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ABSTRACT

Computational Problems in Telecommunications Networks

Oktay G�unl�uk

This dissertation studies some integer programming and combinatorial optimization prob-

lems which arise in the design and operation of telecommunication networks. We study

three separate but related problems. The �rst two are relatively new problems and have

applications in the so-called lightwave networks and the last one is a version of the capacity

expansion problem.

In lightwave networks, nodes are equipped with tunable transmitters and receivers and

communication occurs when the frequency of some transmitter is the same as that of a

receiver. This technology enables us to update the network topology to respond to changes

in tra�c patterns. There are two main optimization problems related with this network

structure, one being the design of a target graph more suitable to (future) tra�c conditions,

and the other being the problem of transforming the current network to this target network.

We �rst study the second problem, i.e. the transition phase when the modi�cations

on the current graph are made through a sequence of intermediate connection networks.

In particular, we move from one graph to another by swapping two independent edges

in the current graph for two other independent edges not in the current graph, so that

the union forms a four-cycle. Given an initial graph and a target graph, we �rst state the

necessary and su�cient conditions for the existence of a transition sequence and then study

the properties of a sequence requiring the minimum number of intermediate graphs. We

develop upper and lower bounds on the length of a shortest sequence by formulating an

integer program and solving its continuous relaxation to optimality. We also consider the

case when the intermediate graphs are required to be connected and develop an e�cient

algorithm for this case.



Next, we consider the design problem related with this network structure. Given a

tra�c matrix containing amounts to be routed between corresponding nodes, the objective

in this problem is to design a network with certain topological features, and to route all

the tra�c, so that the maximum load (total 
ow) on any edge is minimized. Even small

instances of this combined design/routing problem are extremely intractable. We formulate

this problem as a mixed-integer program, and after studying the polyhedral structure of

some related but much simpler problems, we develop a cutting plane algorithm. We also

report on computational experiments with this cutting plane algorithm.

Lastly, we study a version of the problem known in the literature as the capacity

expansion problem. Given a capacitated network and point-to-point tra�c demands, the

objective is to add capacity to the edges, in integral multiples of various modularities

(or \batches"), and to route tra�c, so that the overall cost is minimized. Although this

problem arises in many applications, relatively little is known regarding its polyhedral

structure. We note that this problem is strongly NP-hard as it contains the �xed-charge

network design problem, and thus the Steiner-tree problem as a special case.

We �rst formulate this problem as a mixed-integer program, and then we study the

polyhedral structure of this formulation. Next, we develop a cutting-plane algorithm which

uses facet de�ning inequalities to strengthen the linear programming relaxation. The al-

gorithm produces an extended formulation providing both a very good lower bound and a

starting point for branch and bound. The overall algorithm appears e�ective when applied

to problem instances using real-life data.
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Chapter 1

Introduction

This dissertation studies some integer programming and combinatorial optimization prob-

lems which arise in the design and operation of telecommunication networks. We study

three separate but related problems. The �rst two are relatively new problems and have

applications in the so-called lightwave networks and the last one is a version of the capacity

expansion problem.

In the next two chapters we address optimization problems related with rearrangeable

lightwave networks. Loosely speaking, in rearrangeable lightwave networks, communication

nodes are equipped with a (small) number of transmitters and receivers that can be \tuned"

to light frequencies. All of the nodes are connected to an optical medium and direct

communication occurs when the frequency of some transmitter is the same as that of a

receiver. The actual physical process is somewhat more complex and we refer the reader

to [16] for details. Since the transmitters and receivers can be tuned to new frequencies,

this technology enables us to update the logical topology of the network without changing

the underlying physical topology. In particular, if the tra�c conditions should change, it

may be advantageous to alter the network accordingly.

There are two main optimization problems related with this network structure, one

being the design of a target graph more suitable to (future) tra�c conditions, and the

other being the problem of transforming the current network to this target network. The

separation of logical network topology from the the underlying physical infrastructure is a
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relatively new concept, and consequently, the related optimization problems have not yet

attracted the attention they deserve.

First we study the second problem, i.e. the transition phase when the modi�cations

on the current network are made through a sequence of intermediate connection networks.

We consider the case when transmitters and receivers of a node operate in pairs (similar

to two way radios), and thus if a node can transmit packets to another node, it can also

receive packets from that node.

In general, the property of sharing a common frequency (as described above) de�nes

an undirected graph on the node set such that the degree of a node is no more than the

number of transmitter and receiver pairs of that node. Without loss of generality, one can

assume that in the resulting graph the degrees are always equal to this upper bound (one

can introduce a dummy node with degree one to handle the case when degrees add up to

an odd number,) and then use this graph for the standard functions of a communications

network.

The process of transforming the initial network to the target network can potentially

create problems due to packet delays and desequencing. The branch-exchange operation

has been identi�ed in [16] and [18] as a \smooth" way of proceeding from a starting network,

as opposed to a radical rearrangement of topology. However, one will prefer to use \short"

sequences of swaps (or else, the process will be too costly in terms of rerouting tra�c, for

example). A swap (or, equivalently, branch-exchange) operation can be de�ned as replacing

two matching edges of a graph with two other matching edges on the same vertices.

In Chapter 2, we consider the problem of �nding a shortest such sequence. After

characterizing the necessary and su�cient conditions for the existence of such a sequence,

we show that it is NP-hard to compute the length of the shortest sequence. This result

clearly implies that it is NP-hard to �nd the shortest sequence itself. Then, we develop

upper and lower bounds on the length of a shortest sequence by formulating an integer

program and solving its continuous relaxation to optimality. We also present an e�cient

algorithm for the case when the intermediate graphs are required to be connected.
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Next we study the design problem related with the above described network structure.

Given a tra�c matrix containing amounts to be routed between corresponding nodes, the

objective this time is to design a (directed) network with certain topological features, and

to route all the tra�c, so that the maximum load (total 
ow) on any edge is minimized.

Even small instances of this combined design/routing problem are extremely intractable.

Applications of this problem are not limited to lightwave networks. An important

problem in communication networks is to route existing tra�c requests so as to keep

congestion levels as low as possible. One way to approach this problem is to route so that

the maximum total 
ow on any edge is as small as possible. This leads to the mathematical

problem known as the maximum concurrent 
ow problem, which has received extensive

attention. (See [29], [11], [19], and [20] for some computational experiments).

We note that, given a �xed network, the task of routing the commodities to minimize

the maximum load is in fact a linear program (this is the unit-capacity maximum concurrent


ow problem) and can therefore be e�ciently solved. Our problem involves routing and

also choosing the network, and is substantially more di�cult. (It is NP-hard).

In our model we allow tra�c to be routed in a divergent manner, i.e. if a certain

request speci�es that a given amount of tra�c is to be sent from one node to another, then

it is permitted to use several simultaneous paths, each carrying some fraction of the total

desired amount.

In the context of lightwave networks, when the demands are constantly changing, the

ideal way to deal with the congestion problem would seem to be to alter the network

structure in \ real time" to adapt to new conditions. However, in practice, one would not

wish to frequently rearrange the existing network, since it would be very disruptive and

expensive to continuously reroute existing tra�c. In fact, the network should probably not

be rearranged more frequently than once every few hours. In practice, one would wish to

have a relatively fast heuristic that generates good solutions. We have observed that even

small instances can be extremely intractable (see below), so that several hours of running

time on a powerful workstation may in fact be necessary to get good solutions for a large
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instance.

A heuristic approach for this problem is given in [17]. The heuristics generate both

solutions and lower bounds (for the min-max load) and are fast. However, as reported in

[17], the bounds produced by these heuristics when applied to some small instances (with

fully dense demand matrices) were usually rather far apart, with typical gaps between

lower and upper bounds of the order of 20% to 30%.

In Chapter 3, we formulate this problem as a mixed integer program, and after studying

the polyhedral structure of some related but much simpler problems, we develop a cutting

plane algorithm. We also report on computational experiments with this cutting plane

algorithm. The algorithm yields good lower bounds and also an extended formulation that

appears e�ective as a starting point for branch-and-bound.

Our computational experience is encouraging: the gaps in the \benchmark" problems

in [16] were substantially reduced in most cases (and never worsened), within a few minutes

of computation. We also report on similar results for much larger, less than fully dense,

randomly generated problems.

The last problem we study in this dissertation is a version of the problem known in

the literature as the capacity expansion problem (CEP). Given a capacitated network and

point-to-point tra�c demands, the objective in CEP is to add capacity to the edges in

integral multiples of various modularities (or \batches"), and to route tra�c, so that the

overall cost (i.e. capacity plus 
ow cost) is minimized. We note that CEP is strongly NP-

hard [10] as it contains the �xed-charge network design problem, and thus the Steiner-tree

problem as a special case.

Our primary motivation for studying CEP is that it naturally arises as part of a much

larger and complex problem concerning ATM (asynchronous transfer mode) network de-

sign. This larger problem is in fact so complex and ill-de�ned that a direct polyhedral

study of it would be impractical and probably not advisable. However, the ATM problem

contains several subproblems either identical or closely resembling CEP. We also note that

these problems have fully dense tra�c matrices (i.e. every node wants to talk to every
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other node).

We consider CEP when there are two batch sizes. Since it is always possible to scale

tra�c demands, we assume that the smaller batch size generates unit capacity, and the

larger batch size generates capacity equivalent to an integer multiple of this. In our model,

we require the total 
ow on either direction of an edge to be less than or equal to the

sum of the existing and the newly added capacity on that edge. This constraint arises in

telecommunications models because, generally, one cannot purchase \one-way cables".

We �rst formulate this problem (CEP), as a mixed-integer program, and then we study

the polyhedral structure of this MIP formulation. The polyhedral structure of CEP (or,

rather, some closely related variants) has already been previously studied. Magnanti and

Mirchandani [22] have studied a special case of CEP in which there is a single commodity

to be routed between two special nodes of the network and there is no existing capacity on

the network. In this paper, they present some facet de�ning inequalities and show that this

special case of CEP is closely related with the shortest path problem. Another special case,

which arises is the context of the lot-sizing problem with constant production capacities,

has been studied by Pochet and Wolsey [27]. In this case, the network related with CEP

has a special structure and there is a single batch size. In [27], Pochet and Wolsey fully

describe the convex hull of a related polyhedron by using a polynomial number of facets.

Some subproblems related with CEP have also attracted attention. Magnanti, Mir-

chandani and Vachani [23] study the polyhedral structure of a MIP formulation of the

network loading problem (NLP) with three nodes and a single batch size. Wolsey and

Pochet [26] also study some surrogate problems that arise in network design problems.

