

8628

1172

3657 5477

2928

4432

38551973

1394

2273 3962

2230

1838

7865

1833

5648 1923

4885

5131

4157

3830

1758

8030

5837 6427

81042644 9191 8722

7537

2458

44

1027

196 8507

8361 3654

2372
2919 3243

367
3543

7373
8879

8347

3610

7148

5308

8560 2421

7273

6989

5610

306

1465

7267

Figure 3.2: Attacked zone A2 (in red) and its neighborhood. Generators are shown in blue.

Table 3.3 shows the true and reported flow for lines where the solutions differ —with

overloads of 53%—, while Table 3.4 displays the load and generation of the buses involved

in the attack.
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Table 3.3: True and reported flow for attacked lines. (Overflow in bold)

bus k bus m
pT
km qT

km ‖(pT
km, q

T
km)‖

SmaxkmpR
km qR

km ‖(pR
km, q

R
km)‖

5477 3657
−75.24 15.42 76.80

491.00−119.01 18.14 120.39

5477 2928
75.24 −6.50 75.52

433.00
74.35 −8.66 74.85

367 1172
384.37 −106.48 398.85

529.00
401.00 −104.03 414.28

367 9191
341.06 −89.26 352.55

529.00
404.27 −80.36 412.18

367 8722
809.96 −66.76 812.70

529.00
418.41 −81.99 426.37

3657 3855
146.49 −48.88 154.43

529.00
192.83 −55.15 200.56

3657 3855
162.87 −48.21 169.85

491.00
214.05 −53.35 220.59

3657 2928
108.03 −27.27 111.42

395.00
127.77 −32.80 131.92

3657 2928
112.07 −31.88 116.52

376.00
132.54 −38.27 137.95

3657 1172
−382.70 118.57 400.65

491.00−298.52 124.10 323.29

3657 9191
−339.80 99.37 354.04

453.00−271.11 103.01 290.02

3657 8722
117.80 99.39 154.12

414.00−277.51 105.57 296.91

8104 8722
−0.29 0.24 0.37

491.00−67.70 −6.08 67.97

2644 9191
0.00 0.23 0.23

∞−66.39 −6.01 66.67

4885 2928
0.00 −0.00 0.00

281.00−13.49 −0.63 13.50

3855 1973
195.73 6.21 195.82

529.00
215.31 −5.72 215.39

3855 1973
113.54 −6.52 113.73

491.00
124.26 −14.44 125.09

2928 7865
−0.00 0.00 0.00

395.00
14.67 −2.73 14.92
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Table 3.4: Load and generation before and after the attack.

Before Attack After Attack

bus k P̂ d
k Q̂d

k P d,T
k Qd,T

k P d,R
k Qd,R

k

367 65.17 −51.50 0 0 311.70 3.89

1027 −5.91 −2.33 0 0 0 0

1172 0 0 0 0 100.80 8.15

1923 192.11 45.50 166.17 0 166.17 0

1973 210.10 66.20 0 49.00 30.27 29.06

2458 132.00 26.00 128.88 0 128.88 0

2644 0 0 0 0 66.39 6.24

2928 0 0 0 14.22 11.10 2.03

3610 185.80 31.80 0 0 0 0

3657 131.00 1.30 0 0 60.91 10.61

3855 −38.73 −15.32 0 20.56 67.17 28.79

4885 166.40 50.40 0 1.49 13.49 2.12

5308 0 0 0 11.08 0 11.08

5477 0 0 0 12.88 44.67 12.32

7148 0 0 0 63.08 0 63.08

7865 84.99 19.60 0 5.23 14.67 2.49

8104 127.20 40.80 0.29 0 67.70 6.32

8722 0 0 924.58 0 71.99 6.16

9191 0 0 0 0 65.55 6.07

gen k P̂ g
k Q̂g

k P g
k Qg

k αk∆

352 870.56 22.55 867.39 −297.68 −3.18

757 120.00 51.30 116.82 51.30 −3.18

1794 777.83 −3.27 774.66 −288.66 −3.18

2421 100.00 −12.45 96.82 37.39 −3.18

2816 746.19 7.62 743.02 −297.74 −3.18

4918 80.00 37.27 76.82 −12.57 −3.18

7267 100.00 23.18 96.82 77.34 −3.18

7808 797.28 −1.84 794.10 926.35 −3.18
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For the last attack example, also in the case1354pegase, we set

A3 = {174, 305, 953, 1035, 1311, 1817, 1965, 2365, 2526, 3579, 3613, 3649, 3697,

3794, 4504, 4874, 5106, 5469, 6555, 6901, 7903, 7905, 8180, 8373, 8748, 8931}

with responding generator set R3 = {564, 1001, 7466}. See Figure 3.3. The participating

factors are the same for all generators.
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Figure 3.3: Attacked zone A3 (in red) and its neighborhood. Generators are shown in blue.

Table 3.5 shows the true and reported flow for lines where the solutions differ —with

line overloads of 66%—, while Table 3.6 displays the load and generation of the buses

involved in the attack.
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Table 3.5: True and reported flow for attacked lines. (Overflow in bold)

bus k bus m
pT
km qT

km ‖(pT
km, q

T
km)‖

SmaxkmpR
km qR

km ‖(pR
km, q

R
km)‖

4874 4504
−54.84 −17.66 57.61

453.00
127.62 −6.05 127.76

4874 3579
−241.10 21.74 242.08

376.00
2.65 16.17 16.39

4874 3579
−254.86 27.21 256.31

∞
3.09 17.07 17.35

4874 7903
−202.23 −56.32 209.92

338.00
304.73 −37.51 307.03

4504 7903
−56.89 −13.90 58.56

∞
18.03 −16.39 24.37

3579 5469
−498.23 34.98 499.46

491.00−120.65 21.26 122.51

6901 4874
953.11 236.71 982.06

591.00
569.95 88.70 576.81
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Table 3.6: Load and generation before and after the attack.

Before Attack After Attack

bus k P̂ d
k Q̂d

k P d,T
k Qd,T

k P d,R
k Qd,R

k

174 370.50 −17.00 0 0 0 0

305 103.00 12.00 0 0 0 0

953 108.70 −12.15 0 0 0 0

1035 382.50 57.90 0 0 0 0

1311 37.94 15.20 0 0 0 0

1817 108.91 33.70 0 0 0 0

1965 248.70 8.10 0 0 0 0

2365 37.94 15.40 0 0 0 0

2526 238.45 46.86 0 0 0 0

3579 277.72 7.35 0 0 126.38 15.21

3613 152.50 14.40 0 0 0 0

3649 0 0 155.13 0 155.13 0

3697 −32.71 −13.76 110.41 40.10 110.41 40.10

3794 165.30 7.40 0 0 0 0

4504 170.10 −9.30 1.83 0 108.55 7.80

4874 −0.58 −53.03 1702.23 0 130.51 12.96

5106 39.94 13.00 0 0 0 0

5469 106.60 −18.80 0 0 385.57 36.48

6555 −37.81 −21.64 0 0 0 0

6901 −37.84 −19.23 0 0 383.16 148.01

7903 0 0 59.13 0 639.63 6.27

7905 347.10 87.20 676.25 0 676.25 0

8180 291.60 47.00 0 0 0 0

8373 216.30 −6.90 0 0 0 0

8748 279.70 4.60 0 0 0 0

8931 −0.56 0 712.85 0 712.85 0

gen k P̂ g
k Q̂g

k P g
k Qg

k αk∆

564 100.00 −19.35 60.04 18.47 −39.96

1001 120.00 55.02 80.04 55.02 −39.96

7466 100.00 −59.77 60.04 75.85 −39.96



CHAPTER 3. CYBER-PHYSICAL ATTACKS 44

3.4 The Follow-Up Phase

Following the initial attack, the attacker needs to dynamically perturb the attack data

so as to produce a realistic data stream that is both consistent and continues to hide the

overload.

In analogy to our notation for the initial problem, at time t > 0 following the attack,

we denote by V R
k (t) and V T

k (t) be reported and true voltages at t and similarly with cur-

rents. Reported data for A will be manufactured by the attacker aiming to approximately

satisfy current-voltage consistency (3.1) and power-injection consistency (3.2).

In addition, in this work we assume that the attack is perpetrated when ambient

conditions (in particular loads) are, approximately, constant. Let us denote by V R
k (0)

the voltage at a bus k computed by the initial attack (3.7), i.e.

V R
k (0)

.
= |V R

k |ejθ
R
k

and likewise define the current IRkm(0) on line km. The statement that ambient conditions

are approximately constant, post-attack, can be informally rephrased as

V R
k (t) ≈ V R

k (0) ∀ k, and IR
km(t) ≈ IR

km(0) ∀ km. (3.8)

If ambient conditions are approximately constant, (3.8) will hold (statistically) for any

bus k and line km not in the attacked zone A but are otherwise a requirement for the

attacker.

Two types of attack have been used in the literature. First, the “noisy data” attack

in our setting works as follows:
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Template 2. Noisy Data Attack

At time t > 0 the attacker reports at each bus k ∈ A a voltage

V R
k (t) = V R

k (0) + νk(t).

Here νk(t) is a random phasor drawn from small variance, zero mean distributiona.

Likewise the attacker reports for each line km with both ends in A, currents IR
km(t)

IR
mk(t)

 =

 IR
km(0)

IR
mk(0)

+

 µkm(t)

µmk(t)

 (3.9)

where µkm(t),µmk(t) are drawn from zero mean distributions with small variance.

aWe use boldface to indicate random variables.

Note that these definitions satisfy requirement (3.8), and approximately satisfy current-

voltage consistency. As a functionally equivalent alternative to (3.9) the attacker could

simply set  IR
km(t)

IR
mk(t)

 = Ykm

 V R
k (t)

V R
m (t)

 , (3.10)

our analyses below apply to either form.

A second form of attack that has been considered is the data replay attack. Here

the attacker supplies a previously observed (or computed) pair of time series V R(t) and

IR(t) for buses and lines within the set A.

Discussion

The reader may recall that in the initial attack computation we enforced that reported

voltages in ∂A are exact, i.e. equal to the true voltages (constraint (3.7b)). In the time-

varying phase this condition is necessarily relaxed by the attacker, though this action car-

ries the risk (to the attacker) that current-voltage consistency will not hold, statistically,
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for some line km with k ∈ ∂A and m /∈ A. Thus e.g. in the noisy data attack template

given above the distributions for the νk(t), µmk(t) and µkm(t) should have sufficiently

small variance relative to the variance of ambient conditions. Further requirements on

such variances will be discussed in Section 3.5.3. In any case, when ambient conditions

(e.g. loads) are nearly constant, the noisy-data attack may continue to approximately

satisfy current-voltage and power-injection consistency and thus remain numerically un-

detectable. The same holds for the data replay version provided the replayed voltages in

∂A closely approximate ambient conditions.

In the next section we present defensive mechanisms that dynamically change voltages

in a way that is unpredictable by the attacker. The key observation is that a substantial

change to voltages in ∂A will cause the noisy-data attack, applied verbatim as in Template

2, to fail, because of large current-voltage inconsistencies on lines km with k ∈ ∂A and

m /∈ A. Of course, the template need not be applied verbatim, and in particular the

attacker may seek to leverage the possibility of sensor error. We will consider this point

in the next section.

In [83] current-voltage consistency is used in a different setting: (i) the attacked zone

A is known by the defender, (ii) the attacker only disconnects lines. Under a number of

assumptions, in particular that there is a matching between AC and A that covers all

buses in A it is shown that the attack can be accurately recovered.

3.5 Defense

In the above sections we showed that, conceptually at least, it is possible to compute

high-fidelity attacks that disguise dangerous network conditions. Other attacks are also

potentially conceivable, e.g. impedance changes, transformer tap changes, etc. In this

section we describe a generic randomized defense strategy that can deployed when a

complex attack is suspected. We will assume that the attack impacts a proper subset A

of the system that is unknown to the control center, as was the case above, though the
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generic defense strategy applies under more general attacks as well. The strategy can be

summarized by the following template:

Procedure 3. Random Injection Defense.

Iterate:

D1: Choose, for each k ∈ G a (random) value δk such that
∑

g∈G δk ≈ 0. Command

each generator k ∈ G to change its output to P g
k + δk.

D2: Following the generation change in step D1 identify inconsistencies in the

observed sensor readings.

Here, an “inconsistency” is a difference between a voltage value that is reported by the

attacker, and a corresponding value that predicted by the defender. We will describe

several concrete versions of this idea below. See Procedures 4, 5 and 6.