Recently, Stoer and Dahl [30] studied a problem similar to ours where the 
ows are

undirected. In their model, there are no 
ow costs, but the capacities to be added to edges

are of a more general form than those we study. (We note that our formulation can be used

to model undirected 
ows). One primary feature of their approach is that (in terms of our

model,) they would split the integral variables into sums of 0 � 1 variables. As a result,

the inequalities they obtain have a rather combinatorial 
avor, and when the demands are
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small, this approach may be e�ective. Another feature of the approach in [30] is that, they

study the projection of the formulation onto the space of the discrete variables, which is

possible since they do not have 
ow costs.

In Chapter 4, we �rst present facet de�ning inequalities for the capacity expansion

problem and then apply these results to design a cutting-plane algorithm which uses facet

de�ning inequalities to strengthen the linear programming relaxation.

The algorithm produces an extended formulation providing both a very good lower

bound and a starting point for branch and bound. The overall algorithm appears e�ective

when applied to problem instances using real-life data. As we mentioned before, our pri-

mary motivation for studying CEP is that it arises as a subproblem in ATM network design.

Therefore, the computational testing mainly focuses on how e�ective our inequalities are

towards obtaining a strong formulation for CEP, as opposed to developing an algorithm

for solving CEP.

Some of the results of this thesis appeared in [3], [4] and [5].
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Chapter 2

A Degree Sequence Problem Related to Network Design

2.1 Introduction

In this chapter we study the following problem on graphs, for which a motivation will be

given later: Let G

1

and G

2

be two graphs with the same vertex set, and the same

number of edges. For two matching edges e

1

and e

3

of E(G

1

), let e

1

,e

2

,e

3

and e

4

form a

simple cycle. If fe

1

; e

3

g = E(G

1

)nE(G

2

) and fe

2

; e

4

g = E(G

2

)nE(G

1

), then we say that

G

2

(respectively, G

1

) arises from G

1

( G

2

) by a swap operation. In other words, a

swap operation can be de�ned as replacing two matching edges of a graph with two other

matching edges on the same vertices. In general, if G and H are graphs with the same

labeled degree sequence, it is clear that there is a sequence of swaps that maps G into H.

In this chapter, we consider the problem of �nding a shortest such sequence, and some

related questions.

Closely related problems arise in the design and operation of so-called \lightwave"

networks. Loosely speaking, in lightwave networks each node is equipped with a (small)

number of transmitter/receiver (T/R) pairs that can be \tuned" to light frequencies. All

of the nodes are connected to an optical medium and direct communication between two

nodes can occur if both of them have a T/R pair tuned to the same frequency. To simplify

routing, it is assumed that any given frequency can be common to at most two nodes at

any given time.
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In general, the property of sharing a common frequency de�nes a graph on the node

set such that the degree of a node is no more than the number of T/R pairs of that node.

Without loss of generality, one can assume that in the resulting graph the degrees are

always equal to this upper bound (one can introduce a dummy node with degree one to

handle the case when degrees add up to an odd number) and then use this graph for the

standard functions of a communications network. The actual physical process is somewhat

complex (see [16] for more details). Since the T/R pairs can be tuned to new frequencies,

the topology of the network can be altered. In particular, if the tra�c conditions should

change, it may be advantageous to alter the network accordingly. The branch-exchange

operation has been identi�ed in [16] and [18] as a \smooth" way of proceeding from a

starting network, as opposed to a radical rearrangement of topology. However, one will

prefer to use \short" sequences of swaps (or else the process will be too costly in terms of

rerouting tra�c, for example). Thus our problem arises.

The results of this chapter can be summarized as follows:

Theorem 2.3.1 Let G

i

, G

f

be two graphs on the same vertex set, and with the same

labeled degree sequence. The length of a shortest swap sequence transforming G

i

into G

f

equals

jE(G

i

) nE(G

f

)j � jC

�

(

~

G

i;f

)j

where

~

G

i;f

= (V (G

i

); E(G

i

)4E(G

f

)) and jC

�

(

~

G

i;f

)j is the maximum number of edge dis-

joint circuits in

~

G

i;f

whose edges alternate between E(G

i

) and E(G

f

).

Denote by jS

�

(G

i

; G

f

)j the length of a shortest swap sequence mapping G

i

into G

f

.

Theorem 2.3.2 It is NP-hard to compute jC

�

(

~

G

i;f

)j and thus, it is NP-hard to compute

jS

�

(G

i

; G

f

)j.

The problem of computing C

�

(

~

G

i;f

) can be viewed as a set-packing, or a hypergraph

matching problem. In this hypergraph, there is a vertex for every edge in E(G

i

)4E(G

f

),

where 4 denotes the symmetric set di�erence function, and there is an edge for every pos-

sible circuit whose edges alternate between E(G

i

) and E(G

f

). A matching (a collection of

pairwise disjoint hyperedges) corresponds to a collection of edge disjoint alternating circuits
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and consequently, the size of the maximum matching is equal to jC

�

(

~

G

i;f

)j. Consequently

the problem of computing jC

�

(

~

G

i;f

)j can be formulated as an integer program. Note that

this formulation requires an exponential number of variables, one for each possible circuit.

However, its continuous relaxation can be solved in polynomial time, and as we show, this

leads to an approximation algorithm for jS

�

(G

i

; G

f

)j:

Theorem 2.5.1 jS

�

(G

i

; G

f

)j can be estimated within a multiplicative error of 7=4 in

polynomial-time.

Suppose G

i

and G

f

are both connected. Then in terms of the application, it would

be desirable to provide a swap sequence using connected graphs as well. Here we have:

Theorem 2.5.5 Suppose G

i

and G

f

are connected. Then in polynomial-time one

can compute a swap sequence that maps G

i

to G

f

, such that all intermediate graphs are

connected, and whose length is within a constant bound of jS

�

(G

i

; G

f

)j.

2.2 Preliminaries and De�nitions

Throughout our analysis we will work with undirected graphs without loops. Given an

initial graph G

i

= (V;E

i

) and a target graph G

f

= (V;E

f

) de�ned on the same vertex set,

edges in E

i

[ E

f

are partitioned into three disjoint sets as follows:

Bad Edges : B (G

i

; G

f

) = E (G

i

) nE (G

f

)

Desired Edges : D (G

i

; G

f

) = E (G

f

) nE (G

i

)

Neutral Edges : N (G

i

; G

f

) = E (G

i

) \ E (G

f

)

where `n' denotes the ordinary set di�erence function. The aim of the recon�guration

process is to eventually replace all of the bad edges with the desired ones and thus construct

the target graph.

A swap operation s is called improving if the number of desired edges introduced by s

is more than the number of neutral edges deleted. It is called perfect if two bad edges are

replaced by two desired ones.

Two graphs are called accessible from each other if there exists a sequence of swap

operations transforming one of the graphs into the other. Observe that the transformation
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process is symmetric in the sense that, a sequence mapping G

i

into G

f

can be used in

reverse order to map G

f

into G

i

. Also observe that swap operations do not change the

labeled degree sequence of the initial graph, so that we have the following simple necessary

condition for accessibility:

Lemma 2.2.1 If two graphs are accessible from each other, then they have the same labeled

degree sequence.

Therefore, we will focus our attention on the graphs which share a common degree

sequence and given an initial graph, we will assume that the target graph satis�es this

requirement. When we combine Lemma 2.2.1 with the fact that the number of edges of

any graph equals half the sum of degrees of its vertices, we can conclude that two graphs

which are accessible from each other have the same number of edges. Therefore, we have

the following corollary:

Corollary 2.2.2 If G

i

and G

f

are accessible from each other, then jB(G

i

; G

f

)j = jD(G

i

; G

f

)j.

Given G

i

= (V;E

i

) and G

f

= (V;E

f

), we de�ne a new graph

~

G

i;f

as follows. The

vertex set of

~

G

i;f

is V , further,

~

G

i;f

has two types of colored edges, namely (solid) black

edges B(G

i

; G

f

) and dashed edges D(G

i

; G

f

).

~

G

i;f

will be called a colored graph. We

de�ne the size of a colored graph to be the number of colored edges it has, in other words,

~

G

i;f

is of size jB(G

i

; G

f

)j+ jD(G

i

; G

f

)j.

Example 2.2.3 A small size example of

~

G

i;f

related with G

i

and G

f

is shown in Figure

2.1. Notice that jB(G

i

; G

f

)j = jD(G

i

; G

f

)j = 6 and jN(G

i

; G

f

)j = 3 so that jE

i

j = jE

f

j = 9

and the size of

~

G

i;f

is 12.

The colored graph

~

G

i;f

does not only have the same number of black (bad) and dashed

(desired) edges but also has the nice property that the number of black edges incident with

any vertex equals the number of dashed edges incident with it. This fact is due to Lemma

2.2.1. The degree of any vertex in G

i

equals the number of bad and neutral edges incident
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Figure 2.1: The Colored Graph

~

G

i;f

with it, and similarly in G

f

the degree of the same vertex is the number of desired and

neutral edges incident with it. Therefore, the necessary condition for accessibility implies

the following corollary:

Corollary 2.2.4 If two graphs G

i

; G

f

have the same labeled degree sequence, then in the

related colored graph

~

G

i;f

, every vertex has the same black and dashed degree.

There is one more property that

~

G

i;f

must satisfy, if G

i

and G

f

satisfy the necessary

condition, which is implied by Corollary 2.2.4. We call circuits (not necessarily simple),

using colored edges alternatingly, alternating circuits.

Corollary 2.2.5 If two graphs G

i

and G

f

have the same labeled degree sequence, then the

edge set of the related colored graph

~

G

i;f

can be partitioned into alternating circuits of even

length.
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We have stated a necessary condition for the accessibility of two graphs, as we show

next, this condition is also the su�cient. The proof is straightforward and we include it

for completeness.

Lemma 2.2.6 Two graphs G

1

= (V;E

1

) and G

2

= (V;E

2

) are accessible from each other

if and only if they both have the same labeled degree sequence.

Proof. The if part is implied by Lemma 2.2.1 and we will prove the only if part by induction

on the size of

~

G

1;2

. Notice that by Corollary 2.2.4 we have jB(G

1

; G

2

)j = jD(G

1

; G

2

)j, which

implies that size of

~

G

1;2

has to be even.

Using Corollary 2.2.5, and the fact that B(G

1

; G

2

) \ D(G

1

; G

2

) = ;, it follows that

there exist four distinct vertices x; y; z; w such that either fx; yg and fz; wg are bad and

fx; zg is good, or fx; yg and fz; wg are good and fx; zg is bad.

In the �rst case swapping fx; yg and fz; wg for fx; zg and fy; wg yields a graph with

fewer bad edges. The second case is similar by symmetry: a swap sequence mapping G

f

into G

i

yields a sequence mapping G

i

into G

f

.

2.3 Shortest Sequence

In this section we will investigate the properties of a shortest swap sequence transforming

one graph to another. We will �rst show that an alternating cycle representation of edges

of the colored graph

~

G

i;f

corresponds to a swap sequence transforming G

i

to G

f

and

then use this idea to �nd an upper bound on the length of a shortest swap sequence. Lastly

we will show a min-max relationship between the two.

Given an alternating cycle c = (d

1

; b

1

; d

2

; b

2

; : : : ; b

n�1

; d

n

; b

n

) of length 2n (i.e. n black

and n dashed edges), on the the colored graph

~

G

i;f

, notice that we can replace the related

bad edges of G

i

with the desired ones in n � 1 swaps. This can be achieved as follows:

In the �rst n� 2 swaps we will choose a dashed edge d

k

= fa; bg on this alternating cycle

and swap the neighboring black edges b

k�1

= fc; ag and b

k

= fb; dg with d

k

and fc; dg.

This operation will decrease the length of the cycle by 2 and after the swap operation,
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the alternating cycle will have the form: c

0

= (d

1

; b

1

; : : : ; d

k�1

; fc; dg; d

k+1

; : : : ; d

n

; b

n

).

Therefore, after n�2 swaps, we will have a cycle of length 4, so that we can make a perfect

swap operation to replace both of the remaining bad edges with the remaining desired ones.

Therefore, given an alternating cycle representation C

0

(

~

G

i;f

) of colored edges of

~

G

i;f

,

it is possible to replace all of the bad edges of G

i

with the desired ones in jB (G

i

; G

f

) j �

jC

0

(

~

G

i;f

)j swaps, since we can make a perfect swap operation for each one of the alternating

cycles in C

0

(

~

G

i;f

) as described above. Since this relationship must also hold for a maximum

alternating cycle representation C

�

(

~

G

i;f

), we can write

jS

�

(G

i

; G

f

) j � jB (G

i

; G

f

) j � jC

�

(

~

G

i;f

)j

where S

�

(G

i

; G

f

) is a shortest swap sequence.

We next show that this upper bound is strict, and thus establish a strong relationship

between shortest swap sequences and maximum alternating cycle representations.

Theorem 2.3.1 Let G

i

and G

f

be two graphs accessible from each other. Then:

jS

�

(G

i

; G

f

) j = jB (G

i

; G

f

) j � jC

�

(

~

G

i;f

)j:

Proof. It su�ces to show that jS

�

(G

i

; G

f

) j � jB (G

i

; G

f

) j � jC

�

(

~

G

i;f

)j: Let s be a swap

operation transforming G

i

to G

s

, and let G

f

be the target graph. Furthermore let D

�

be the set of deleted neutral edges and B

+

be the set of bad edges introduced by s. De�ne

f as follows:

f (G

i

; G

f

) = jB (G

i

; G

f

) j � jC

�

(

~

G

i;f

)j:

In C

�

(

~

G

s;f

) look at the alternating cycles containing elements of D

�

or B

+

. There can

be at most jD

�

j+ jB

+

j of them and the remaining cycles are composed of edges common

to both

~

G

i;f

and

~

G

s;f

. Let C

�

� C

�

(

~

G

s;f

) be the set of alternating cycles using these
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common edges. Therefore:

jC

�

(

~

G

s;f

)j � jC

�

j+ jD

�

j+ jB

+

j:

If

~

G

i;f

has some desired and bad edges which do not appear on the common cycles then

jC

�

j+ 1 � jC

�

(

~

G

i;f

)j

since those edges have to form at least one more cycle. Therefore,

jC

�

(

~

G

s;f

)j � jC

�

(

~

G

i;f

)j � 1 + jD

�

j+ jB

+

j: (2:1)

Obviously,

jB(G

s

; G

f

)j = jB(G

i

; G

f

)j � jB

�

j+ jB

+

j (2:2)

where B

�

is the set of deleted bad edges and

jB

�

j = 2� jD

�

j (2:3)

so we can subtract (2.2) from (2.1) and substitute (2.3) to get:

f(G

s

; G

f

)j � f(G

i

; G

f

)� 1:

On the other hand, if all of the desired and bad edges of

~

G

i;f

appear on the common cycles

then

jC

�

(

~

G

s;f

)j = jC

�

j+ 1

since s should have introduced two bad edges and two desired edges to form a new cycle.

Therefore,

f(G

s

; G

f

) = f(G

i

; G

f

) + 1 � f(G

i

; G

f

)� 1

which shows that f(G

i

; G

f

) could at most be decreased by 1 after a swap operation.
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Knowing that f(G

f

; G

f

) = 0, at least f(G

i

; G

f

) swap operations are necessary to reach

the target graph, and thus

jS

�

(G

i

; G

f

)j � f(G

i

; G

f

);

which completes the proof.

Having characterized the length of the shortest swap sequence, we next show that it

is di�cult to �nd the size of a maximum alternating cycle representation of the colored

graph. This result implies that it is also di�cult to �nd the length of a shortest sequence.

We will achieve this in two steps. First we will show that the alternating cycle packing

problem (ACPP) for arbitrary colored graphs is NP-Hard, and then extend this result to

Eulerian colored graphs. ACPP is de�ned as follows: Given a graph with two di�erent

types of edges

~

G = (V;R;B), �nd a maximum cardinality set C

�

such that elements of C

�

constitute edge disjoint alternating cycles of

~

G. Notice that this packing problem reduces

to alternating cycle representation problem if

~

G is Eulerian.

Theorem 2.3.2 ACPP is NP-Hard.

Proof. The proof is by transforming the independent set problem for cubic graphs (Cubic-

IS) [10] to ACPP.

For any instance of the Cubic-IS problem on G = (V;E) we de�ne a related colored

graph

~

G = (

~

V ;R;B) as follows.

First, for each vertex v of the original graph, incident, say, with edges fv; xg, fv; yg;

fv; wg,

~

G has six vertices v

x1

; v

x2

; v

y1

; v

y2

; v

w1

; v

w2

and three red edges fv

x1

; v

x2

g, fv

y1

; v

y2

g,

fv

w1

; v

w2

g and three black edges fv

x2

; v

y1

g, fv

y2

; v

w1

g, fv

w2

; v

x1

g. We call the alternating

cycle formed by these six edges, the vertex cycle related with v.

Next, for every edge fv; wg of the original graph,

~

G has six vertices a

vw1

, a

vw2

,

b

vw1

, b

vw2

, c

vw1

; c

vw2

, eight black edges fv

w1

; a

vw1

g, fa

vw1

; b

vw1

g, fb

vw1

; c

vw1

g, fc

vw1

w

v1

g,

fv

w2

; a

vw2

g, fa

vw2

; b

vw2

g; fb

vw2

; c

vw2

g; fc

vw2

; w

v2

g, and three red edges fa

vw1

; a

vw2

g, fb

vw1

; b

vw2

g,

fc

vw1

; c

vw2

g. We say that these 11 edges form a ladder joining vertex cycles of v and w.

We denote the set of red edges by R and black edges by B. Figure 2.2 shows a partial



Chpt. 2 A Degree Sequence Problem 16

application of this transformation for a vertex v and its three neighbors x; y and w.
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Figure 2.2: Transforming G to

~

G

If jV j = n and so jEj = 3n=2, then the number of vertices and edges of the colored

graph are as follows:

j

~

V j = 6n+ 6 � 3n=2 = 15n

jBj = (3n+ 4 � 3n=2 + 6n) = 15n

jRj = (3n+ 3 � 3n=2) = 15n=2

Now consider a solution of the alternating cycle packing problem on this colored graph

~

G. If a black edge related to v 2 V is on some alternating cycle then this cycle has to

be the vertex cycle of V . This is because, any alternating cycle using one of the black

edges but not all of the vertex cycle has to climb up one of the ladders and thus disable 2

possible ladder cycles and so the solution on hand can be improved by deleting this cycle
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and adding these ladder cycles. Which is not consistent with the optimality of the solution.

Therefore, in the solution we have a number of vertex cycles and some other cycles

con�ned within ladders. It should be obvious that there should be 2 alternating cycles

in a ladder if at least one of the adjacent vertex cycles is not in the solution and there

should be only one of them if both of the vertex cycles are in the solution. If the latter is

the case, then we can arbitrarily drop one of these vertex cycles and increase the number

of ladder cycles by one. In this manner, while preserving optimality we can modify the

solution not to have adjacent vertex cycles in the solution. Therefore, if we denote the size

of a maximum packing by c

�

,

c

�

= k + 3n

where k is the number of vertex cycles in the modi�ed solution. Consequently, given the

size of the solution to the alternating cycle packing problem, k is the size of a maximum

independent set for G and the vertices of this set are the vertices whose vertex cycles are

in this solution. Notice that, if we delete the edges that appear in the solution, we obtain

a graph which has some vertices with red degree 0 and black degree 1 and the remaining

vertices have red degree 1 and black degree 2. Since the transformation is polynomial, the

proof is complete.

Corollary 2.3.3 The Maximum alternating cycle representation problem is NP-hard.

Proof. Extending Theorem 2.3.2 to Eulerian graphs is done by taking two copies of

~

G, say,

~

G

1

and

~

G

2

and then connecting twin vertices with red edges. Obviously this new colored

graph

~

G

E

is Eulerian and each vertex in this graph has total degree 4.

If we solve the maximum alternating cycle representation problem on

~

G

E

, in the solution

there will be cycles using only

~

G

1

edges, others using only

~

G

2

edges and the rest using

edges connecting

~

G

1

to

~

G

2

. If we respectively denote the number of those cycles by c

1

; c

2

and b, the size of the maximum representation c

�

E

is c

1

+ c

2

+ b.