Each iteration would last several seconds, and statistically significant inconsistencies

identified by this scheme would be flagged as potential evidence of an attack. Below we

will describe several specific implementations of the random ingredient; randomness is

used because the attacker cannot anticipate the random injections and thus will not be

able to instantaneously update the sensor readings within A. The above strategy could

be AGC-like if only generators k ∈ R (the responding generators) are allowed to have

δk 6= 0 and in general it amounts to a generator redispatch. The strategy in Procedure 3

is likely to succeed, in particular against the noisy data or data replay attacks, if the

generation changes result in significant voltage changes across the system. Lemma 5

given below explains why a particular implementation of Procedure 3 attains this goal.

An additional point is that an implementation of step D1 should guarantee safe system

operation; this consideration leads to computation of the δk in step D1 by means of an

OPF-like problem.

We note that there is an existing literature on using network resources so as to change

power flow physics in order to detect structure or faults. See [15–17,89,99]. Indeed, even
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though the description of our random defense focuses on power injections, one could

also consider other random probing strategies that change power flows, such as adjusting

transformer settings, controlled line tripping, and the use of DER (distributed energy

resources)3, storage and FACTS (flexible AC transmission system) devices.

There are several implementations of the generic strategy. Generally the defender

wants to make the |δk| large because to first order changes in voltage angles are propor-

tional to ‖δ‖2, and a large change in phase angles is likely to give rise to a significant

current-voltage or power-injection inconsistencies in sensor readings in ∂A, as discussed

above. This idea forms the basis for a simple, current-consistency based version of Pro-

cedure 3 given in Section 3.5.2.

An attacker aware that the random defense strategy is applied may try to replace

e.g. the noisy data attack with a more careful manipulation of reported data. For ex-

ample, the attacker could react to a significant change to voltages in ∂A by solving a

nonlinear, nonconvex system of inequalities designed to guarantee approximate current-

voltage and power-injection consistency. In addition, any implied load change within A

must be very small (or it would contradict observed frequencies). Finally the attacker

would need to perform this computation very quickly, and repeatedly (because the de-

fense will be applied repeatedly).

This online complex computation could in principle be bypassed by the attacker by

considering changes to readings of voltages at buses in ∂A only; with the remaining

voltages in A computed as in Template 2. We will term this the enhanced noisy data

attack. We remark that the adversary would still have to maintain AC consistency for

lines within A, which is nontrivial. Nevertheless, the ability to adjust readings in ∂A

beyond what is prescribed by the noisy data attack may provide some flexibility for the

attacker. However, in Section 3.5.2 we will show that when the random injection defense

causes large-enough voltage changes in ∂A, the enhanced noisy-data attack fails. See

Lemma 10.

3Small local artifacts that generate or store energy, located close to the load point that they serve.
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A more practicable alternative (for the attacker) would be to consider arbitrary

changes to voltages in buses in ∂A, with the remaining voltages in A obtained as in

Template 2. We will term this the enhanced noisy data attack. In Section 3.5.2 we

will show that when the random defense causes large-enough voltage changes in ∂A, the

enhanced noisy-data attack fails. See Lemma 10.

A more sophisticated defensive idea, given in Section 3.5.3, changes the stochastics of

power flow data, in particular voltage covariance, and probes the corresponding properties

of the reported data.

Our defensive strategies can be easily adjusted if sensors are not available throughout

the system. Of course, the fewer the sensors the more limited the impact of the de-

fense. Indeed, some interesting work (using the standard, DC-equation state estimation)

precisely seeks to perform system identification post-attack when only limited sensor

information is available [80–83]. Note that the attack problem becomes easier (for the

attacker) if sensors are not widespread. The attacks computed in Section 3.3.4 do assume

sensors at every bus, and yet succeed even in large-scale cases.

3.5.1 Controlling Voltages Through Generation Changes

As discussed above, a goal of the defense is to produce large voltage angle changes in buses

in A, with the intention of revealing inconsistencies in reported data on lines between ∂A

and AC . The defender, of course, does not know the set A and thus it is of interest to

understand when the voltage at any given bus can be changed by appropriately choosing

the injections δ.

In this section we address the task of changing voltage angles through injections.

First, we will argue by using the DC power flow approximation (2.19), that Procedure 3

does succeed in changing phase angles (see Lemmas 5 and 6). In Section 3.5.1.1 we will

present experiments under the AC power model that verify the DC-based results. And

in Section 3.5.2 we further argue that the voltage changes are large enough to overcome

sensor error.
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The defensive strategy that we develop, as a specific implementation of the random

injection defense Procedure 3, assumes that there is a known set T of generator buses

that are known to be “trusted”, that is to say, we can assume that data from buses in

T is known to be unmodified. This concept is not new; see [25, 33, 40, 52] for related

discussions. Without such an assumption the entire suite of signals received by the

control centers could be falsified and it is questionable whether any meaningful attack

reconstruction can be performed. The following template describes the strategy:

Procedure 4. Pairs-Driven version of Procedure 3.

At each execution of step D1, select a random pair of generator buses s and t,

both in T , as well as random Γ > 0, and use the injections

δs = Γ, δt = −Γ, and δk = 0 ∀k 6= s, t. (3.11)

In an application of this defense, define

P̂ g = P g + δ

We denote by B̂ the bus susceptance matrix of the network, after the attack. This

matrix will be different from the original bus susceptance matrix B in case of a topology

or susceptance attack; thus the control center does not know B̂. Recall that as stated

above we are assuming that the network remains connected after the attack.

Lemma 5. Suppose B̂θ = P g − P d, and B̂θ̂ = P̂ g − P d. Let k 6= t be a bus such that

the post-attack network contains a path between s and k that does not include t. Then

θ̂k − θ̂t > θk − θt. (3.12)

Proof. Equation (3.12) does not change if we subtract from every θ̂h any constant, and

likewise with the θh. Thus, without loss of generality θ̂t = θt = 0. Under this assumption

(3.12) reads:

θ̂k − θk > 0. (3.13)

Let M be the set of buses p 6= t such that
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(1) The network contains a path from s to p that avoids t, and

(2) Subject to (1), θ̂p − θp is minimum.

Aiming for a contradiction, we will assume that

θ̂p − θp ≤ 0 for p ∈M. (3.14)

Showing that (3.14) is false yields (3.13). For any line km define the flow value fkm =

(θ̂k − θ̂m − θk + θm)/xkm. Since B̂(θ̂ − θ) = P̂ g − P g, the flow vector f corresponds

(under the DC power flow model) to a power flow with Γ units of generation at s, Γ

units of load at t, and zero generation and load elsewhere. Note that for any line km,

fkm > 0 if and only if

θ̂k − θk > θ̂m − θm. (3.15)

This observation implies

θ̂s − θs > 0. (3.16)

[To obtain this fact, decompose the flow vector f into a set of path flows from s to t

and telescope (3.15) along any such path.] Pick any p ∈ M and let P be a path from

s to p that avoids t. Say P = v0, v1, . . . , vi where v0 = s and vi = p, and let h be

smallest such that vh ∈ M . By (3.16) s /∈ M , i.e., h > 0. Then by definition of h,

θ̂vh−1
− θvh−1

> θ̂vh − θvh , i.e. fvh−1,vh > 0. But by assumption vh 6= t. So there exists

some line vh,m such that fvh,m > 0. Therefore using the assumption θ̂k − θk ≤ 0 for all

k ∈M , vh ∈M , and (3.15),

0 ≥ θ̂vh − θvh > θ̂m − θm. (3.17)

So m 6= t, and as a result by construction there is a path from s to m that avoids t. But

then (3.17) contradicts the fact that vh ∈M .

Lemma 6. Suppose k is any bus and that there are at least two generators available to

implement Procedure 3. Then a pair s, t satisfying the assumptions of Lemma 5 exists.
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Proof. Choose s ∈ R such that s is closest to k.

Note: if Γ is chosen negative in (3.11), then instead of (3.12) we obtain θ̂k− θ̂t < θk−θt
through essentially the same proof.

For future reference, we state the following analogue of Lemma 5, with similar proof

(omitted).

Lemma 7. Let suppose θ and θ̂ be as in Lemma 5. Let k 6= t be a bus such that in the

post-attack network every path between s and k must include t. Then

θ̂k − θ̂t = θk − θt. (3.18)

To analyze the pairs-driven defense we will express phase angles using t as the refer-

ence bus; see equation (2.20). Thus B̂θ̂ = P̂ g − P d has a unique solution with θ̂t = 0 of

the form

θ̂ = B̆t(P̂
g − P d) = θ + B̆tδ (3.19)

where B̆t is an appropriate pseudo-inverse of B̂. (In this expression θ is also written with

respect to t). As a result of Lemma 5 we have:

Lemma 8. Let k be any bus. Then, with high probability we will have θ̂k = θk + βkΓ for

some value βk > 0.

Proof. Let k be any bus. Then with high probability, at multiple iterations of the pairs-

driven defense the buses k, s and t will satisfy the conditions of Lemma 5. Let us assume

that bus t is the reference bus. Then θ̂t = θt = 0, and thus θ̂k > θk. Thus, (by (3.19))

θ̂k is as desired.

This results suggests the following detection paradigm:



CHAPTER 3. CYBER-PHYSICAL ATTACKS 53

Procedure 5. Pairs-driven detection criterion

As Procedure 4 iterates, for each bus k, estimate the correlation between θ̂k

and Γ. The defensive procedure terminates when all these estimates are stable.

At that point, any bus k whose correlation coefficient is nonpositive is flagged

as suspicious.

Lemma 9. With high probability the pairs-driven defense will defeat the noisy data and

data replay attacks in the sense that each bus whose data is modified will be flagged, and

any bus that is not attacked will not be flagged.

Proof. Let k be any bus. Then with high probability by Lemma 8 the control center

expects that θ̂k = θk + βkΓ for some value βk > 0 unknown to the control center. This

fact yields the desired result since in either attack case, if k ∈ A the signals produced by

the attacker at bus k will not have the stated form.

Lemmas 5 through 9 assume the DC power flows model, which is only a first-order

approximation to the AC model we consider here. In the next section we perform numer-

ical experiments, under the AC power flows model, of the random injection defense 3.

A separate issue concerns ambient noise; we need voltage changes to overcome currently

found noise levels in measurements. This issue is taken up in Section 3.5.2.

3.5.1.1 Numerical experiments using AC power flows

The above discussion concerns DC power flows. In order to investigate how voltages

change under injection changes, under AC power flows, we perform a experiments using

examples from the Matpower library [101]. For each system we perform ten experiments.

In each experiment we compute an AC power flow which is constrained to satisfying

the given voltage bounds at all generator buses, but not at load buses, as well as power

injection constraints and generator limits, while allowing large injection changes in a

random subset of generators. For a non-generator bus k, let V b
k be its voltage in the
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base case (i.e. the Matpower case), and let Vi,k be its voltage in experiment i = 1, . . . , 10.

Finally, define

score(k)
.
= max

1≤i≤10

|Vi,k − V b
k |

|V b
k |

.

In Table 3.7, “Min Score” is the minimum score across all non-generator buses. Thus

the table provides experimental verification for substantial AC voltage changes under

random generator injections.

Table 3.7: AC Voltage Changes

Case Min Score Average Score

case118 11.61% 32.77%

case1354pegase 7.62% 51.00%

case2746wp 5.00% 10.09%

3.5.2 Overcoming Sensor Error, and

the Current-Voltage Defense

If sensor misestimation (i.e., error) is present, a strategy based on Procedure 3 may fail

to detect data inconsistencies if the random power injections cause voltage changes that

are too small as compared to the error. In order to derive a version of Procedure 3 that

deals with this issue, we next describe a particular implementation of step D2 which

relies on the current-voltage consistency condition (3.1) which takes into account the

possibility of sensor error. This implementation will take into account the possibility of

sensor error. Whereas above a phasor (voltage or current quantity) φ had a true value φT

(the physical value) and a reported value φR (the value received by the control center),

now we will have the sensed value φS which is the value actually produced by the sensor.