It should be obvious that c

1

and c

2

are at most c

�

, and that the value of b can not

exceed j

~

V j=2 since we have only j

~

V j edges connecting

~

G

1

to

~

G

2

and each cycle of this type
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uses at least two of them. Therefore, we have:

c

�

E

= c

1

+ c

2

+ b � 2 � c

�

+

j

~

V j

2

:

It is possible to achieve this bound as follows. First we solve the alternating cycle

packing problem on

~

G and delete the edges which are used in the alternating cycles. We

know that the remaining graph has exactly j

~

V j=2 alternating paths starting and ending

with black edges. This is because we still have j

~

V j vertices with black degree one more

than red degree. Then make a copy of the remaining graph and join twin vertices with red

edges. And lastly form j

~

V j=2 new alternating cycles by using symmetric alternating paths

and red edges joining their end points. Therefore,

c

�

E

= 2 � c

�

+

j

~

V j

2

= 2k + 6n+

15

2

n:

This negative result implies that it is not possible to �nd a shortest swap sequence

in polynomial time but the relationship between a shortest swap sequence and maximum

alternating cycle representation problems is guiding in the sense that we can �nd a short

swap sequence by �nding many alternating cycles �rst, and then by using the related swap

sequence.

2.4 LP Formulation and an Upper Bound on the Length of a Shortest

Sequence

A problem of interest is that of approximating the length of a shortest swap sequence

in polynomial time. In this section we present a positive result concerning this problem.

Namely, we show that in polynomial time we can �nd a small interval containing the length

of a shortest sequence. To this end, we will �rst �nd the value of a linear programming
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relaxation of the alternating cycle representation problem in polynomial time, and then

show that

(jBj � q) � jBj � jC

�

(

~

G

i;f

)j � min

�

jBj;

7

4

(jBj � q)

�

where q is the value of this LP relaxation.

As mentioned before, the problem of �nding C

�

(

~

G

i;f

) can be viewed as a hypergraph

matching problem, in which the vertices are the colored edges and the hyperedges are the

possible alternating cycles of the colored graph

~

G. In this formulation (which requires an

exponential number of variables), a matching corresponds to a collection of alternating cy-

cles in the colored graph and consequently, a maximum matching is a maximum alternating

cycle representation of the colored graph with z = jC

�

(

~

G)j.

The integer program (IP), its continuous relaxation (LP) and the dual of the relaxed

problem (DLP) are as follows, where C is the set of all possible alternating cycles .

(IP ) z = max

X

C2C

x

C

s:t:

X

8C3e

x

C

� 1 8e 2 E = B [R

x

C

2 f0; 1g

(LP ) q = max

X

C2C

x

C

s:t:

X

8C3e

x

C

� 1 8e 2 E = B [R

x

C

� 0

(DLP ) q = min

X

e2E

y

e

s:t:

X

e2C

y

e

� 1 8C 2 C

y

e

� 0



Chpt. 2 A Degree Sequence Problem 20

Later in this section, we will show that q can be computed in polynomial-time. This

is so because the related separation problem (see [12]) can be solved in polynomial-time.

Namely, given y 2 R

jEj

; y � 0, we will show how to e�ciently construct an alternating

cycle C such that

P

e2C

y

e

is minimum. But let us postpone this till later and instead see

how knowing q leads to a good estimate for jC

�

(G

i;f

)j.

To bound z as a function of q on jC

�

(

~

G

i;f

)j we will use one of the results of Aharoni,

Erd�os and Linial [1] on the hypergraph matching problem. Aharoni et al. study the

relation between the optimum value of a hypergraph matching problem and that of its

linear programming relaxation, and show that, for any hypergraph with n vertices and m

edges

~z �

~q

2

n�

f�1

m

� ~q

2

�

~q

2

n

where ~z is the cardinality of the maximum matching, ~q is the value of the relaxed program

and f is the least cardinality of a hyperedge. In our case, using f � 4, the above result

implies:

jC

�

(

~

G

i;f

)j �

q

2

n

2jBj � (3=jCj) � q

2

�

q

2

2jBj

: (2:4)

Notice that the value of DLP, and consequently, that of LP, can not exceed jBj=2, since

each alternating cycle contains at least two black edges. Combining 2.4 with this upper

bound, we get:

jBj

2

� q � jC

�

(

~

G

i;f

)j �

q

2

2jBj

implying,

1

4

�

�

q

2jBj

�

�

jC

�

(

~

G

i;f

)j

2jBj

�

�

q

2jBj

�

2

� 0 (2.5)

which bounds the reciprocal of the average cycle length in the optimal solution from above
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and from below. The length of this interval is:

�

q

2jBj

�

�

�

q

2jBj

�

2

=

�

q

2jBj

��

1�

q

2jBj

�

attaining its maximum value when (q=2jBj) = 1=4, and so in the worst case this interval

has length 3=16.

Similarly, we can bound the average alternating cycle length �c in terms of �q = 2jBj=q

as:

4 � �q � �c � min(�q

2

; 2jBj)

which has a length of (2jBj �

p

2jBj) in the worst case.

Furthermore, if we de�ne r = jC

�

(

~

G

i;f

)j=2jBj and � = q=2jBj, we can �nd an upper

bound on the length of the minimal swap sequence as follows (using (2.5) to yield r � �

2

):

1 �

jBj � jC

�

(

~

G

i;f

)j

jBj � q

=

jBj � 2rjBj

jBj � 2�jBj

=

1� 2r

1� 2�

�

1� 2�

2

1� 2�

:

If we take the derivative of the last expression with respect to �, we get

d

d�

 

1� 2�

2

1� 2�

!

=

�4�(1� 2�) + 2(1� 2�

2

)

(1� 2�)

2

=

4�

2

� 4�+ 2

(1� 2�)

2

which is nonnegative for � � 1=4. Therefore, we can write

jBj � jC

�

(

~

G

i;f

)j

jBj � q

�

1� 2(1=4)

2

1� 2(1=4)

=

7

4
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which implies

(jBj � q) � jBj � jC

�

(

~

G

i;f

)j � min

�

jBj;

7

4

(jBj � q)

�

:

The interval between the leftmost and rightmost values which contains the length of

a shortest swap sequence, has length min fq; (3=4) (jBj � q)g, which is equal to 3jBj=7 in

the worst case. Consequently, knowing q, we can compute an estimate of jBj � jC

�

(

~

G

i;f

)j

within a bound of 7=4.

Let us now return to the problem of computing q. As stated before, all we need is a

polynomial-time algorithm which, given y 2 R

jEj

, returns an alternating cycle C such that

P

e2C

y

e

is smallest.

Given a colored graph H with edge set B(G

i

; G

f

) [ D(G

i

; G

f

) = E(G

i

)4E(G

f

), we

solve the following family of problems: for each black edge fx; yg, �nd a minimum cost

alternating cycle containing fx; yg. These subproblems can be solved using an approach

similar to that employed in [14] to �nd minimum length odd paths.

We construct an auxiliary graph K

fx;yg

related with a black edge fx; yg as follows: for

all of the black edges b = fu; vg di�erent from fx; yg de�ne two vertices u

b

; v

b

and de�ne

an edge b

0

= fu

b

; v

b

g. Call this graph G

fx;yg

.

For all of the red edges, de�ne two vertices and an edge in a similar way, and call the

resulting graph G

r

. Notice that for all vertices in V , we have the same number of copies

in G

fx;yg

and G

r

except for x and y. For these two vertices, the number of copies in G

fx;yg

is one less than that of G

r

. Assign weights y

e

on the edges de�ned so far and �nally for

every v 2 V join the copies of v in G

fx;yg

to those in G

r

with a complete bipartite graph

and assign weight zero to these new edges.

It should be obvious that a minimum-weight perfect matching inK

fx;yg

yields a minimum-

weight alternating walk from x to y in H, that starts and ends with red edges.

Therefore, if the value of minimum-weight perfect matching problem onK

fx;yg

is w

�

fx;yg

,

then w

�

fx;yg

+ y

fx;yg

is the weight of a minimum-weight cycle containing edge fx; yg.

By repeating this procedure for all of the black edges, we can �nd the length of the
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shortest cycle and thus solve the separation problem in polynomial time.

2.5 Connected Swap Sequences

In this section we will address a constrained version of the network recon�guration problem

where, given a connected initial graph and a connected target graph, it is desired to �nd a

swap sequence such that the resulting intermediate graphs are also connected.

In communication networks, connectivity is obviously the most important structural

property of the network. The motivation behind the con�guration process, as stated earlier,

is to achieve a connection network which is more suitable to the tra�c conditions, and it

is only natural to conduct this process while keeping the network connected, so that nodes

can continue communication.

We will �rst investigate the necessary and su�cient conditions to undertake this task

for tree structures and then extend this result to general graphs without loops. In both

cases, our proofs will be constructive so that we implicitly propose algorithms to network

con�guration problems with connectivity constraints.

Theorem 2.5.1 If two trees T

i

and T

f

are accessible from each other then there exists a

swap sequence transforming T

i

to T

f

such that all intermediate graphs are also trees.

Proof. We will prove that there is a sequence of at most two swaps that strictly decreases

the number of bad edges while maintaining connectivity. Applying this fact inductively

yields the theorem.

Thus, let d

1

= fx; yg be a desired edge (i.e.. fx; yg 2 D(T

i

; T

f

) = E(T

f

) n E(T

i

)).

Let P

xy

be the path between x and y included in T

i

. Since swap operations preserve

the labeled degree sequence, there are distinct unwanted edges b

1

= fw; xg; b

2

= fy; zg 2

B(T

i

; T

f

) =E(T

i

) nE(T

f

) . Suppose �rst that one of b

1

; b

2

is in P

xy

. Then replacing b

1

and

b

2

with d

1

and fw; zg yields the desired result.

Suppose next that neither b

1

nor b

2

is in P

xy

. Then P

xy

must contain some unwanted

edge (else T

f

contains a cycle), say b

3

= fu; vg, where u separates v from x in P

xy

. If b

3

is
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incident with x or y, then we are back in the �rst case, so without loss of generality assume

that it is not. Then the swap sequence:

(i) replace b

3

and b

2

with fy; ug and fz; vg,

(ii) replace b

1

and fy; ug with d

1

and fw; ug

is as desired.

Finally assume that both b

1

and b

2

are in P

xy

. Then T

i

� b

1

� b

2

has three components,

one containing x (say T

x

), one containing y (say T

y

), and the �nal one containing w and

z. Notice that in the tree T

0

= T

x

+ T

y

+ fx; yg all vertices have the same degree as they

do in T

i

, and hence T

f

. Consequently, this tree contains an unwanted edge b

4

= fu; vg (or

else T

f

is unconnected), and (say) b

4

2 T

x

, where u separates x from v in T

x

. If u = x, we

are again back in the �rst case, so assume that it is not. Then the double swap

(i) replace b

4

and b

1

with fx; vg and fw; ug,

(ii) replace b

2

and fx; vg with d

1

and fz; vg

as desired.

The above construction not only shows that it is possible to preserve connectivity during

the recon�guration process, but also shows that it is possible to achieve this without

\disturbing" the neutral edges. Notice that we only delete edges which are either bad

or which are introduced by the previous swap. Therefore, during this process, edges in

N(T

i

; T

f

) remain untouched.

Also notice that the proposed algorithm makes at most 4 � jS

�

(T

i

; T

f

)j � 3 swaps since

jS

�

(T

i

; T

f

)j � jB(T

i

; T

f

)j=2. Therefore, in the worst case, the length of the proposed swap

sequence can be as much as four times the length of the shortest one.

Extending Theorem 2.5.1 to general graphs is more complicated than one would expect.

This is mainly because we can not show the existence of a bad edge b

4

for general graphs.

We next prove Lemmas 2.5.2 - 2.5.4 which examine structural properties of colored graphs

related with two-edge connected graphs.

Lemma 2.5.2 Let G

i

be a two-edge connected graph and G

f

be a target graph. If

~

G

i;f

has a vertex with more than one desired edge incident with it, then there exists an improving
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swap operation such that the resulting graph is still connected.

Proof. Let v be a vertex with at least two bad and two desired edges incident with it. Let

b

3

= fv; wg; b

2

= fv; zg be bad edges, d

1

= fv; yg be good and b

1

= fy; xg be bad.

Let G

1

be the graph obtained from G

i

after swapping edges b

1

and b

2

with edges d

1

and fx; zg and similarly let G

2

be the graph obtained from G

i

after swapping edges b

1

and b

3

with edges d

1

and fx;wg.

Obviously both G

1

and G

2

have more edges in common with G

f

than G

i

has but

they are not feasible if they introduce loops. Due to b

1

and d

1

vertices x, y and v have to

be distinct and due to b

2

, b

3

and d

1

neither z nor w could be the same as v or y.

Suppose �rst x;w; z are all distinct. If G

1

is not connected then after removing edges

b

1

and b

2

from G

i

we end up with two components such that vertices x and z are in one

and y; v and w are in the other. This implies that G

2

has to be connected .

If jfx; z; wgj = 2, then again either G

1

or G

2

is as desired. Finally, if x = w = z,

then there is a desired edge d

2

= fx; qg (q 6= y; v) and thus there is a bad edge b

4

= fq; tg.

So we can either swap b

4

and b

1

with d

2

and ft; yg or b

4

and b

2

with d

2

and ft; vg. The

result of the swap will be connected, as is easy to see.

Lemma 2.5.3 Let G

i

be a two-edge connected graph and G

f

be a target graph. Consider

a decomposition D of E(

~

G

i;f

) into alternating cycles, and suppose D includes two vertex

disjoint alternating simple cycles, say C

1

and C

2

. There exists a swap operation

transforming G

i

into G

j

such that G

j

is connected and jE(G

j

)nE(G

f

)j � jE(G

i

)nE(G

f

)j

and if equality holds, E(

~

G

j;f

) can be decomposed into jDj � 1 alternating cycles.

Proof. Let b

1

= fx; yg be a bad edge on C

1

and b

2

= fz; wg be a bad edge on C

2

. Let

G

1

be the graph obtained from G

i

after swapping edges b

1

and b

2

with edges fx; zg and

fy; wg and let G

2

be de�ned similarly but this time swapping is done with edges fx;wg

and fy; zg.

Since G

i

is two-edge connected, after deleting b

1

and b

2

, we can get at most two

components. Thus either G

1

or G

2

is connected, say G

1

is. Obviously G

1

does not
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have more bad edges than G

i

. Let

C

3

= fC

1

nfx; ygg+ fx; zg+ fC

2

nfy; zgg+ fy; wg:

C

3

is alternating precisely when fx; zg and fy; wg are bad. But then D � C

1

� C

2

+ C

3

is a decomposition of

~

G

j;f

with one fewer element than D.

Given a colored graph related with G

i

and G

f

, we de�ne a double swap as follows.

Let b

1

,b

2

,b

3

2 B(G

i

; G

f

) and d

1

2 D(G

i

; G

f

), such that b

1

= fa; bg; d

1

= fb; cg; b

2

= fc; dg

and b

3

= fy; zg and all vertices are distinct. First swap edges b

1

and b

3

with fa; yg and

fb; zg, then swap edges fb; zg and b

2

with d

1

and fz; dg.

Lemma 2.5.4 Let G

i

be a two-edge connected graph, G

f

be a connected target graph and

suppose that the bad and desired edges of

~

G

i;f

form a single alternating simple cycle C .

If there are no improving swap operations, then there exists an improving double swap.

Proof. First, by induction on k, we will show that for any k � 1, the removal of any k

consecutive bad edges b

1

; : : : ; b

k

of C from G

i

creates a graph with k components.

For k = 1 the statement follows since G

i

is two-edge connected. Let k > 1 be such that

the statement holds for k� 1 and suppose that the removal b

k

does not further decompose

G

i

, i.e. G

i

contains a path between both ends of b

k

that does not contain any of the

edges b

i

, i � k. In particular, this path does not contain b

k�1

. This fact together with the

two-edge connectedness of G

i

implies that removing b

k�1

and b

k

does not disconnect G

i

and hence the swap of b

k�1

and b

k

with the desired edge between b

k�1

and b

k

on C (and a

second edge joining the remaining ends of the deleted edges) preserves connectedness and

is improving, a contradiction.

Choose a �xed orientation of C and orient its edges accordingly.

Next, by induction on k, we will show that if there are no improving double swaps, then

for any k � 1, the removal of any consecutive bad edges b

1

; : : : b

k

of C from G

i

creates a

graph with k components R

0

; : : : ; R

k�1

, such that

(a) For j � 1, R

j

contains the head of b

j

and the tail of b

j+1

.
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(b) Component R

0

contains the head of b

k

, and the tail of b

1

.

The statement is clear for k = 1 since G

i

is two-edge connected, so assume it holds

for k � 1. Label vertices of C consecutively 1; 2; : : : so that d

j

= f2j � 1; 2jg and b

j

=

f2j; 2j+1g and observe that d

i

2 R

i�1

for i = 2; : : : ; k. We know that if we further remove

the k+1'st consecutive bad edge, one of the components R

0

; : : : ; R

k�1

will be divided into

two, let this component be R

�

.

If � � 2, then the component structure would be inconsistent with the induction

assumption (for k � 1, if we put b

1

back). So � 2 f0; 1g.

If � = 1 , then after deleting b

k+1

, R

1

will be divided into two components K

1

and

K

2

and let 2k + 2 2 K

1

; 2k + 3 2 K

2

. Then, to be consistent with the component

structure when edges b

2

; : : : ; b

k+1

are deleted, 4 2 K

2

and therefore 3 2 K

1

. But in this

case the double swap with: a = 2; b = 3; c = 4; d = 5; z = 2k + 3; y = 2k + 2 is

feasible, therefore, � = 0. Let K

3

and K

4

be the components R

0

gets divided into, after

further deleting b

k+1

and let 2k + 2 2 K

3

and 2k + 3 2 K

4

. To be consistent with the

component structure when edges b

2

; : : : ; b

k+1

are deleted, 2k + 1 2 K

3

and thus 2 2 K

4

,

which completes the induction.

To complete the proof, it is su�cient to observe that if there are no improving double

swap operations, then G

i

should have the above structure, which implies that G

f

is

disconnected, a contradiction.

Theorem 2.5.5 If two connected graphs G

i

= (V;E

i

) and G

f

= (V;E

f

) have the same

labeled degree sequence then there exists a sequence of connected intermediate graphs trans-

forming one of them to the other.

Proof. Suppose we decompose G

i

into its two-edge connected components, which we call

clusters. As is well known, if we contract every cluster we obtain a tree. In the proof

we will make use of this property and when considering

~

G

i;f

, we will keep the cluster

structure of G

i

in mind. Any edge whose removal will disconnect the graph G

i

will be

called a tree edge. The proof has three main steps.
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Step 1 :

For any cluster K of G

i

, if there is a bad edge fa; bg with a; b 2 V (K) and a desired edge

d

1

= fx; zg with z 2 V (K) and x 2 V n V (K), then we will show that it is always possible

to make improving swap operations. Let b

1

= fq; xg be a bad edge incident with x. We

have the following two cases:

Case 1) : Vertex z has a bad edge b

0

= fz; yg incident with it such that y 2 K.

If q 6= y, then swapping b

0

and b

1

with d

1

and fq; yg decreases the number of bad edges

while preserving connectivity. Therefore, q = y, and there is a desired edge d

2

= fy; wg

incident with y and a bad edge b

2

= fw; vg incident with w. The related vertices are shown

in Figure 2.3.

h

x

h

q = y

h

z

h

w

h

v

p p p p p p p p p p p p p p

d

1

�

�

�

�

�

b

1

A

A

A

A

A

b

0

p p p p p p p p p p p p p p p p p p p p p p p

d

2

b

2

Figure 2.3: Theorem 2.5.5, Case 1, q = y

If edge b

2

lies in the same cluster as z (i.e. w; v 2 V (K)), then swapping b

1

and b

2

with

d

2

and fx; vg preserves connectivity and is improving.

Therefore, b

2

does not lie in the same cluster as z, and notice that q and z will still be

connected after deletion of b

0

, b

1

and b

2

, since both of the vertices are in the same cluster

and neither b

1

nor b

2

lie in this cluster.

Therefore, if z 6= v we can swap b

0

and b

2

with d

2

and fz; vg, or else we can swap b

1

and b

2

with d

1

and d

2

. In both cases, the swap operation is improving and it preserves

connectivity.

Case 2) : Vertex z does not have a bad edge b

0

= fz; yg such that y 2 K, then the graph

has the form shown in Figure 2.4, where vertices z; a; b 2 V (K) and x; y =2 V (K), so z; a; b

will still be connected after removal of b

0

,b

1

and b

2

. Also notice that vertices a; b; z; x and
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y have to be distinct.

h

y

h

q

h

z

h

x

h

a

h

b

b

2

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

d

1

b

1

D

D

D

D

D

D

b

0

Figure 2.4: Theorem 2.5.5, Case 2

If q = a, then we can swap edges b

1

and b

2

with d

1

and fy; qg. If q 6= a, then we can

�rst swap b

1

and b

0

with fq; ag and fx; bg and then swap fx; bg and b

2

with d

1

and fb; yg.