Due to sensor error, sensed and true data may differ. For a phasor φ define err(φ)
.
=

φS − φT. In the PMU setting, the TVE (total vector error) criterion [70, 84] guarantees
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that

|err(φ)| < τ |φT|, (3.20)

where 0 < τ < 1 is a tolerance. Standards enforce τ = 1%, though experimental testing

of PMUs shows far smaller errors [36]. From (3.20) we have that

|φS| − |φT| ≤ |φS − φT| < τ |φT|

and |φT| − |φS| ≤ |φS − φT| < τ |φT|,

therefore, we obtain

(1− τ)|φT| < |φS| < (1 + τ)|φT| (3.21a)

|err(φ)| < τ

1− τ
|φS|. (3.21b)

We will describe three sensor-error-aware voltage-current consistency criteria. An im-

portant point is that the current-voltage consistency condition (3.1), combined with

estimations of possible sensor error, yields a nonlinear relationship, and appropriately

reformulation of this relationship can render useful benefits. To simplify notation we will

drop the “(t)” from phasors though it should be understood throughout. For a line km

write

Ykm =

 ykk ykm

ymk ymm

 .
Criterion 1. We have that IT

mk = ymkV
T
k + ymmV

T
m . Write zmk

.
= [ymk]

−1. Hence

V S
k − zmk(I

S
mk − ymmV

S
m) = err(Vk) − zmk(err(Imk)− ymmerr(Vm)) (3.22)

which yields, using (3.20), (3.21), and the triangle inequality

|V S
k − zmk(I

S
mk − ymmV

S
m)| ≤ |err(Vk)|+ |zmk|(|err(Imk)|+ |ymm||err(Vm)|)

< τ |V T
k |+

τ |zmk|
1− τ

(|IS
mk|+ |ymm| |V S

m|)

= τ |zmk(IT
mk − ymmV

T
m )|+ τ |zmk|

1− τ
(|IS

mk|+ |ymm| |V S
m|)

≤ 2τ |zmk|
1− τ

(|IS
mk|+ |ymm| |V S

m|).
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In summary, Criterion 1 states that the sensed values V S
k , V S

m and IS
mk ove lines km must

satisfy the following inequality:

|V S
k − zmk(I

S
mk − ymmV

S
m)| < 2τ |zmk|

1− τ
(|IS

mk|+ |ymm| |V S
m|). (3.23)

Under Criterion 1, if, statistically, the reported phasors V R
k , V

R
m , I

R
mk fail to satisfy (3.23)

line km is flagged as suspicious. A similar analysis concerns V R
k , V

R
m , I

R
km. Remark: By

construction, if k,m /∈ A then line km will not be flagged.

Criterion 2. Proceeding as above we have

|IS
km − ykkV

S
k − ykmV

S
m| = |err(Ikm)− ykkerr(Vk)− ykmerr(Vm)|

<
τ

1− τ
(|IS

km|+ |ykk||V S
k |+ |ykm||V S

m|). (3.24)

(and similarly with Imk), and

Criterion 3. When line km is a pure impedance line (no transformer), from (2.7) we

have that

Ykm =

 ykk ykm

ymk ymm

 =

 ykm +
ysh
km

2
−ykm

−ykm ykm +
ysh
km

2

 ,
with branch admittance ykm and shunt admittance ysh

km

|IS
km + IS

mk| = |(IS
km − IT

km) + (IS
mk − IT

mk) + (ykk + ymk)V
T
k + (ykm + ymm)V T

m |

= |err(Ikm) + err(Imk) + (ykk + ymk)V
T
k + (ykm + ymm)V T

m |

= |err(Ikm) + err(Imk) +
ysh
km

2
(V T

k + V T
m )|

<
τ

1− τ
(|IS

km|+ |IS
mk|) +

τ |ysh
km|

2(1− τ)
(|V S

k |+ |V S
m|). (3.25)

If the reported phasors do not satisfy (3.24) or (3.25) then the line is flagged.

Discussion

Note that a line not attacked will not be flagged, as per the TVE condition. Additional

criteria can be developed to handle power-injection consistency. To analyze the effective-

ness of these criteria, we turn to the enhanced noisy data attack discussed in Section 3.4.
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To remind the reader, in this type of attack the voltage readings in ∂A can be arbitrarily

adjusted. While this action may create inconsistencies on lines with just one end in ∂A

the attacker may be able to “hide” such inconsistencies if they are small enough relative

to sensor error.

We next show that Criterion 1 alone can suffice to defeat the enhanced noisy data

attack (i.e. uncover inconsistencies) when voltage angles are sufficiently changed under

our random injection defense.

To understand this point, consider a bus k ∈ ∂A such that there is a line km with

m /∈ A and also a line ka where a ∈ A−∂A. We study an iteration of the random defense

which (to simplify notation) we assume begins at time t = 0. Consider line ka first. To

avoid having line ak flagged, the attacker t will need to manufacture a time series V R
k (t),

V R
a (t) and IR

ak(t) that (statistically) satisfy (3.23). But under the noisy data attack, on

average V R
a (t) = V R

a (0) and IR
ak(t) = IR

ak(0). Hence the attacker needs (on average) that

2τ |zak|
1− τ

(|IR
ak(0)|+ |yaa| |V R

a (0)|) > |V R
k (t)− zak(I

R
ak(0)− yaaV

R
a (0))|

= |V R
k (t)− V R

k (0)|.

Now consider line km. Since m /∈ A, V R
m (t) = V S

m(t) and IR
mk(t) = IS

mk(t). Also, denote:

• V T
k (∗) = the true voltage at k at the start of the current iteration of the random

defense, i.e. the voltage resulting from the injection changes in step D1. Then,

assuming unbiased sensor errors and zero-mean ambient noise, V T
m (∗) will equal

the expectation of V T
m (t) during the iteration.

• Likewise define the current IT
mk(∗).

Hence the attacker needs (on average) that

2τ |zmk|
1− τ

(|IT
mk(∗)|+ |ymm| |V T

m (∗)|) > |V R
k (t)− zmk(I

T
mk(∗)− ymmV

T
m (∗))|

= |V R
k (t)− V T

k (∗)|.

As a result of these observations we have:
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Lemma 10. Consider buses k, a,m as described above. Suppose that

|V T
k (∗)− V R

k (0)|

>
2τ |zak|
1− τ

(|IR
ak(0)|+ |yaa| |V R

a (0)|) +
2τ |zmk|
1− τ

(|IT
mk(∗)|+ |ymm| |V T

m (∗)|) (3.26)

Then it is impossible for the enhanced noisy data attacker to statistically satisfy Criterion

1 on both lines ka and km.

Comment: This lemma highlights how large changes in voltages caused by the random

defense challenge the attacker.

Experiment

Next we describe a set of experiments involving the current-voltage defense applied to

the attack given in Section 3.3.4. The current defense was implemented as follows:

• For any generator bus k /∈ R, |δk| ≤ εP g
k . We used values ε = 0.01, 0.05.

• The set of responding generators, R, was of cardinality 200. For k ∈ R |δk| can be

arbitrarily large. We chose δk > 0 with probability 1/2.

• No generator may exceed its limits (voltage or generation), but subject to all these

conditions we maximize
∑

k∈G |δk|.

In Table 3.8, we perform the above analysis on the lines (k = 1139, a = 1137) and

(k = 1139,m = 1110) with τ = 0.01. “Ratio” is the ratio of the left-hand side to the

right-hand side of expression (3.26). We see that the condition for Lemma 10 is amply

satisfied. A similar analysis pertains to line (1141, 1361), the other line connecting A to

its complement.



CHAPTER 3. CYBER-PHYSICAL ATTACKS 59

Table 3.8: Current-voltage defense.

Experiment 1 Experiment 2

ε 0.01 0.05∑
k∈G δ

+
k 289.01 964.77∑

k∈G δ
−
k 174.47 256.04

Line (k = 1139, a = 1137)

|V R
a (0)|∠θR

a (0) 1.0919∠− 6.993◦ 1.0919∠− 6.993◦

IR
ak(0) −0.0275 + 0.0281j −0.0275 + 0.0281j

Line (k = 1139,m = 1110)

|V T
m (∗)|∠θT

m(∗) 1.0309∠− 7.822◦ 1.0391∠− 7.848◦

IT
mk(∗) 0.0905− 0.4976j 0.1289− 0.4901j

Voltages at k = 1139

|V R
k (0)|∠θR

k (0) 1.0919∠− 6.991◦ 1.0919∠− 6.991◦

|V T
k (∗)|∠θT

k (∗) 1.0104∠− 7.822◦ 1.0187∠− 7.936◦

Lemma 10 applied to bus k = 1139

Ratio 1.913 1.732

3.5.3 Covariance Defense

In this section we describe an elaboration of the random-pairs defense Procedure 4; the

elaboration is motivated by the fact that real-world PMU data streams exhibit non-

generic stochastic structure in (for example) voltage angles [19, 21, 93]. In particular,

covariance matrices across several time scales have very low rank (typically smaller than

10). Our defense will defeat both the noisy-data and data-replay attacks, under appro-

priate assumptions.

As before, we assume that the buses in a certain set T are trusted. The emphasis

of the methods in this section is that we aim to modify the covariance matrix of phase

angles, whereas the random injection defense in Procedures 3 or 4 change the average

voltage values. Such a change should prove more difficult for the attacker to correctly

counteract since such a correction involves an estimation that requires time, during which
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the attacker will be producing incorrect data.

We additionally assume that the attacker’s data stochastics are stationary (i.e. the

parameters of the stochastic process do not change as a function of time). This implies

in particular that the attacker does not react to the covariance defense by changing the

stochastics. Below we will discuss, however, why reacting to the defense would prove

very difficult. We also assume that ambient conditions are also stationary.

In order to describe the defense we need some definitions. For a pair of buses s, t ∈ T ,

define the vectors us,t and vs,t by

us,tk
.
=


1, if k = s,

−1, if k = t,

0, otherwise

(3.27a)

vs,t
.
= B̆tu

s,t. (3.27b)

Formally, the covariance defense works as follows. Let t1, t2 be two fixed trusted

buses, and let P be a real-valued probability distribution, with zero-mean and variance

σ2
Γ > 0. The defense has two phases.

(I) During an initial phase, after suspecting the attack, for i = 1, 2, we compute the

matrix

σ2
θR,i

.
= covariance matrix of observed phase angles, with respect to reference bus ti.

(II) After the initial phase, we perform iterations as in Procedure 4, as follows. We

randomly (uniformly) choose one pair of buses of the form (s, t) where s ∈ T and t =

t1 or t2, and we draw a random value Γ from the distribution P , independently from

the stochastics of the attacker and ambient stochastics. We then apply step D1 of

Procedure 4 using this triple (s, t,Γ).

Throughout the second phase, we compute the following matrix, for i = 1, 2,

• σ2
θ̂R,i

.
= covariance matrix of observed phase angles, with respect to reference bus ti.
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The defense concludes when the estimates for these two matrices become stable.

Procedure 6. Covariance-driven detection criterion

At termination of the defense, we flag a bus k as suspicious if, for both i = 1

and 2, the difference between the (k, k) entry of σ2
θ̂R,i and the corresponding

entry of σ2
θR,i is smaller than λ, defined by

λ
.
=

σ2
Γ

|T | − 1
ω, where (3.28a)

ω
.
= min

s,t,j
{(vs,tj )2 : vs,tj 6= 0}. (3.28b)

This concludes the description of the defense, with analysis given in Lemmas 11, 13 and 9.

In preparation for those results, suppose that at some point in phase (II) the pair

(s, ti) has been selected. Let

(a.1) θ̂T,i be the vector of true voltage phase angles, using ti as the reference bus.

(a.2) θT,i describe the true vector of voltage phase angles, had the power injections in

the defense not been applied at that point of time. It is also given using ti as the

reference bus.

Lemma 11 given next concerns the relationship between these last two vectors.

Lemma 11. Suppose that at some point in (II) the pair (s, ti) is being used. Then,

θ̂T,i = θT,i + Γvs,ti .

Proof. Given that the pair (s, ti) is being used, the injections in the random defense, per

equation (3.11) are given by δ = Γus,ti . The result follows from equation (3.19).

The next result presents a key feature of the covariance of phase angles. Recall that

Γ is drawn independent of all other stochastics.

Lemma 12. For i = 1, 2,

σ2
θ̂T,i = σ2

θT,i +
σ2

Γ

|T | − 1

∑
s∈T −ti

vs,ti(vs,ti)>. (3.29)



CHAPTER 3. CYBER-PHYSICAL ATTACKS 62

Proof. We proceed by conditioning on the pair (s, ti) being selected by the defense.

Subject to this conditioning, by Lemma 11 the covariance of θ̂T,i equals

σ2
θT,i + σ2

Γv
s,ti(vs,ti)> + covar(θT,i,Γvs,ti).

The last term in this expression is zero, by the independence assumption on Γ. The

result follows since each pair is chosen with probability (|T | − 1)−1.

Lemma 13. Let k be any bus. Then, for at least one of i = 1 or 2, the (k, k) entry of

σ2
θ̂T,i is at least as large as the corresponding entry of σ2

θT,i, plus λ —defined as in (3.28a).

Proof. Without loss of generality, there is a path between k and t1 that avoids t2. Note

that the pair (s, t2) with s = t1 is one of the pairs available for the defense. By Lemma 5,

we have that vt1,t2k > 0 and so vt1,t2k ≥ ω1/2. Considering (3.29) for i = 2 we see that one

of the terms in the sum corresponds to s = t1. As just argued, the (k, k) entry of this

term is at least ω. The (k, k) entries in the remaining terms of the sum are nonnegative

(since each term is a positive-semidefinite matrix). Thus the result follows.

Lemma 14. The suspicious labels computed by the covariance defense are correct.

Proof. Consider first a bus k that is not attacked. For such a bus, by definition, θ̂T,i
k =

θ̂R,i
k , for both i = 1, 2. Thus, by Lemma 13, bus k is not flagged as suspicious. On

the other hand, suppose k is attacked. Then under either the noisy-data or data-replay

attacks the (k, k) entry of σ2
θ̂R,i will be equal to the corresponding entry of σ2

θR,i , by the

stationarity assumption (the attacker does not change stochastics when the defense is

implemented). Hence bus k is flagged.

Remarks:

(1) Recall (3.28a) and (3.28b). The quantity ω depends on the bus susceptance matrix

B, only. Hence by choosing σ2
Γ large enough we can make λ large. Also note that in the

above proofs, we can restrict the set T to a subset of size 2, again helping λ attain large

values.
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(2) Given a pair (s, ti) used in the defense, by Lemma 5 any entry vs,tik is positive if there

is a path from bus k to s that avoids ti. Let A denote the set of such buses. By Lemma 7,

for k /∈ A, vs,tik = 0.

Thus, in the term vs,ti(vs,ti)> in (3.29) the entire submatrix with rows and columns

in A is positive, and the remaining entries in vs,ti(vs,ti)> are zero. By adjusting the proof

of Lemma 13 we conclude that for k and m in A, the entry (k,m) of σ2
θ̂T,i is at least

as large as the corresponding entry of σ2
θT,i , plus λ. Thus a submatrix of the covariance

matrix will change via the defense (and not just the diagonal entries). If the network

is guaranteed to be 2-connected [5] one can in fact prove that the entire matrix must

change.

The covariance defense has an additional important feature, namely that the sum on

the right-hand side of (3.29) has rank |T | − 1 (as shown next) whereas we expect the

left-hand side of (3.29) to have low rank.

Lemma 15. For i = 1, 2 the vectors vs,ti = B̆tiu
s,ti as in (3.27b) are linearly independent.

Hence the second term in (3.29) has rank at least |T | − 1.

Proof. The |T | − 1 vectors us,ti arising from all pairs (s, ti) under consideration are

linearly independent, by construction in (3.27a). Hence, the corresponding vectors vs,ti

are also linearly independent.

Lemma 15 highlights the challenges faced by the attacker, even if the attacker is aware

that the covariance defense is being deployed. The attacker will have to alter reported

data in a way consistent with an appropriate rank change, but the attacker does not

know the pairs (si, t) being used (or the distribution P). Such “learning” would require

data observations, i.e. time, during which the attacker is still expected to produce data

readings, producing an error trail.
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Chapter 4

Learning from PMU data

This chapter describes a statistical study that we have performed using a dataset of PMU

measurements that we have obtained from an industrial partner. We detail the nature

of the data together with the statistical tools that we have used. Plots and videos help

visualize properties of the sampling.

This study was mainly performed under the supervision of Prof. Michael Chertkov

while I was visiting Los Alamos National Lab, NM, in September 2018. Dr. Jonatan

Ostrometzky has helped to improve the Fourier filters that we have applied.

4.1 Introduction

Data-driven techniques in power systems have at least fifty years of history, starting with

static state estimations developed by Schweppe and co-authors [77–79], then transitioning

to dynamic state estimation analysis and applications, see e.g. [45,62,88] and references

therein, and most recently discussed under the umbrella of “big data” as the most signifi-

cant enabler of power system operations, security and resiliency in the future [9,49]. (See

also related discussion in the description of the US Department of Energy new funding

opportunity to “explore the use of big data, artificial intelligence, and machine learn-

ing technology to leverage the power of grid sensors” [4].) Many specific questions and
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approaches, including but not limited to detection of modes of oscillation and related

analysis of stability [1–3,88], dimension reduction for faster processing and analysis [31],

early event detection [94], missing data recovery [38], identification of cyber attacks [37]

and real time (online) event detection [57] are among the most recent research thrusts.

On the methodology side data-driven methods developed in other engineering dis-

ciplines have been adopted, modified and used for many (e.g. aforementioned) power

system applications. Principal component analysis [31, 37, 38, 57, 94], auto-correlation

analysis of memory effects [74], and linear model driven spectral analysis of the dynamic

state matrix [1–3,27,62,65,75,88] are arguably the most popular data-driven techniques

currently in use in the power system research.

Even though the sophistication level of the methods already used in power system

applications is impressive, coherence and understanding of the potential of new generation

of big data methods, driven during the last decade largely through heavy investment of

IT industry, is still lacking [4]. We anticipate that many of the most modern methods,

especially Deep Learning (DL) and related techniques linked to Machine Learning (ML)

and Artificial Intelligence (AI), revolutionary advances in data science and more generally

theoretical engineering [8, 12, 42, 56, 76], will impact the power-system operation-room

reality in an even more significant ways. However, one problem with applications of the

novel methods of DL and alike in sciences and engineering is that they are application

agnostic/generic – very effective for many business cases, but lacking “explainability”,

i.e. intuitive physical/engineering explanations. This significant handicap of the most

advanced and recent ML & AI methods slows down development of related applications

in power systems. Indeed, power system practitioners would generally not consider as

practical any new methods lacking “power systems informed” explanations.

This manuscript takes a step towards closing the gap between the rich variety of meth-

ods already developed and utilized in power systems and the yet to be unleashed power of

the upcoming Big Data revolution. Specifically, we start walking towards exciting sophis-

tication of DL slowly, from the well-established and intuitive trenches of practical system
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engineering. We develop in this manuscript a pragmatic “phasor-detective” approach to

analysis of the streaming Phasor Measurement Unit (PMU) data which allows to extract

and interpret spatial and temporal correlations in a computationally light fashion and

without making any constraining assumptions about origin of the correlations.

Our Contribution

We analyze synchronized historical PMU data recorded at ≈ 200 most significant loca-

tions of a US Independent System Operator (ISO) over the course of two years. At each

PMU location the data includes complex current and voltage recorded with a millisec-

ond resolution. Given geo-spatial locations of the PMU, but no information about the

grid characteristics and layout, we pose the following principal questions: What can we

possibly reconstruct from the data stream about the system current ambient behavior?

To answer the question we utilize available statistical tools. In relation to preliminary

data processing we apply to the raw signal three filtering techniques: moving average,

sliding time horizon and Fourier analysis pre-processing. This allows to provide robust

identification of the “quiet” periods and also prepare data for subsequent statistical anal-

ysis by means of Principal Component Analysis (PCA) and Auto-Correlation Analysis

(ACA). We show that the two complementary tools, applied to the raw as well as to

pre-processed signal, allow to separate scales and also provide compressed, thus easy to

visualize, descriptors for online tracking of current state of the grid in a much broader way

than what the current Energy Management System (EMS) actually uses. PCA provides

a robust set of indicators which record slow/adiabatic changes on the scale of seconds to

ten of seconds and slower. We have observed that only a very few principal modes are

significant at any moment of time, even though these modes may be different for voltage

amplitude, phase difference and frequency (the three main characteristics) we track. The

results do not change when PCA is applied to the filtered signal, consistently with the

fact that PCA averages over time but does not catch different-time correlations. ACA is

the tool used to analyze the latter, in particular identifying significant, persistent corre-
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lations, missed by PCA, at shorter time scales - subseconds-to-seconds. Following ACA

curves at different spatial locations we were able to identify nodes where correlations do

not decay with time showing significant memory-effects. Remarkably, these nodes with

significant memory cluster geographically. We observe two areas in the grid which show

especially strong sustainable temporal correlations. We then proceed with ACA analysis

of the Fourier-filtered signal. This helps us to identify and localize different harmon-

ics. In particular, we observe (for a particular quiet period) emergence of significant

oscillations in the 4-6 Hz range at a small number of nodes. Interestingly, nodes with

significant sustainable oscillations are either wind farms, big aggregated loads or mid-size

generators. We conjecture that the sustainable oscillations are indicators of malfunction

at these critical elements of the grid. We also observe that sustainable oscillations, seen

clearly through emergence of a residue in the ACA analysis of the raw signal, disappear

when applied to the Fourier-filtered signal (cutting off the 4-6 Hz oscillations). Finally,

analyzing spatial cross-correlations (of the residue) we were able to identify a group of

nodes with significant inter-dependency.

4.2 Logic and Main Steps

In this part of the work we study the data streams reported by over 200 PMUs operated

by an ISO and spanning a period over one year long. Figure 4.1 displays a rendition of the

locations of the PMUs using anonymized coordinates. As mentioned in Section 2.4, the

data stream from each PMU includes frequency, (complex) current and voltage, reported

30 times per second. Using this data one can obtain real-time estimates of complex power

at each location. Working with a data set this large (on the order of 28 TB) presents

some obvious challenges; additionally there are specific artifacts that can arise in the

data. For example, not all PMUs are always reporting, and occasionally some PMUs

exhibit what appears to be errant behavior.

Our work has centered on performing statistical analysis aimed at inferring “struc-
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Figure 4.1: Geographical location of PMU’s (anonymized coordinates), each mark represents

the position of a sensor.

ture” in the underlying transmission system as well as identifying complex behaviors,

such as resonance and oscillations. In this manuscript we focus specifically on identifica-

tion and characterization of “quiet” periods, also known as ambient conditions periods.

Oversimplifying (see related discussion below) we consider a period quiet if fluctuations

around the mean (e.g. characterized in terms of the standard deviations) are smaller than

a reasonable pre-defined threshold. This focus on the quiet/ambient periods is motivated

by the following considerations:

• The development of a strong understanding of quiet periods and (in particular)

efficient online algorithms for recognition of such periods is a necessary step prior

to studying less-quiet or even anomalous regimes, for otherwise we risk significant

misinterpretation, i.e. errors in online detection of anomalies.

• As will be seen in this paper, the quiet regimes display informative patterns and

correlations, all (slowly) time-evolving. Identifying such features is important with

regards to:

– Developing fast and reliable identification techniques.

– Uncovering hidden malfunction of assets thus providing significant contribu-
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tion towards forecasting most probable (and destined to occur) failures.

• The richness of correlations observed in the quiet regime, in fact, suggests that

separation of what is normal/quiet from what is anomalous/atypical will be chal-

lenging. Even though we observe that quiet regimes dominate, relatively abrupt

jumps of moderate size (i.e. jumps exceeding tracked standard deviation by factor

of two or three) are rather frequent although overall they account for a relatively

short fraction of the stream. As a result, it is rather difficult to find sufficiently

long entirely quiet periods in the available data.

• Clearly, understanding quiet vs. volatile behavior will be helpful toward building

predictive models for better optimization, control and planning.

• “Cyber-physical” attacks on power systems —like the ones described in Section 3—

are a venue where fast and effective learning of (changing) stochastics may prove

useful in identifying attacks.

The methodology adopted in this manuscript to identify the quiet periods is explained

in Section 4.3.3.

4.3 Description and Averaging of the Time Series

The available data encompasses the period from January 1st 2013 to March 21st 2014.

Each of the N = 240 PMUs records the following measurements 30 times per second:

time of the measurement (GPS tagged), bus ID, voltage amplitude, voltage phase angle,

current magnitude, current angle, and frequency. Additionally, the 2-dimensional coordi-

nates of the PMU locations is also available, together with their corresponding nominal

voltages. We note that PMUs report 30 times/second, but they sample at a far higher

rate and perform filtering (e.g. anti-aliasing1) before reporting.

1Aliasing is an effect that causes the measured/sampled signal to be different than the real one. This

might be caused for example by precision inaccuracy of the measurement instrument.
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We denote a generic scalar or complex measurement (e.g. complex voltage) at PMU

location k, at time t by mk(t). The parameter t will be used to refer to the discrete

time sequence with each temporal data point separated from preceding one by the same

duration ∆ (1/30th of a second in our case).

Typical pre-processing steps in the statistical analysis of data (especially with the

goal of analyzing correlations) involve modifications through de-trending, offsetting (sub-

traction) of moving average, and normalizations. We will apply such techniques below.

Specific details are provided next.