Both operations preserve connectivity and after the second one, at least one more desired

edge is placed.

Step 2 :

After performing Step 1 iteratively, we end up with a graph G

j

with the property that

if a cluster K of G

j

contains a bad edge, then there is no desired edge fu; vg in

~

G

j;f

which satis�es u 2 V (K) and v =2 V (K). For the clusters containing bad edges, we can

apply Lemmas 2.5.2 - 2.5.4 and replace their bad edges with desired ones until the cluster

structure of G

j

changes. If this change takes place, we go back to Step 1 and iterate.

Step 3 :

We can thus make improvements until no bad edges lie within a cluster. Consequently, the

only bad edges are the tree edges lying between clusters. If there are any desired edges

within a cluster, then G

f

is disconnected, since it is obtained by replacing all bad edges

with the desired ones (say, we remove k tree edges, yielding k + 1 components and adding

fewer than k tree edges). So all of the desired edges also join vertices of di�erent clusters.

Consequently the cluster structure of the current graph, say, G

k

is the same as that of

the target graph G

f

(i.e. same clusters, same edges within each given cluster, but di�erent

tree edges).

From G

k

we can obtain a spanning tree as follows: For each cluster K

i

take just
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enough edges to form a spanning tree T

i

of the vertices in that cluster. Notice that there

can be no bad edges among the chosen ones since all of the edges inside clusters are in the

edge set of the target graph G

f

. Let

T

1

=

[

8i

T

i

+Tree edges of G

k

T

2

=

[

8i

T

i

+Tree edges of G

f

.

Both T

1

and T

2

have to be connected since we have chosen enough edges to keep clusters

connected and we are taking all of the intra-clusteral edges. Also, notice that the vertices

of T

1

and T

2

should have the same labeled degree sequence (since E(G

k

)4E(G

f

) is made

up of tree edges).

Therefore, we can use the previous theorem and claim that there exists a sequence of

swap operations preserving connectivity to take us from T

1

to T

2

. Using exactly the same

swaps we can modify G

k

and get G

f

, as desired.

In summary, we can always construct a swap sequence of length O(jB(G

i

; G

f

)j), such

that each intermediate graph is also connected.

2.6 Concluding Remarks

A natural extension of this study would be to consider directed graphs where a swap

operation is de�ned as follows: For any two directed edges a

1

= (x; y) and a

2

= (w; z) of

the graph, replace a

1

and a

2

with edges (x; z) and (w; y). With minor modi�cations, and if

we allow loops, it is possible to show that the results in Sections 2.3 and 2.4 can be extended

to directed graphs. If we translate connectivity into strong connectivity for directed graphs,

it is easy to show that we can not always preserve it during the recon�guration process.

For example, there is no swap sequence (preserving strong connectivity) that reverses the

orientation of a directed cycle.

Another possible extension is to consider some other structural properties of the graph

(e.g. diameter, edge or vertex connectivity of higher orders).
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Chapter 3

Computational Experience with a Di�cult Mixed-Integer

Multicommodity Flow Problem

3.1 Introduction

3.1.1 Problem De�nition

Consider the following optimization problem: Given an n � n matrix T (whose i; j entry

is indicated by t

ij

), and an integer p > 0,

1. construct a simple directed graph D with node set 1; � � � ; n where each node has

indegree and outdegree equal to a �xed number p, and

2. in D, simultaneously route t

ij

units of 
ow from i to j, for all 1 � i 6= j � n,

so as to minimize the maximum aggregate 
ow on any edge of D.

In this chapter we �rst describe valid inequalities for a mixed-integer programming

formulation of this problem and then present results of our computational experience with

a cutting plane algorithm.

This problem is brie
y motivated as follows. An important problem in communication

networks is to route existing tra�c requests so as to keep congestion levels as low as

possible. One way to approach this problem is to route so that the maximum total 
ow

on any edge is as small as possible. This leads to the mathematical problem known as the

maximum concurrent 
ow problem, which has received extensive attention (see [29], [11],
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[19], and [20] for some computational experiments).

In the operation of lightwave networks it is possible to alter the network topology, within

certain limitations. This feature can be used to handle changing tra�c patterns. We refer

the reader to [17], but in essence the situation is as follows. Each node in the network is

equipped with a small number of tunable transmitters and receivers. If a certain node,

u, tunes a transmitter to the same frequency that another node v has tuned a receiver,

then 
ow can be sent directly from u to v. It is assumed that no frequency can be shared

by more than two nodes at a time. Consequently, the set of ordered node pairs (u; v)

corresponding to the frequencies in use yields a directed graph (the logical network ) which

can then be used to route tra�c requests. It is further assumed that tra�c can be routed

in a divergent manner, i.e. if a certain request speci�es that a given amount of tra�c is to

be sent from a node u to a node v, then it is permitted to use several simultaneous paths,

each carrying some fraction of the total desired amount.

In this framework, the ideal way to deal with the congestion problem seemingly would be

to view demands as constantly changing, and to change network structure in \ real time " to

adapt to new conditions. However, in practice one would not wish to frequently rearrange

the existing network, since it would be very disruptive and expensive to continuously

reroute existing tra�c. In fact, the network should probably not be rearranged more

frequently than once every few hours.

In this manner one arrives at the abstract problem described above.

[Remarks: (1)As indicated, the graph D is assumed to be simple (i.e., no parallel edges).

If parallel edges are allowed the problem is similar and the cutting planes we will describe

later remain valid, but we will not consider this generalization here. (2) In a more general

version of the problem, for each node we have speci�ed upper and lower bounds on the

indegree and outdegree. This appears to be a much more di�cult problem.]

We note here that, given a �xed network D, the task of routing the commodities to

minimize the maximum load is in fact a linear program (this is the unit-capacity maximum

concurrent 
ow problem) and can therefore be e�ciently solved. Our problem involves
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routing and also choosing the network, and is substantially more di�cult (it is NP-hard

even for p=1). In practice, one would wish to have a relatively fast heuristic that generates

good solutions. We have observed that even small instances can be extremely intractable

(see below), so that several hours of running time on a powerful computer may in fact be

necessary to get good solutions for a large instance.

A heuristic approach for this problem is given in [17]. The heuristics generate both

solutions and lower bounds (for the min-max load) and are fast. However, as reported in

[17] the bounds produced by these heuristics when applied to some small instances (with

fully dense demand matrices) were usually rather far apart, with typical gaps between

lower and upper bounds of the order of 20% to 30%.

In this chapter, we report on computational experiments with a cutting plane algorithm

for a mixed-integer programming formulation of the problem, which is used to obtain good

lower bounds. Our experiments are all for the case p = 2, motivated by the study in [17].

The cutting plane algorithm yields good lower bounds and also an extended formulation

that appears e�ective as a starting point for branch-and-bound.

There are some noteworthy features about the problem:

(i) The mixed-integer program is extremely di�cult, with very large gaps between the

continuous relaxations and the integral optima,

(ii) The linear programs to be solved appear to be quite hard, and

(iii) In a practical setting, the time available for computation would be limited, of the

order of a few hours, say.

Our computational experience is encouraging: the gaps in the \benchmark" problems in

[16] were substantially reduced in most cases (and never worsened), within a few minutes

of computation. We also report on similar results for much larger, less than fully dense,

randomly generated problems.
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3.1.2 Mixed-Integer Programming Formulation

We will work with the following mixed-integer programming formulation of the problem

(notation as in 3.1.1). For each ordered pair of nodes i, j there is a f0; 1g-variable x

ij

, set

to 1 if the edge (i; j) is put in the network, and set to 0 otherwise. For each commodity

k and ordered pair i, j, there is a continuous variable f

kij

, that measures the quantity of


ow of commodity k on the edge (i; j) (more below on what constitutes a commodity).

For a commodity k and a node i, we denote by s

k

i

the net demand of commodity k at i.

Throughout this chapter we assume that there is positive demand for every commodity,

that is,

P

i 6=k

s

k

i

> 0 for all k. The overall formulation is:

min z

s.t.

X

j 6=i

x

ij

= p; for all i (3.1)

X

j 6=i

x

ji

= p; for all i (3.2)

f

kij

� M

k

ij

x

ij

for all k, i 6= j (3.3)

X

j 6=i

f

kji

�

X

j 6=i

f

kij

= s

k

i

for all i, k (3.4)

X

k

f

kij

� z for all i 6= j (3.5)

0 � f

kij

; x

ij

2 f0; 1g; all k; all i 6= j

Equations (3.1) and (3.2) are degree constraints. Equation (3.3) indicates that we can route


ow on edge (i; j) only if the edge is there (M

k

ij

is an appropriately large quantity|more

on this later). Equation (3.4) is a 
ow conservation equation, and equation (3.5) measures

the load on edge (i; j).

We will denote this mixed-integer program by ICONG(p). Except for variable z, the
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constraints involving it and the objective function, this can be regarded as a (multicommod-

ity) uncapacitated �xed charge network 
ow problem, see [24]. There are two important

points concerning the formulation that we would like to bring up here.

(a) We may choose commodities to be either disaggregate (i.e. every nonzero entry in

the demand matrix yields a distinct commodity|in other words, commodities cor-

respond to source{destination pairs) or aggregate. For example, we may view all

demands with the same source as constituting a commodity ([28] uses the termi-

nology \multicommodity" to refer to the disaggregate version, but here we will not

because the overall problem is already multicommodity). The\ �ne grain " disaggre-

gate formulation for general (uncapacitated) �xed-charge network 
ow problems is

stronger, and it may also be possible to use stronger valid inequalities than for the

aggregate version. On the other hand, and in particular in the case of ICONG(p)

the linear programs arising in the disaggregate version will be extremely large and

computationally expensive. A system of inequalities, called \dicut collection inequal-

ities", that yields the projection of the disaggregated formulation on the space of

the aggregated formulation has been found [28]. But solving the separation problem

for these inequalities appears to be rather time consuming. In Table 3.1 we pro-

vide information concerning the aggregated and disaggregated formulations for three

problem instances of ICONG(2) considered in [17]. For each problem, we list data

for four formulations: (1) aggregated, (2) disaggregated, (3) aggregated with some

cuts added, and (4) disaggregated with the same cuts as in (3) added.

problem: quasiunif1

formulation value time quality (%)

agg 9.92 4.47 16.04

disagg 15.82 286.78 25.58

agg+cuts 57.78 16.82 93.45

disagg+cuts 57.96 216.30 93.74
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problem: quasiunif2

formulation value time quality (%)

agg 11.72 4.98 17.89

disagg 17.31 268.25 26.42

agg+cuts 59.64 14.67 91.05

disagg+cuts 60.22 188.50 91.94

problem: ring

formulation value time quality (%)

agg 33.81 6.15 27.27

disagg 38.19 297.83 30.80

agg+cuts 105.43 21.13 85.02

disagg+cuts 115.98 286.15 93.53

Table 3.1: Comparing the aggregated and disaggregated formulations.