4.3.1 Moving Average and Covariance

The moving average µ(m) and moving variance σ(m) vectors of a sampled series m is

computed in the following way,

∀k ∈ {1, . . . , N}, ∀t ≥ 1 :

µ
(m)
k (t;α) = α ·mk(t) + (1− α) · µ(m)

k (t− 1;α), (4.1)

σ
(m)
k (t;α) = α ·

∣∣∣mk(t)− µ(m)
k (t− 1;α)

∣∣∣2 + (1− α) · σ(m)
k (t− 1;α), (4.2)

with some initial values, say µ
(m)
k (0;α) = 0 and σ

(m)
k (0;α) = 1. The parameter α ∈ (0, 1)

represents the degree of weighting decrease. Note that in (4.2) we are using the moving

average defined in (4.1). One can likewise define moving covariance parameters.

Figures 4.2, 4.3 and 4.4 show the sampling of the frequency, voltage angle and voltage

magnitude (respectively) for a particular PMU during one minute; together with the

corresponding moving average and moving standard deviation for different values of α.

We introduce the zero mean and normalized zero mean data streams

m̄
(m)
k (t;α) = mk(t)− µ(m)

k (t− 1;α), (4.3)

m̂
(m)
k (t;α) =

mk(t)− µ(m)
k (t− 1;α)√

σ
(m)
k (t− 1;α)

, (4.4)

obtained from the input stream by making use of the moving average and variance. The

zero mean parameters will help us identify quiet periods, as discussed next.
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4.3.2 Averaging over Sliding Time Horizon

Consider a number S of measurements, this value corresponds to the memory budget.

We define N dimensional vectors of means and variances (averaged over the (last) sliding

time horizon of duration S) as follows:

∀k ∈ {1, . . . , N}, ∀t, µ
(s)
k (t;S) =

1

S

t∑
τ=t−S+1

mk(τ), (4.5)

σ
(s)
k (t;S) =

1

S

t∑
τ=t−S+1

∣∣∣mk(τ)− µ(s)
k (t;S)

∣∣∣2 . (4.6)

Figures 4.5, 4.6 and 4.7 show the sampling of the frequency, voltage phase angle and

voltage magnitude (respectively) for a particular PMU during one minute; together with

the corresponding average and standard deviation over sliding time horizon for different

values of S.

As before, we also define the re-scaled zero-mean data vectors:

m̄
(s)
k (t;S) = mk(t)− µ(s)

k (t− 1;S), (4.7)

m̂
(s)
k (t;S) =

mk(t)− µ(s)
k (t− 1;S)√

σ
(s)
k (t− 1;S)

. (4.8)

Numerically, we found that a reasonable choice for S, that allows to separate power

electronics (milliseconds) and electro-mechanical (seconds) time scales, is the number of

readings in 1 second, that is S = 30. Similar normalizations are obtained when α = 0.05.

4.3.3 Quiet Periods

Given a reference time t and a length parameter Q consider the N × Q matrix of nor-

malized measurements

M(t;α;Q) = [ m̂
(m)
k (τ ;α) | ∀k ∈ {1, . . . , N}, τ ∈ {t−Q+ 1, . . . , t} ],

corresponding to the last Q measurements before time t for all buses. We define the

period (t − Q, t] as quiet if the absolute value of all entries of the matrix M(t;α;Q) is
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below some preset threshold. The reason behind this definition is that sudden jumps in

the data appear as large values in the normalized time series, whereas normalized values

close to zero mean that the data is behaving in a steady way. Effectively, a quiet period is

an interval of time where all sensor-reported data behave in a stationary way. Moreover

it is relatively cheap to compute M(t;α;Q) from the stream data in an online fashion,

as we just have to complete a column at every time that samples are received and keep

track and update of the moving variance of each sensor.

Again, in our analysis, we used α = 0.05 as the length of the sliding time horizon,

and we consider quiet periods spanning 15 minutes. Over a selection of five different

days across the database, we compute we compute the matrix M(t;α;Q) and record its

maximum absolute value when t spans over the complete day. Just in few cases the

maximum was below 10 units, we selected 2-3 intervals between these recorded cases.

Table 4.1 displays the specific time intervals selected as quiet periods that we have

analyzed.

Table 4.1: Selected quiet periods.

# Date Time Window

1 January 15, 2013 12:13 – 12:28 AM

2 March 10, 2013 12:09 – 12:24 AM

3 March 10, 2013 4:29 – 4:44 AM

4 March 10, 2013 2:46 – 3:01 PM

5 April 3, 2013 1:52 – 2:07 AM

6 April 3, 2013 7:19 – 7:34 AM

7 April 3, 2013 7:26 – 7:41 PM

8 July 30, 2013 1:26 – 1:41 AM

9 July 30, 2013 4:39 – 4:54 PM

10 July 30, 2013 9:24 – 9:39 PM
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Figure 4.2: Frequency measurements with respect to a reference bus (in blue) of PMU k = 156

during one minute, between 9:37 and 9:38 PM on July 30, 2013. Moving average (in red) and

a band of one standard deviation (in purple) are also shown for (a) α = 0.01, (b) α = 0.05, (c)

α = 0.10, and (d) α = 0.25.
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Figure 4.3: Voltage phase angle measurements with respect to a reference bus (in blue) of PMU

k = 156 during one minute, between 9:37 and 9:38 PM on July 30, 2013. Moving average (in

red) and a band of one standard deviation (in purple) are also shown for (a) α = 0.01, (b)

α = 0.05, (c) α = 0.10, and (d) α = 0.25.
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Figure 4.4: Voltage magnitude measurements with respect to bus nominal value (in blue) of

PMU k = 156 during one minute, between 9:37 and 9:38 PM on July 30, 2013. Moving average

(in red) and a band of one standard deviation (in purple) are also shown for (a) α = 0.01, (b)

α = 0.05, (c) α = 0.10, and (d) α = 0.25.
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Figure 4.5: Frequency measurements with respect to a reference bus (in blue) of PMU k = 156

during one minute, between 9:37 and 9:38 PM on July 30, 2013. Average over sliding time

horizon (in red) and a band of one standard deviation (in purple) are also shown for (a) S = 10,

(b) S = 30, (c) S = 300, and (d) S = 900; corresponding to the number of samples made over

1/3, 1, 10, and 30 seconds, respectively.
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Figure 4.6: Voltage phase angle measurements with respect to a reference bus (in blue) of PMU

k = 156 during one minute, between 9:37 and 9:38 PM on July 30, 2013. Average over sliding

time horizon (in red) and a band of one standard deviation (in purple) are also shown for (a)

S = 10, (b) S = 30, (c) S = 300, and (d) S = 900; corresponding to the number of samples

made over 1/3, 1, 10, and 30 seconds, respectively.
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Figure 4.7: Voltage magnitude measurements with respect to bus nominal value (in blue) of

PMU k = 156 during one minute, between 9:37 and 9:38 PM on July 30, 2013. Average over

sliding time horizon (in red) and a band of one standard deviation (in purple) are also shown

for (a) S = 10, (b) S = 30, (c) S = 300, and (d) S = 900; corresponding to the number of

samples made over 1/3, 1, 10, and 30 seconds, respectively.
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4.4 Fourier Filtering

In the following analysis we assume that Q is an even integer. Let F [mk(·)] ∈ CQ be the

discrete Fourier transform of mk(·), where F [mk(·)]q is the amplitude corresponding to

frequency ωq, q ∈ {0, . . . , Q − 1}. Since the frequency of the readings is 30 Hz, we can

represent the frequency domain as Q equidistant points between 0 and 30 Hz. In other

words,

∀q ∈ {0, . . . , Q− 1}, F [mk(·)]q
.
=

Q−1∑
t=0

mk(t) exp
{
−2πj

qωt
30

}
,

where ωt
.
= 30 · t

Q
.

Given a vector x = (xq)q∈{0,...,Q−1}, the inverse Fourier transform is defined as

∀t ∈ {0, . . . , Q− 1}, F−1 [x]t
.
=

1

Q

Q−1∑
q=0

xq exp

{
2πj

tωq
30

}
As it is well known, we have the following

Observation 16 ( [71]). The inverse Fourier transform of the Fourier transform recovers

the original time series, that is

∀t ∈ {0, . . . , Q− 1}, mk(t) = F−1 [F [mk(·)]] .

These relations give a one-to-one correspondence between the original time series

(characterized in the time domain t) and its Fourier transform series (characterized in

the frequency domain ωq). Moreover, given the periodicity of the sinusoidal functions,

we can represent the time series as

mk(t) =
1

Q

Q/2−1∑
q=−Q/2

F shift[mk(·)]q exp

{
2πj

tωq
30

}
, (4.9)

where the frequencies ωq spans from −15 and 15 Hz, and

F shift[·]q =

F [·]Q+q, if q < 0,

F [·]q, if q ≥ 0.
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F shift represents the shifted Fourier transform, placing the zero-frequency component

to the center of the spectrum. This representation of the Fourier transform is widely

used in signal processing since the symmetry with respect to zero ease its visualization

and the application of different filters.

Observation 17. (x(t))t∈{0,...,Q−1} is a real-valued time series, if and only if, F [x]0 and

F [x]Q/2 are real and for any q ∈ {1, . . . , Q
2
− 1}, F [x]q = F [x]Q−q.

Proof. (⇒) By definition of the Fourier transform, it is easy to see that F [x]0 and F [x]Q/2

are real when x is real. Let q > 0,

F [x]q =
1

Q

Q−1∑
t=0

mk(t) exp
{
−2πj

qωt
30

}
=

1

Q

Q−1∑
t=0

mk(t) exp

{
+2πj

(Q− q)ωt
30

}
= F [x]Q−q,

The last equality holds, since by definition Qωt

30
= t, and therefore exp {2πjQωt

30
} = 1.

(⇐) Let t ∈ {0, . . . , Q − 1}, using Observation 16 and the fact that exp {2πj tωQ−q

30
} =

exp {2πj t(Q−q)
Q
} = exp {−2πj tq

Q
} = exp {−2πj tωq

30
},

Q · x(t) = F [x]0 + F [x]Q/2 exp

{
2πj

tωQ/2
30

}
+

Q/2−1∑
q=1

[
F [x]q exp

{
2πj

tωq
30

}
+ F [x]Q−q exp

{
2πj

tωQ−q
30

}]
= F [x]0 + F [x]Q/2 exp {πtj}

+

Q/2−1∑
q=1

[
F [x]Q−q exp

{
2πj

tωq
30

}
+ F [x]Q−q exp

{
−2πj

tωq
30

}]
.

Since the two first terms in the last expression are real, and the summation goes over

terms that add a quantity and its conjugate, we conclude that Q · x(t) is real.

The property that a time series satisfies xq = xQ−q will be called conjugate-symmetry.

Corollary 18. If (x(t))t∈{0,...,Q−1} is a real-valued time series, then
∣∣F shift[x]q

∣∣ = |F [x]q| =

|F [x]Q−q| =
∣∣F shift[x]−q

∣∣ for any q ∈ {1, . . . , Q
2
− 1}.
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Remark. An analogous result to Observation 17 can be obtain for the inverse Fourier

transform. Therefore, we conclude that a symmetric real-valued —and, therefore, conjugate-

symmetric— time series has a Fourier transform that is also real-valued and (conjugate-)

symmetric.

Figure 4.8 shows the absolute value of the Fourier transform for a particular PMU

during a 15-minute quiet period. We observe predominant peaks near 5 Hz in the fre-

quency domain of the signal, this particularity repeats over different PMUs and different

days and hours. Figure 4.9 shows the absolute value of the Fourier transform of the

complex voltage of the same time series as Figure 4.8.

Figure 4.8: Absolute value of the Fourier transform over the positive frequency domain (0 to

15 Hz) of (a) frequency, (b) voltage phase angle, and (c) voltage magnitude of PMU k = 156

over quiet period #10 (see Table 4.1). Mean have been subtracted from the raw signal —to

prevent a high peaks at frequency 0.

Consider a vector ϕ̃ =
{
ϕ̃q : q ∈ {−Q

2
, . . . , Q

2
− 1}

}
∈ CQ.
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Figure 4.9: Absolute value of the Fourier transform of the complex voltage of PMU k = 156

over quiet period #10. Again, mean have been subtracted from the raw signal.

Definition 19. We denote by (fk[ϕ̃](t))t∈{0,...,Q−1} the ϕ̃-filtered time series of mk(·) that

is defined as the vector whose Fourier transform is the result of multiplying component-

wise each of the terms of ϕ̃ and the shifted Fourier transform of mk(·).

In mathematical terms, the previous definition can be written as

∀q ∈ {0, . . . , Q− 1}, F [fk[ϕ̃](·)]q = ϕ̃q · F shift[mk(·)]q.

We will use the operator � to denote the component-wise product of two vectors, there-

fore we can write F [fk[ϕ̃](·)] = ϕ̃�F shift[mk(·)]. Equivalently, we have:

∀t ∈ {0, . . . , Q− 1}, fk[ϕ̃](t)
.
=

1

Q

Q/2−1∑
q=−Q/2

ϕ̃q · F shift[mk(·)]q exp

{
2πj

tωq
30

}
.