The column labeled \quality" lists the ratio of the LP value to the best upper bound

known for the problem (which are, respectively, within 5.5% of optimality for problem

quasiunif1, within 3% of optimality for problem quasiunif2, and optimal for problem

ring). Times are in seconds on a Sun Sparc2, using CPLEX 2.0 with primal steepest

edge pivoting (consistently the best choice). The results above are typical. As ex-

pected, the disaggregated formulation is stronger than the aggregated one, but not

spectacularly so (even with cuts added). In particular, the disaggregated formulation,

by itself, does not cut the gap to the optimum to a few percent (in contrast to the

more standard instances of FCNF as reported in [28] and [2]). On the other hand,

the disaggregated formulation is substantially more expensive computationally: here

we note that the three problems listed above have n = 8 (so the aggregated for-

mulation has 449 columns and the disaggregated one, 1233, both after eliminating
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redundant columns). These results are typical. We would expect the disaggregated

formulation to be prohibitively expensive for larger problems, and yet not a substan-

tial improvement on the aggregated formulation. Consequently, we focused our work

on the aggregated formulation, and all results reported below are for it.

(b) The choice of the constants M

k

ij

in the variable upper-bound inequalities (3.3) above

is important|in our experiments the quality of the formulation was highly dependent

on keeping these numbers as small as possible. The following is a possible choice. For

a given node (i.e. commodity) k, and edge (i; j) we set M

k

ij

=

P

v 6=k

t(k; v). Below

we will discuss how to strengthen this bound. We also note that variable upper-

bound inequalities make a linear program degenerate and so we might expect the

LP-relaxation of ICONG(2) to be a di�cult linear program, and it is, but not just

for this reason. At �rst glance, replacing all the inequalities (3.3) corresponding to a

single edge (i; j) with one inequality of the form

P

k

f

kij

� Ux

ij

might appear to be a

good strategy. But in our experiments, particularly with larger problems, this made

the formulation signi�cantly weaker. On the other hand, the number of inequalities

(3.3) is very large and typically a small number of them are active. We used these

inequalities as cutting planes.

3.1.3 How Di�cult Is ICONG(2)?

Even though the gap between the LP relaxation of ICONG(2) and the optimum tends to

be very large, it is conceivable that the problem could be solvable using branch-and-bound

(possibly after adding some cutting planes) especially in the case of small instances. Early

in our research, we made available to several groups of leading researchers the eight-node

problem instance labeled quasunif2 in the table above (56 0-1 variables). [Remark: the

number of digraphs on eight nodes, with indegrees and outdegrees equal to 2, exceeds

10

9

]. In fact, we made two formulations available. The �rst one is the standard one as

given above, and its LP-relaxation value is 11:72. The second one contains a number of

additional valid inequalities, that raise the LP-relaxation value to 59:06. We will refer to



Chpt. 3 Computational ...... Multicommodity Flow Problem 38

these two formulations as the weak and the strong formulation, respectively. The best

lower and upper bound for this problem are 63:99 and 65:67, both obtained by Cook [8]

by running his branch-and-bound code on our extended formulation as described in later

sections.

Several experimental and commercially available codes were run on both instances.

When run on the weak formulation, none of the codes obtained a lower bound higher

than 30:00, and when run on the strong formulation, none of the codes improved the LP

lower bound, in both cases despite very substantial running times (several days, using large

machines) and branch-and-bound trees with hundreds of thousands of nodes.

On the positive side, all of the codes found integral solutions that (a posteriori) are

within 2 or 3% of the likely optimum. In particular, using a variation of the strong for-

mulation (using some of the inequalities given below) Wolsey [32] very rapidly found a

solution of cost 66:20: he did this by �xing the 0-1 variables set to 1 by the linear program

(6, out of 16 that will equal 1 in any feasible solution) and exhaustively running branch-

and-bound on that branch of the tree (the lower bound did not improve, however). The

�nal note in this story is that when the strong formulation was augmented to include many

more of our inequalities, several codes signi�cantly tightened the bounds and reduced the

computational overhead ([8], [6]).

It is therefore clear that formulation ICONG(2) must be strengthened. Further, branch-

and-bound may not be a practicable option when dealing with larger problems. This is due

to the fact that the linear programs are very di�cult. For example, in several instances

with n = 20, the solution of each linear program required on the order of 5 minutes when

the variable upper bounds were omitted, and this grew very quickly once cutting planes

were added to the formulation. As stated before, in the \real-life" setting only a few hours

may be available for dealing with a problem. So we would seek an algorithm that yields

good bounds while solving a limited number of linear programs.

As a simple example of why these problems are combinatorially di�cult, suppose that
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the demand matrix is given by:

t

ij

=

8

>

<

>

:

1; if j = i+ 1 and i < n or i = 1and j = n;

0; otherwise

(3:6)

where we assume n � 3. With p = 2, it can be shown that the value of the problem is

2=3 if and only if there exists a directed graph of indegrees and outdegrees 2 containing

the cycle 1 � 2 � 3 � � �n� 1 � n � 1 as well as a length-two path from i to i+ 1 for each i < n

and also from n to 1. If no such digraph exists, the value of the problem is at least 3=4.

Moreover, it can be shown that such a digraph exists only when n is odd. Further, if n is

odd the digraph is unique and there is a unique way of routing the commodities to achieve

value 2=3.

In summary,

� If n is odd, the value of the problem is 2=3 and there is a unique optimal solution. All

feasible solutions which are di�erent from the optimal in the integer variables have

value at least 3=4.

� If n is even, the value of the problem is at least 3=4.

This type of problem would be di�cult for any algorithm because the instances for n and for

n+1 are very similar. Moreover, for n odd, until we �nd the optimal solution we will be more

than 10% away from the optimum. While examples of this sort are admittedly contrived,

we can expect subtle combinatorial di�culties to arise from the pattern of demand values.

With regards to previous work on valid inequalities for uncapacitated �xed-charge net-

work 
ow problems, besides the dicut collection inequalities of Rardin and Wolsey [28]

mentioned above, which subsume the \basic network inequalities" of Van Roy and Wolsey

[31], very little appears to be known concerning polyhedral structure, especially facets, ex-

cept in special cases, such as the economic lot-sizing problem. Balakrishnan, Magnanti and

Wong [2] developed a computationally e�cient procedure for solving the LP-relaxation of

the disaggregated formulation for uncapacitated �xed-charge network 
ow problems with-
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out any side constraints. The disaggregated formulation for this problem turned out to be

very tight.

3.2 Valid Inequalities

In this section we describe some of the inequalities that have proved useful towards obtain-

ing good bounds. We are dealing with the aggregated formulation, so that a commodity

will be identi�ed with its source node. In what follows we will say that a digraph is of

degree 2 if the indegree and outdegree of every vertex is 2. For completeness, we state the

following result, which is implied by some of the results presented below.

Lemma 3.2.1 The dimension of ICONG(2) is n

2

(n� 1)� (2n� 1) + 1.

This lemma simply states that the dimension of ICONG(2) is precisely equal to the number

of variables minus the rank of the formulation, that is, there are no additional implied

equations. To see this, note that the expression above can be rewritten as n(n(n � 1) �

(n � 1)) + n(n � 1) � (2n � 1) + 1. The �rst term here is n times the dimension of a

one-commodity network 
ow polyhedron in a digraph with n(n� 1) edges. The next two

terms correspond to the x variables. Here note that the degree constraints in ICONG(2)

describe a transportation problem in a graph with 2n nodes and n(n � 1) edges. Lastly,

the variable z (which need not satisfy any inequality tightly) contributes one additional

unit of dimension.

3.2.1 A Basic Facet

For any commodity k and subset S of nodes write t

k

(S) =

P

i2S

t

ki

. The main result in

this Section is:

Theorem 3.2.2 Let k be a commodity and S � f1; � � � ; ng n k. Write T = f1; � � � ; ng n

(S [ k). Then inequality

X

i2T;j2S

f

kij

�

 

1�

X

i2S

x

ki

!

t

k

(S) (3.7)
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is a facet of ICONG(2) provided 2 � jSj � n� 3, t

k

(S) > 0 and t

k

(T ) > 0.

Validity of (3.7) is easy to see when

P

x � 1, and if

P

x = 0, then (3.7) is satis�ed

whenever the total 
ow of commodity k on the edges (i; j), i 2 S; j 2 T is su�cient to

satisfy the demand of S.

Before showing that (3.7) is a facet of ICONG(2), we �rst study a related but simpler

polyhedron and show that (3.7) is facet de�ning for this polyhedron. We denote by B

k

the

set of k-vectors all of whose coordinates are 0 or 1. A digraph is called strong if it contains

a directed path from each vertex to every other vertex. If x 2 B

n(n�1)

we let G[x] be the

digraph whose edge set has incidence vector x. For any subset K of commodities, let P

K

denote the convex hull of points satisfying the following constraints:

X

j 6=i

x

ij

= 2; for all i (3.8)

X

j 6=i

x

ji

= 2; for all i (3.9)

x

ij

= 1 if f

kij

> 0 for all k 2 K and i 6= j (3.10)

X

j 6=i

f

kji

�

X

j 6=i

f

kij

= t

ki

for all i and k 2 K (3.11)

G[x] strong (3.12)

0 � f

kij

; all k 2 K and i 6= j; x

ij

2 f0; 1g; all i 6= j

In essence this is the formulation for ICONG(2) restricted to commodities in K, without

the variable z, and with the added restriction that the digraph we use must be strong. We

abbreviate P

fkg

as P

k

and points in P

k

will be given as pairs(x; f

k

). In what follows we

assume that commodity k and set S satisfy the conditions of Theorem (3.2.2).



Chpt. 3 Computational ...... Multicommodity Flow Problem 42

Lemma 3.2.3 Inequality (3.7) de�nes a facet of P

k

if the conditions in Theorem (3.2.2)

hold. Moreover, dimP

k

= 2n(n� 1)� (n� 1)� (2n� 1)

Proof. By construction we will show that the related face F = f(x; f) 2 P

k

: (x; f

k

) satisfy

(3.7) with equality g is not empty and then by contradiction, we will show that it is a facet.