(4.10)

If we extend the definition of the vector ϕ̃, in such a way that it repeats its values

periodically, meaning that for any integer n, ϕ̃nQ+q = ϕ̃q for all q ∈ {−Q
2
, . . . , Q

2
− 1}; we

can equivalently write (4.10) as

fk[ϕ̃](t) =
1

Q

Q−1∑
q=0

ϕ̃q · F [mk(·)]q exp

{
2πj

tωq
30

}
. (4.11)

Let us denote ϕ
.
= F−1[ϕ̃] the inverse Fourier transform of ϕ̃. Then,

Lemma 20 ( [71]). ∀t ∈ {0, . . . , Q− 1}, fk[ϕ̃](t) =
Q−1∑
s=0

mk(s) · ϕ(t−s).
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Therefore, we can express the filtered series as in Definition 19 or as a convolution

between the original series mk(·) and ϕ.

Analogously to equations (4.5)–(4.8), we can compute (averaging over a sliding time

horizon) the zero-mean data vector and the re-scaled zero-mean data vector for fk[ϕ̃](·)

instead of mk(·), we will call them f̄
(s)
k [ϕ̃](·;S) and f̂

(s)
k [ϕ̃](·;S), respectively, when the

average is made over the last S measurements.

We will define next several filter vectors and compare the time series that result after

applying the corresponding Fourier filters.

4.4.1 Cutting off high frequency components

We want to understand and visualize how the filtered data looks like when high frequen-

cies are suppressed. For that purpose, we will consider the following family of cut-off

(CO) filter vectors:

∀q ∈ {−Q
2
, . . . , Q

2
− 1}, ϕ̃COλ

q = (χ[−λ,λ])q
.
=

1, if |ωq| ≤ λ,

0, otherwise,

(4.12)

where λ ∈ (0, 15) is the cut-off parameter.

Figure 4.10 shows the filter vector ϕ̃COλ and its inverse Fourier transform ϕCOλ,

for λ = 4 Hz. Figure 4.11 shows (on plots on the left) the original time series for

frequency, voltage phase angle and voltage magnitude of PMU k = 156 across 10 seconds

of measurements (300 samples). The plots on the right show the resulting filtered time

series when the filter vector ϕ̃CO4 is applied. As a remainder, the filter has been applied

to the frequency domain of the Fourier filter obtained on an interval of 15 minutes.

We also show that when we cut off frequencies higher than the peaks around 5 Hz

that we see in Figures 4.8 and 4.9, for example, cutting off frequencies larger that 6 Hz,

we obtain almost no change between the original and the filtered time series. Figure 4.12

show the cut-off filter vector ϕ̃CO6 and the filtering results are shown in Figure 4.13.
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Figure 4.10: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃CO4; (b) and

(d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃CO4.

Figure 4.11: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃CO4.
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Figure 4.12: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃CO6; (b) and

(d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃CO6.

Figure 4.13: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃CO6.
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More sophisticated filters are used in signal processing, so that the cut-off process

can be made in a online and smooth fashion. The cut-off vector presented above is an

example of a low-pass filter (LPF), meaning that the filter passes lower frequencies than

a selected cut-off frequency.

In the following examples we present LPF vectors that are first described by its inverse

Fourier transform ϕLPFλ —i.e. the coefficients that will participate in the convolution to

get the filtered series— for cut-off frequency λ. In this filtering process, the convolution

is made with a small number (compared with Q) of measurements, the rest of coefficients

are set to be zero; this property allows to have an online computation of the filtered time

series. These filters are called finite impulse response (FIR) systems [71].

On the other hand, the infinite impulse response (IIR) systems consist of infinite

vectors of non-zero coefficients that are convoluted with an infinite time series (in our case,

we might think about extending our original time series by repeating it periodically out of

the [0, Q− 1] interval). For illustrative purposes, consider the cut-off filter vectors (4.12)

in the continuum set-up:

∀ω ∈ [−15, 15], Hd(ω) =

1, if |ω| ≤ λ,

0, otherwise,

(4.13)

this is the ideal desired frequency response and can be represented as

Hd(ω) =
∞∑

t=−∞

hd(t) exp

{
−2πj

ωt

30

}
, (4.14)

where hd is the corresponding IIR sequence, that expressed in terms of Hd becomes

∀t ∈ Z, hd(t) =
1

30

∫ 15

−15

Hd(ω) exp

{
2πj

tω

30

}
dω. (4.15)

Figure 4.14 shows the desired frequency response Hd for λ = 5 Hz and its partial IIR

sequence. As expected, the IIR vector assimilates the ones computed above for ϕCOλ (see

Figures 4.12d and 4.10d).

Given the impractibality of convoluting a times series by an infinite vector, the com-

putation is usually truncated or, equivalently, the IIR sequence is truncated to a chosen

bounded window and setting equal to zero the terms that fall out of the selected window.
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Figure 4.14: (a) Desired frequency response Hd for cut-off frequency λ = 5 Hz and (b) its

infinite impulse response (showing for t between −100 and 100).

As explained in [71], one technique of designing FIR filters is by windowing. That is,

given a finite-duration window sequence w, where

w(t) = 0 for t < −M1 or t > M2, (with M1,M2 ∈ N),

a FIR filter is obtained by the componen-wise product between hd and w:

∀t ∈ Z, h(t)
.
= hd(t)w(t), (4.16)

(or, equivalently, h = hd � w). Since filtering the original time series mk(·) by the filter

vector h(·) corresponds to the convolution in the time domain of this two sequences, in

order to obtain the filtered element at some time t we need M1 future measurements.

Therefore, we can obtain an online filtered series with a delay of M1 time steps.

Different type of windows have been proposed in the literature and give appropriate

results depending on the nature and the pyshics behind of the time series. The simplest

one if the rectangular window

w1(t)
.
=

1, if −M1 ≤ t ≤M2,

0, otherwise,

(4.17)
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that simply truncates the IIR to the [−M1,M2] window. The average over a sliding

time horizon defined in (4.5) can be computed as a filtered time series with FIR filter

h = hd � w, where hd(t) = 1 for all t and w is a rectangular window with M1 = 0 and

M2 = S − 1. In the following examples, we will use the Hann window [44] defined as

w2(t)
.
=


1

2

[
1− cos

(
2π(t+M)

2M

)]
= sin2

(
π(t+M)

2M

)
, if −M ≤ t ≤M,

0, otherwise,

(4.18)

for M ∈ N, since it has given us satisfactory results. Figure 4.15 shows the positive

coefficients of a rectangular window and a Hann window.

Figure 4.15: (a) Rectangular window and (b) Hann window.

By increasing M we obtaing a filter that is closer to the desired frequency response,

but at the same time, we increase the delay of the online filtering process. Therefore, we

must look for a small parameter M that gives useful filtered time series.

Figure 4.16 shows the low-pass filter for λ = 4 Hz described by 101 coefficients (by

setting M = 50 in (4.18)), shown as black dots in plot (d). The Fourier transform of the

FIR filter h = ϕLPF4 results as a smoother version of the one obtained by ϕCO4 (compare

Figures 4.10a and 4.16a).

Finally, we show that the amount of coefficients used to describe the LPF vector is

related with the slope of the vector from the region of frequencies that are kept and the

ones that are cut; the more coefficients the steepest the slope is. Figures 4.18 to 4.29

show the LPF vector ϕLPFλ with 31 coefficients (by setting M = 15 in (4.18)) and the

resulting filtered time series for λ = 1, 2, 3, 4, 5, and 6 Hz.



CHAPTER 4. LEARNING FROM PMU DATA 89

Figure 4.16: (a) Absolute value, (c) real and imaginary parts of filter vector ϕ̃LPF4 (M = 50);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃LPF4.

Figure 4.17: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃LPF4.
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Figure 4.18: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃LPF1 (M = 15);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃LPF1.

Figure 4.19: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃LPF1.
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Figure 4.20: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃LPF2 (M = 15);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃LPF2.

Figure 4.21: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃LPF2.
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Figure 4.22: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃LPF3 (M = 15);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃LPF3.

Figure 4.23: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃LPF3.
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Figure 4.24: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃LPF4 (M = 15);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃LPF4.

Figure 4.25: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃LPF4.
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Figure 4.26: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃LPF5 (M = 15);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃LPF5.

Figure 4.27: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃LPF5.
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Figure 4.28: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃LPF6 (M = 15);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃LPF6.

Figure 4.29: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃LPF6.
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We observe that there is prominent difference is the filtered series when frequencies

larger than 5 Hz are erased from the original sampling. We will consider other two filter

vectors to study and visualize the effect of the peaks near 5 Hz in the frequency domain

of the original signal.

4.4.2 High Frequency Filter

Contrary to LPF we can also describe filter that keep the frequencies in the high range,

these filters are called high-pass filters (HPF). Figure 4.30 describe the filter ϕ̃HPF5 that

cuts frequencies lower that 5 Hz, the filter is built given the M = 15 convolution coeffi-

cients depicted in plot (d). Figure 4.31 shows the resulting filtered series, note that now

the filtered series have mean close to 0 (since the mean of the time series is represented

by the zero-frequency coefficient of the Fourier transform, which is erased). Also note

that the plots of the filtered series (on the right) have the same range length as the

original time series plots (on the left). The oscillation showed on the filtered series might

be obtained by the residue from the peaks around 5 Hz in the frequency domain of the

original sampling, since the filter vector has mild slope.

4.4.3 Band-pass and Band-stop Filters

The two last filter that we will describe are called band-pass filter (BPF) and band-

stop filter (BSF). The first one keeps the frequencies of the original time series (in the

frequency domain) belonging to a particular band around a selected frequency; while the

latter does the opposite, it suppresses the frequencies in that band. We will use these

filters to specifically observe the contribution of the frequencies around the observed

peaks at 5 Hz using ϕ̃BPF5 (see Figures 4.32 and 4.33), and we remove them with ϕ̃BSF5

(see Figures 4.34 and 4.35). In both cases, the filter vector have been described using

M = 30 coefficients.
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Figure 4.30: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃HPF5 (M = 15);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃HPF5.

Figure 4.31: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃HPF5.
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Figure 4.32: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃BPF5 (M = 30);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃BPF5.

Figure 4.33: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃BPF5.
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Figure 4.34: (a) Absolute value and (c) real and imaginary parts of filter vector ϕ̃BSF5 (M = 30);

(b) and (d) show the component-wise absolute value of the inverse Fourier transform of ϕ̃BSF5.

Figure 4.35: Original sampling (in blue) for (a) frequency, (c) voltage phase angle, and (e)

voltage magnitude across 10 seconds on period #10 (see Table 4.1). Corresponding filtered

series are shown (in purple) in plots (b), (d), and (f) using filtering vector ϕ̃BSF5.
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4.5 Covariance Matrix and

Principal Component Analysis

In this section we will describe a method to study the correlation of the measurements.

We start by defining a covariance matrix of the sampling, which then is analyzed in terms

of its spectrum (eigen-values and eigen-vectors), specifically we will observe how these

parameters change over time.

Let T ≤ Q be the number of measurements of a time period. (Recall that Q is the

number of measurements in a quiet period, that in our analyses has been set to be of

15-minute long.) The N×N covariance (correlation) matrix of the signal, which is based

on the last T measurements, is defined by:

∀ time t ∈ {T, . . . , Q},

Σ0(t;T ;m∗(·)) .
=
[ 1

T

t∑
τ=t−T+1

m∗k(τ)m∗`(τ)
∣∣∣ ∀k, ` ∈ {1, . . . , N} ]

=
1

T

t∑
τ=t−T+1

m∗(τ)m∗(τ)H, (4.19)

where m∗(·) could be replaced by any of the normalized series defined above, that is,

m̄(m)(·;α), m̂(m)(·;α), m̄(s)(·;S), m̂(s)(·;S), f̄ (s)[ϕ̃](·;S), or f̂ (s)[ϕ̃](·;S). It is easy to

check that Σ0(t;T ;m∗(·)) is a positive semidefinite matrix: let z ∈ CN , then

zH Σ0(t;T ;m∗(·)) z =
1

T

t∑
τ=t−T+1

zHm∗(τ)m∗(τ)Hz =
1

T

t∑
τ=t−T+1

∣∣zHm∗(τ)
∣∣2 ≥ 0.

We aim to choose a (fixed) value T that is sufficiently large so that the covariance is

weakly dependent on T , but also not too large to keep memory as small as possible (with

an eye on streaming applications). Empirical experiments show that with T correspond-

ing to the number of measurements in three minutes we can obtain stable covariance

matrices when t varies.

In what follows we will drop the inputs T and m∗(·) from Σ0(t;T ;m∗(·)) since they

become fixed in the following analysis. We perform an eigen-decomposition on the cor-
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relation matrix Σ0(t) and track the results as the function of t:

Σ0(t) =
N∑
p=1

λp(t)ξp(t)ξp(t)
H, (4.20)

where ξp(t) and λp(t) are the orthonormal eigenvectors and corresponding eigenvalues (in

decreasing order) of Σ0(t) respectively, i.e.

∀p ∈ {1, . . . , N} : Σ0(t)ξp(t) = λp(t)ξp(t), (4.21)

∀p, q ∈ {1, . . . , N} : ξp(t)
Hξq(t) = δpq, (4.22)

λ1(t) ≥ λ2(t) ≥ · · · ≥ λN(t) ≥ 0, (4.23)

where δ is the Kronecker delta function (δpq = 1 if and only if p = q). Since Σ0(t) is

a positive semidefinite matrix, (4.23) is justified. In our tests, Σ0(t) is (numerically)

rank-deficient, thus justifying the Principal Component Analysis (PCA) approach. PCA

may be considered exact, if P < N principal components are tracked or approximated.

The results of the PCA analysis are presented in Figures 4.36–4.41 which are screen-

shots of the movies available in [20]. The screenshots and the movies show at time t

for each of the three variables (frequency, voltage angle, and voltage magnitude) four

indicators:

• normalized vector m∗(t) of measurements: for each sensor, we plot at its geograph-

ical position the value of the normalized data using different colors for different

values;

• first 40 eigenvalues of Σ0(t), in decreasing order;

• largest 4 eigenvalues λ1(·), λ2(·), λ3(·), λ4(·) for the last minute before t;

• corresponding eigenvectors ξ1(t), ξ2(t), ξ3(t), ξ4(t) at time t, component values of

the vector are plotted geographically, in blue values close to −1 and in red values

close to 1.
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For the numerical experiments we used traditional methods to compute the eigen-

decomposition of Σ0(t), typically taking O(N3) time and using O(NT ) space. However,

for streaming data that falls into a subspace of the original space (like in our case), we

can consider lighter and faster algorithms to compute PCA, see [22].

From the simulations we can conclude that with few eigen-vector (say, less than 10)

we can characterize more than 80% of the spectrum of the correlation matrix. Moreover,

the largest eigen-values and the corresponding eigen-vectors are stable over time during

the quiet periods. All these characteristics (correlation matrix, eigen-values and eigen-

vectors) show spatial relationship between the measurements (that is, the relation that

exists between different PMU sensors for a period of time). In what follows, we argue

that we can also obtain temporal correlation across sensors.

4.5.1 Singular Value Decomposition

Consider the N × T measurement matrix

M(t) = [ Mk,τ = m∗k(τ) | ∀k ∈ {1, . . . , N}, ∀τ ∈ {t− T + 1, . . . , t} ] .

The singular value decomposition (SVD) of the measurement matrix M(t) is

M(t) = U(t)D(t)W (t)H, (4.24)

where the “spatial” matrix U(t) is an N×N matrix the columns of which are orthogonal

unit vectors of length N which are called left singular vectors of M(t), the “temporal”

matrix, W (t), is S × S whose columns are right singular vectors of M(t) and D(t) is the

N × S rectangular diagonal matrix of positive numbers. The covariance matrix, Σ0(t),

is related to the measurement matrix, M(t), according to

Σ0(t) = M(t)M(t)H = U(t)D(t)D(t)HU(t)H, (4.25)

where we took into account that W (t)HW (t) = I. One observes that the covariance

matrix does not depend on the temporal matrix W (t). To investigate time-related cor-

relation effects, in the next section we also study auto-correlations.
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Figure 4.36: Left: normalized frequency m̂(s)(t;S) representing each PMU in its geographical

location. Right: First 40 eigen-values of Σ0(t;T ; m̂(s)(·;S)) in blue, and its spectral contribution

in red. [t=21:29:00 on July 30, 2013; S = 30; T = 5400]

Figure 4.37: Largest four eigen-values from Figure 4.36 across the last minute before t, together

with their corresponding normalized eigen-vectors at time t (positive values are shown in red,

negative values are shown in blue). [t=21:29:00 on July 30, 2013]
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Figure 4.38: Left: normalized voltage phase angle m̂(s)(t;S) representing each PMU in its

geographical location. Right: First 40 eigen-values of Σ0(t;T ; m̂(s)(·;S)) in blue, and its spectral

contribution in red. [t=21:29:00 on July 30, 2013; S = 30; T = 5400]

Figure 4.39: Largest four eigen-values from Figure 4.38 across the last minute before t, together

with their corresponding normalized eigen-vectors at time t (positive values are shown in red,

negative values are shown in blue). [t=21:29:00 on July 30, 2013]
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Figure 4.40: Left: normalized voltage magnitude m̂(s)(t;S) representing each PMU in its geo-

graphical location. Right: First 40 eigen-values of Σ0(t;T ; m̂(s)(·;S)) in blue, and its spectral

contribution in red. [t=21:29:00 on July 30, 2013; S = 30; T = 5400]

Figure 4.41: Largest four eigen-values from Figure 4.40 across the last minute before t, together

with their corresponding normalized eigen-vectors at time t (positive values are shown in red,

negative values are shown in blue). [t=21:29:00 on July 30, 2013]
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4.6 Accounting for Temporal Correlations

In this section we describe a method to obtain temporal correlation between the PMU

sensors.

Consider the delayed covariance matrix generalizing Eq. (4.19):

∀∆ ≥ 0, ∀t ≥ T + ∆,

Σ∆(t;T ;m∗(·)) .
=
[ 1

T

t∑
τ=t−T+1

m∗k(τ)m∗`(τ −∆)
∣∣∣ ∀k, ` ∈ {1, . . . , N} ]

=
1

T

t∑
τ=t−T+1

m∗(τ)m∗(τ −∆)H. (4.26)

We are interested to study how Σ∆(t;T ;m∗(·)) changes when ∆ increases and then track

evolution with t. Note that, in comparison with Σ0, Σ∆ is not necessarily positive

semidefinite when ∆ > 0.

However, evolution of the spectrum (in the two-dimensional (∆, t) space) is challeng-

ing. Instead, we study two surrogate objects, introduced in the following two subsections,

which are easier to visualize. Again, since T and m∗(·) are fixed, we will omit them as

input of the Σ∆ function.

4.6.1 Auto-Correlation Functions

To study the correlation between measurements on a sensor and its own past we introduce

the auto-correlation functions.

Definition 21. The normalized PMU’s auto-correlation functions at different nodes are

defined as follows:

∀k ∈ {1, . . . , N}, Ak(∆; t) =
[Σ∆(t)]kk
[Σ0(t)]kk

. (4.27)

We choose to normalize the function with respect to the term [Σ0(t)]kk so we can have

a relative comparison tool for different sensor. It might be useful to think about these
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auto-correlation functions for a fixed t and see it as a function of ∆, that is Ak(·; t). This

object is of interest because of the following two reasons

• Dependence of the auto-correlation function on ∆ indicates whether fluctuations

around the mean at a particular node decay or not with time. Stated differently

this analysis tests if there are significant memory effects or if memory is lost.

• It accounts for the part of the measurement matrix which is ignored in the PCA

analysis, as discussed above –that is, it accounts for the temporal matrix, W .

We show the auto-correlation function for frequency at a fixed t for four selected

PMU sensors in Figure 4.42. We obtain different patters and shapes of the resulting

auto-correlation functions: some of them have large amplitude, other ones have sinusoidal

shape.

(a) (b)

(c) (d)

Figure 4.42: Auto-correlation functions for frequency for PMU’s (a) k = 2, (b) k = 6, (c)

k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices are

constructed with the normalized time series m̂(s)(·;S), S = 30, T = 5400.
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We will compare these functions with the one that we obtain if we first apply a band-

stop and band-pass Fourier filters at 5 Hz to the original sampling, with the objective

of suppressing the oscillations that we observe at that frequency, and then observe their

contribution on the these auto-correlation functions.

(a) (b)

(c) (d)

Figure 4.43: Auto-correlation functions for frequency for PMU’s (a) k = 2, (b) k = 6, (c)

k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices are

constructed with the normalized time series f̂ (s)[ϕ̃BSF5](·;S), S = 30, T = 5400.

Figure 4.43 shows the auto-correlation functions when a band-stop Fourier filter is

applied (see details of the filter in Figure 4.34). We note that the oscillations and the

amplitude of three out of the four cases that are depicted drop down, therefore, the

reason of the high auto-correlation of the measurements might be explained by the 5 Hz

oscillation of the sampling —as we have seen, shown as peaks in the frequency domain

of the Fourier transform.

Figure 4.44 illustrates the auto-correlation functions when a band-pass Fourier filter

is applied, the frequencies that are kept in the spectrum are shown in Figure 4.32. We
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observe that for the three sensors where the band-stop filter made a difference, the band-

stop filter keeps the same shape of the functions as the original series (without filtering)

amplifying their amplitude; however, for sensor k = 112 on Figure 4.44c, the auto-

correlation functions changes completely, implying that the cause of the auto-correlation

is out of the 4-6 Hz range in the frequency domain of the signal.

(a) (b)

(c) (d)

Figure 4.44: Auto-correlation functions for frequency for PMU’s (a) k = 2, (b) k = 6, (c)

k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices are

constructed with the normalized time series f̂ (s)[ϕ̃BPF5](·;S), S = 30, T = 5400.

We show study dependence of the auto-correlations on time, i.e. dependence ofAk(·; t)

on t. The movies are available in [20], showing examples of buses that have large auto-

correlation amplitude. In general, the auto-correlation functions are stable on time (when

t varies), indicating that the correlation of the sampling are consistent on quiet periods.

We are interested in understanding the fact that some buses have larger auto-correlations

than others. This can be measured by the amplitude of the auto-correlation functions,

we formalize this concept in the following definition:
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Definition 22. The residue of the auto-correlation functions is defined as

∀k ∈ {1, . . . , N}, ρk([∆min,∆max]; t)
.
=

1

∆max −∆min

∆max−1∑
∆=∆min

|Ak(∆; t)|, (4.28)

where ∆min and ∆max are the initial and ending points of contribution to the residue.

We plot the residue for each sensor in a geographical map, see Figure 4.45. In these

computations, we have ignored the first second of the auto-correlation function —that

represent the correlation of the sampling with its immediate past—, by setting ∆min = 30.

The maximum point of contribution has been set to be ∆max = 1800 (1 minute), since

we have empirically verified that with this value of ∆max the results that are obtained

are robust with O(1) changes). In the figure, we show the residual map obtained with

the original normalized time series, using a band-stop filter, and using a band-pass filter.

As seen in the movies of the residue maps shown in Figure 4.45, residue values at a

number of special nodes do not decay with time. Moreover we observe that nodes with a

significant residue cluster, specifically, there are two sets of nodes that repeat their high

values across different days, months and time of the day. Those groups are also shown

in Figure 4.45a: in the bottom-left part of the map and the upper-right zone (closer to

the center); they might show up together or by separate. We also note that the residue

drastically drops when a band-stop filter is applied, as can be seen in Figure 4.45b; and

it is accentuated when a band-pass filter is used, see Figure 4.45c.

Observation that sustainable correlations stay for sufficiently long period of time

suggest to analyze spatio-temporal features of the sustainable correlations via the cross-

correlation residue described in next.

Plots for the same auto-correlation analysis for the voltage phase angle and voltage

magnitude measurements are shown in Figures A.1–A.8 in Appendices A.1 and A.2.
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(a)

(b) (c)

Figure 4.45: Residue of auto-correlation functions for frequency using (a) m̂(s)(·;S), (b)

f̂ (s)[ϕ̃BSF5](·;S), and (c) f̂ (s)[ϕ̃BPF5](·;S); at t=21:29:00 on July 30, 2013, with S = 30,

T = 5400, ∆min = 30, and ∆max = 1800. Geometrical figures show the position of the sensors

depicted in Figures 4.42–4.44.

4.6.2 Cross-Correlation Residue (CCR)

The cross-correlation version of equations (4.27)–(4.28) is described in the following:

Definition 23. The cross-correlation functions and their residue are defined, respec-

tively, as

∀k, ` ∈ {1, . . . , N}, Bk`(∆; t)
.
= [Σ∆(t)]k`, (4.29)

Rk`([∆min,∆max]; t)
.
=

1

∆max −∆min

∆max−1∑
∆=∆min

|Bk`(∆; t)|. (4.30)

Here, we drop normalization in (4.29) to avoid singularities associated with signals

at different nodes which are not correlated. To visualize the CCR (4.30), we plot the
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cross-correlation residual matrix

R([∆min,∆max]; t)
.
=
[
Rk`([∆min,∆max]; t) | ∀k, ` ∈ {1, . . . , N}

]
. (4.31)

In Figure 4.46 we plot the cross-correlation matrix (4.31) component-wise, using darker

colors for higher values.

We observe that for the normalized original time series (see Figure 4.46a), there are

some sensors that have high correlation with others, specifically, given the block structure

of the matrix, there is a cluster of PMU sensors that have high correlation between each

others. Figure 4.46b shows the cross-correlation matrix when a band-stop filter at 5 Hz is

applied, dropping drastically the cross residue, which is consistent with what we observed

with the auto-correlation. In Figure 4.46c we have applied a band-pass filter, and in this

case, we see that the amount of sensors that are cross-correlated increases.

(a)

(b) (c)

Figure 4.46: Cross-correlation residual matrix for frequency using (a) m̂(s)(·;S), (b)

f̂ (s)[ϕ̃BSF5](·;S), and (c) f̂ (s)[ϕ̃BPF5](·;S); at t=21:29:00 on July 30, 2013, with S = 30,

T = 5400, ∆min = 30, and ∆max = 1800.
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For each of the three matrices plotted in Figure 4.46 we plot the components of the

row corresponding to sensor k = 134 in order to see the where are the locations of the

sensors that are cross-correlated with it. See Figure 4.47.

In the normalized original sampling, Figure 4.47a, we observe a high cross-correlation

between the selected sensor and two clusters located at the bottom-left and upper-right

of the map. Again, this structures repeats from the one observed in Figure 4.45a. As

expected, no high cross-correlation is shown in the measurements filtered with a band-

stop filter (in Figure 4.47b); however, we observe high cross-correlation between sensor

k = 134 and most of the other sensor in Figure 4.47c. This might be related with the

fact the the oscillations observed at 5 Hz are coordinated between most of the PMU’s.

(a)

(b) (c)

Figure 4.47: Cross-correlation residue for frequency, geographically located, between sensor

k = 134 (indicated with an extra circle around it) and the remaining sensors using (a) m̂(s)(·;S),

(b) f̂ (s)[ϕ̃BSF5](·;S), and (c) f̂ (s)[ϕ̃BPF5](·;S); at t=21:29:00 on July 30, 2013, with S = 30,

T = 5400, ∆min = 30, and ∆max = 1800.

Plots for the same cross-correlation analysis for the voltage phase angle and voltage



CHAPTER 4. LEARNING FROM PMU DATA 114

magnitude measurements are shown in Figures A.9 and A.10 in Appendices A.3 and A.4.

4.7 Outcomes

We finalize this chapter by summarizing observations that we have made from the sta-

tistical analyzis that has been performed.

Averaged over time PMU signal shows interesting spatial correlations. Correlations

are different for different objects of interest (frequency, phase and voltage) and also

different for different quiet periods, altough general structures of the set of sensors that

are correlated and their correlation functions are consistent over time. The matrix of

correlations is sparse, also revealing that number of the high-intensity contributions to the

correlations is small. (Note that the statement of sparseness is consistent with previous

studies of the measurement matrix, see e.g. [57].) Each of the contributions characterizes

a mode localized on a relatively few nodes (PMU positions) within the system. Principal

modes, computed over the quiet periods, are almost frozen in time, however responding

fast to any significant perturbation, thus suggesting them as efficient features/indicators

for changes.

Fourier-analysis of the signal reveals interesting spatial patterns. Extracting modes

in the 4-6 Hz range one observes significant contributions from only few PMU nodes.

Whereas observing the contribution that the modes at the same range explains the high

temporal auto- and cross-correlation of a significant portion of the sensors. Nodes showing

large 4-6 Hz contributions were identified as aggregated loads, mid-size generators and

large wind-farms.

In general the signals are long-correlated in time. However the memory effects be-

comes significantly less prominent when higher frequencies are removed. Nodes with

significant auto-correlations (memory) have a spatial pattern is adiabatic/frozen (chang-

ing slowly during the quiet periods). Like other adiabatic patterns mentioned above, the

pattern changes from one quiet period to another and we also observed slight different
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patterns for different characteristics (frequency, phase, voltage).

Analyzing time-delayed cross-correlations between different nodes we observe that,

like in the case of the auto-correlations, correlations between some nodes have long mem-

ory. Nodes which mutual inference shows a long memory form a sparse pattern. These

patterns, like others described above are adiabatic and evolving from characteristic to

characteristic and from one quiet period to another quiet period.
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Chapter 5

Conclusion

During the first part of this thesis, we study cyber-physical attacks, attacks that are

composed by a physical perturbation or disturbance in electrical grid simultaneously

accompanied by a hack on the data produced by the sensors (PMUs) that measure

the status of physical quantities of the network. Cyber-physical attacks have gained

increased attention during the last decade since new technologies have become available

and, therefore, their security systems are not strong enough yet. Hackers have discovered

vulnerabilities and used them to harm the stability of the networks.

We introduce a sophisticated attack model, that includes load modifications and trip-

ping of transmission lines in a small zone of the network, and avoids standard detection

methods by injecting false measurements reflecting realistic safe flows. We are able to

compute such attacks on large systems in seconds of CPU time, with hidden overloads of

more than 50% of the lines capacity. If these attacks remain undetected for long periods

of time, they could cause catastrophic consequences such as cascade line failures and

extended blackouts.

We propose different stochastic defense mechanisms to augment standard detection

tools for generic cyber attacks. Our defenses change the stochastics of system data using

intelligent procedures that modify the power injection at specific generators in a way

that is recognizable by the defender but difficult to anticipate by the attacker. The first
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mechanism reveals the lines that connect the buses that are attacked with the rest of the

network by using the change in generation to induce a change in the voltage phase angle

of most of the nodes. Branches that show inconsistencies in terms of the voltage-current

relationship are candidates for being at the boundary of the affected buses.

The second mechanism causes low-rank changes in the covariance (correlation) ma-

trix of phase angles, affecting all the components of the matrix. The randomness during

the iterations of the strategy and the complexity of the power flow equations makes an

attacker’s counteraction very difficult and, therefore, the nodes that were hacked will be

exposed by not showing the proper low-rank covariance matrix correction.

The second half of this thesis is dedicated to the analysis of PMU measurements

performed by an Independent System Operator in the United States. The available data

ranges for a period of 15 months, where readings were made at a rate of 30 times per sec-

ond, across approximately 240 sensors. We searched for intervals of 15 minutes where the

sampling (specifically frequency, voltage phase angle and voltage magnitude) reflected an

ambient conditions behavior and applied signal processing tools and statistical analyses

on these periods.

By focusing on the frequency domain of the time series —obtained by its discrete-

time Fourier transform— we observe anomalous peaks at 5 Hz, consistently present in a

large portion of the buses across different days and moments of the day. We use Fourier

filtering to isolate the contribution of these frequency modes or to suppress them.

The statistical tools used are principal component analysis (PCA) of the covariance

(correlation) matrices, temporal auto-correlation and temporal cross-correlation of the

normalized or filtered time series. From the first one, we conclude that the correlation ma-

trix has low-rank, the largest 10 eigen-values account for more than 80% of the spectrum,

with the first one representing more than 25%. We also notice that the eigen-values and

eigen-vectors do not change dramatically over time, that is, they have a steady or a slow

changing behavior during the analyzed quiet periods. Leading eigen-vectors are struc-
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tured in such a way that sensors (associated with the components of the eigen-vectors)

having the same value are geographically closed.

The correlation functions that we define account for the temporal correlation that

might exist between a sensor’s readings and its own past (auto-correlation), and also

between a sensor’s readings and the past of a different sensor (cross-correlation). The

correlation functions that are obtained usually show a periodic behavior and, interest-

ingly, it is mainly due to the modes around 5 Hz observed in the frequency domain of the

series —when the modes near 5 Hz are suppressed, the correlation functions drop their

value to zero.

The sensors with high auto-correlation are located in two specific areas of the map.

This behavior is extended through the different observed periods. Moreover, the sensors

located in these areas show high cross-correlation as well, which might indicated that

they all function in a coordinated fashion.

As an ongoing work, we continue improving the filters that isolate different modes

from the frequency domain of the times series. We will use the filtered times series to infer

the branch admittance parameters across different transmission lines of the network.
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Appendix

Correlation Plots

A.1 Auto-Correlation: Voltage Phase Angle

(a) (b)

(c) (d)

Figure A.1: Auto-correlation functions for voltage phase angle for PMU’s (a) k = 2, (b) k = 6,

(c) k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices are

constructed with the normalized time series m̂(s)(·;S), S = 30, T = 5400.
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(a) (b)

(c) (d)

Figure A.2: Auto-correlation functions for voltage phase angle for PMU’s (a) k = 2, (b) k = 6,

(c) k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices

are constructed with the normalized time series f̂ (s)[ϕ̃BSF5](·;S) that has been filtered by a

band-stop Fourier filter, S = 30, T = 5400.
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(a) (b)

(c) (d)

Figure A.3: Auto-correlation functions for voltage phase angle for PMU’s (a) k = 2, (b) k = 6,

(c) k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices

are constructed with the normalized time series f̂ (s)[ϕ̃BPF5](·;S) that has been filtered by a

band-pass Fourier filter, S = 30, T = 5400.
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(a)

(b)

(c)

Figure A.4: Residue of auto-correlation functions for voltage phase angle using (a) m̂(s)(·;S),

(b) f̂ (s)[ϕ̃BSF5](·;S), and (c) f̂ (s)[ϕ̃BPF5](·;S); at t=21:29:00 on July 30, 2013, with S = 30,

T = 5400, ∆min = 30, and ∆max = 1800. Geometrical figures show the position of the sensors

depicted in Figures A.1–A.3.
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A.2 Auto-Correlation: Voltage Magnitude

(a) (b)

(c) (d)

Figure A.5: Auto-correlation functions for voltage magnitude for PMU’s (a) k = 2, (b) k = 6,

(c) k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices are

constructed with the normalized time series m̂(s)(·;S), S = 30, T = 5400.
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(a) (b)

(c) (d)

Figure A.6: Auto-correlation functions for voltage magnitude for PMU’s (a) k = 2, (b) k = 6,

(c) k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices

are constructed with the normalized time series f̂ (s)[ϕ̃BSF5](·;S) that has been filtered by a

band-stop Fourier filter, S = 30, T = 5400.
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Figure A.7: Auto-correlation functions for voltage magnitude for PMU’s (a) k = 2, (b) k = 6,

(c) k = 112, and (d) k = 139; at t=21:29:00 on July 30, 2013. The correlation matrices

are constructed with the normalized time series f̂ (s)[ϕ̃BPF5](·;S) that has been filtered by a

band-pass Fourier filter, S = 30, T = 5400.
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(a)

(b)

(c)

Figure A.8: Residue of auto-correlation functions for voltage magnitude using (a) m̂(s)(·;S),

(b) f̂ (s)[ϕ̃BSF5](·;S), and (c) f̂ (s)[ϕ̃BPF5](·;S); at t=21:29:00 on July 30, 2013, with S = 30,

T = 5400, ∆min = 30, and ∆max = 1800. Geometrical figures show the position of the sensors

depicted in Figures A.5–A.7.
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A.3 Cross-Correlation: Voltage Phase Angle

(a) (b)

(c) (d)

(e) (f)

Figure A.9: Cross-correlation residual matrix (on the left plots) and cross-correlation residue

for voltage phase angle, geographically located, between sensor k = 134 —indicated with an

extra circle around it— and the remaining sensors (on the right plots) using m̂(s)(·;S) in (a)

and (b), f̂ (s)[ϕ̃BSF5](·;S) in (c) and (d), and f̂ (s)[ϕ̃BPF5](·;S) in (e) and (f); at t=21:29:00 on

July 30, 2013, with S = 30, T = 5400, ∆min = 30, and ∆max = 1800.
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A.4 Cross-Correlation: Voltage Magnitude

(a) (b)

(c) (d)

(e) (f)

Figure A.10: Cross-correlation residual matrix (on the left plots) and cross-correlation residue

for voltage magnitude, geographically located, between sensor k = 134 —indicated with an

extra circle around it— and the remaining sensors (on the right plots) using m̂(s)(·;S) in (a)

and (b), f̂ (s)[ϕ̃BSF5](·;S) in (c) and (d), and f̂ (s)[ϕ̃BPF5](·;S) in (e) and (f); at t=21:29:00 on

July 30, 2013, with S = 30, T = 5400, ∆min = 30, and ∆max = 1800.
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