To simplify notation, assume k = n, S = f1; : : : ; sg and T = fs+1; : : : ; n� 1g. Let C

S

and C

T

be the directed cycles n � 1 � 2 � � � s � n and n � s+ 1 � s+ 2 � � �n� 1 � n respectively.

Furthermore let

�

C

S

and

�

C

T

be s � s� 1 � � � 1 � s and n� 1 �n� 2 � � � s+1 �n� 1 respectively.

We de�ne G

0

to be the graph consisting of C

S

, C

T

,

�

C

S

and

�

C

T

. If we denote the incidence

vector of E(G

0

) by x

0

, then clearly x

0

satis�es (3.8), (3.9) and (3.12).

In G

0

, we �rst route the demands using the edges in C

S

and C

T

, and then increase the


ows on all edges in E(G

0

) by a small amount � > 0. If we call the resulting 
ow vector

f

0

, it is clear that p

0

= (x

0

; f

0

) 2 F and f

0

nij

> 0 whenever x

ij

= 1.

Assume that F is not a facet of P

k

(or dimP

k

< 2n(n� 1)� (n� 1)� (2n� 1)), then

there is an equation of the form

�x+ �f = � (3:13)

satis�ed by all points p = (x; f) 2 F , where � and � are vectors of appropriate dimension

and � is a real number.

Let T be the directed tree with edge set A = C

S

[C

T

n f(s; n); (n� 1; n)g. If necessary

by subtracting a linear combination of the 
ow-balance equalities (3.11) from (3.13) we

can assume that �

a

= 0 for all a 2 A. Notice that we can perturb p

0

by sending circulation


ows along the cycles C

S

, C

T

,

�

C

S

or

�

C

T

and obtain new points on. Therefore, �

sn

=

�

(n�1)n

= �

s1

= �

(n�1)(s�1)

= 0. Furthermore, for all (i; j) 2 E(G

0

), if (j; i) 2 E(G

0

) then

we can increase 
ows on (i; j) and (j; i) simultaneously to obtain new points, implying

�

a

= 0 for all a 2 E(G

0

).

Next, for all (i; j) =2 E(G

0

), i 6= n, if (j; i) =2 E(G

0

) then we de�ne the cycle C

ij

to be

the directed cycle that spans the nodes in S [ T n fi; jg in decreasing order and use G

ij

to denote the digraph consisting of the cycles C

S

; C

T

; C

ij

and edges (i; j) and (j; i). If we



Chpt. 3 Computational ...... Multicommodity Flow Problem 43

denote the related incidence vector by x

ij

, then clearly p

ij

= (x

ij

; f

0

) 2 F .

For all i 2 S, j 2 S [ T , j > i, if (i; j); (j; i) =2 E(G

0

), then we can perturbate p

ij

by

sending circulation 
ows along the cycle n � 1 � 2 � � � i � 1 � i � j � j + 1 � � �n to obtain a new

point in F . We can also send circulation 
ows on the two cycle i � j � i. Since the resulting

points are on the face, �

ij

= 0 for all i 2 S, j 2 S [ T . Similarly, we can extend this idea

to include i = n and j 2 S [ T and show that �

ij

= 0 for all i 6= j unless i 2 T and j 2 S.

Let C

n

be the directed cycle n�1�2 � � �n�1�n and

�

C

n

be the cycle obtained by reversing

the orientation of C

n

. If necessary by subtracting a linear combination of the degree

equalities (3.9) and (3.8) from (3.13) we can assume that �

a

= 0 for all a 2 C

n

[

�

C

n

n(n; 1).

Using C

n

and

�

C

n

, we can construct a point on F such that all 
ow uses C

n

edges, implying

�

n;1

= �.

Let C

1;s+1

be the directed cycle 1 � 2 � � � s � s + 1 � 1. For any i > j, we next construct

E

ij

such that E

ij

contains C

T

and C

1;s+1

. Furthermore, E

ij

contains (i; j), if (i; j) =2

C

T

[ C

1;s+1

. Let C

i;j

be the simple cycle formed by (i; j) and some of the edges in

C

T

[ C

1;s+1

, and let

�

C

i;j

be the cycle obtained by reversing the orientation of C

i;j

. It is

easy to see that using E

ij

and E

ij

n C

i;j

[

�

C

i;j

, we can construct points on F and thus

show that �

ij

= �

ji

unless j 2 S and i = n.

Next, by means of swap operations, we will show that �

ij

= 0 unless j 2 S and i = n.

Note that for any four distinct vertices u, v, j, k 2 S [ T , we can construct a point

p

uvjk

= (�x;

�

f ) on F such that �x

uv

= �x

jk

= 1, �x

uk

= �x

jv

= 0 and

�

f

nuv

=

�

f

njk

= 0. Fix two

vertices u; v 2 T and for any i 2 S [ T n fu; vg let a

i

= �

ui

, b

i

= �

iv

, a

u

= b

v

= 0 and

�

uv

= a

v

= b

u

= �. Notice that we can perturbate p

uvjk

without changing the 
ow vector

by swapping edges fuvg and fjkg with fukg and fjvg implying that �

jk

= a

k

+ b

j

��.

Similarly, we can construct p

uvkj

and swap fuvg and fkjg with fujg and fkvg to show

that �

kj

= a

j

+ b

k

��. If we let c

i

= (a

i

+ b

i

)=2, then using �

kj

= �

jk

, we conclude that

�

kj

= c

j

+ c

k

��. Next, using �

i(i+1)

= �

(i+1)(i+2)

= 0 we conclude that c

i

= c

i+2

. This

means that if we �x u < n� 1 and choose v to be u+1, then c

u

= c

u+1

= � = 0 implying

�

jk

= 0 for all j; k 2 S [ T .
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To show that �

nj

= � for all j 2 S, we construct points of the form p

0

such that instead

of C

S

we use cycles that span S using a di�erent order. Similarly, we can show that �

nj

= 0

for all j 2 T . Lastly, for all i 2 T , j 2 S, we construct a solution �p

ij

= (�x

ij

;

�

f

ij

) with the

following property. The edge set related with �x

ij

is such that it contains

�

C

S

,

�

C

T

and a cycle

that, starting from node n, spans all nodes in S�i then spans nodes i and j and then spans

all nodes in T�j. Clearly, for these points

P

v2S

�x

ij

nv

= 0 and

P

u2T;v2S

�

f

ij

nuv

=

�

f

ij

nij

= t(S),

implying �

ij

= �=t(S). Therefore, we conclude that (3.13) is a linear combination of (3.7),


ow-balance equalities (3.11) and degree constraints (3.8) and (3.9).

Using Lemma 3.2.3 we next prove two more lemmas and show that (3.7) de�nes a facet

of P

fk;hg

for any h 6= k.

Lemma 3.2.4 Let h 6= k be a commodity. There exist a�nely independent points (x

i

; f

i

k

) 2

P

k

, 1 � i � d (for some d) satisfying (3.7) with equality, such that:

(1) For 1 � i � d, G[x

i

] is strong and of degree 2,

(2) For 1 � i � d, G[x

i

] contains an arborescence A

i

rooted at h, such that for every

edge e =2 A

1

there exists 1 � i � d with e 2 G[x

i

] nA

i

but e =2 G[x

j

] for each j < i.

(3) For 2 � i, G[x

i

] contains an edge not in [

j<i

G[x

j

].

Proof. To simplify notation, assume k = n, h 6= n�1, S = f1; : : : ; sg and T = fs+1; : : : ; n�

1g. Let H be the digraph consisting of the cycle 1 � 2 : : : s � n � n� 2 � n� 3 : : : s+ 1 � 1 and

the edge (n; n� 1). We have

(a) If G � H is a strong digraph of degree 2 then there is a point (x; f) 2 P

n

satisfying

(3.7) with equality, such that G = G[x],

(b) For every edge e = (u; v) =2 H with u 6= n, there is a strong digraph G of degree 2

including H [ e.

To see that (a) holds, notice that in the arborescence H n (s; n) all vertices of T are

reached from n before the vertices of S, and that if G is as in (a) and G = G[x] (for some
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f0; 1g�vector x) then

P

i2S

x

ni

= 0. To see that (b) holds, notice that if we add to H the

edge (n� 1; n) and the cycle C = s � s� 1 � � � 2 � 1 � n� 1 � s+1 � � �n� 3 � n� 2 � s we obtain

a strong digraph of degree 2. So if e is in this digraph we are done. If not, then it is easy

to see how to break up the cycle C to conclude that (b) holds. Let A be the arborescence

obtained by removing from H the edge entering h. We can construct points (x

i

; f

i

k

) 2 P

k

,

such that conditions (1) and (3) hold, and condition (2) holds for each edge e whose tail

is not n (using A

i

= A). It is easy to see that the same can be done for each edge of the

form (n; t). The fact that the points (x

i

; f

i

k

) are a�nely independent follows from (2). This

concludes the proof of the Lemma.

Lemma 3.2.5 For any h 6= k inequality (3.7) de�nes a facet of P

fk;hg

.

Proof. Let F be the face of P

fk;hg

induced by (3.7). To prove this lemma, we will construct

dimP

k

+ n(n � 1) � (n � 1) a�nely independent points in F (thereby also showing that

dimP

fk;hg

= dimP

k

+n(n�1)� (n�1). The result will follow from this because the right-

hand side in this expression is certainly an upper bound on dimP

fk;hg

). For convenience,

denote U = dimP

fk;hg

= dimP

k

+ n(n� 1)� (n� 1).

For 1 � j � U the jth point we will construct will be denoted by v

j

. Let d be the

quantity produced by Lemma 3.2.4. The points we construct will be of two types:

� Type 1. For 1 � i � d, let (x

i

; f

i

k

) 2 P

k

, be the points produced by Lemma 3.2.4. For

1 � i � d, let C(i) = G[x

i

] n (A

i

[

j<i

G[x

j

]), and c(i) = jC(i)j, and write G[x

i

] = G

i

.

For each 1 � i � d, we will construct a set F (i) of 1 + c(i) points in F , each of them

having projection (x

i

; f

i

k

) in the (x; f

k

) space. By construction, this will yield

i=d

X

i=1

(1 + c(i)) = d+

i=d

X

i=1

c(i) = d+ n(n� 1)� (n� 1) (3.14)

= U � (dimP

k

� d) (3.15)

points.
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� Type 2. If d < dimP

k

, for each j with U � (dimP

k

� d) � j � U we construct an

additional point v

j

with the following property. If w

j

is the projection of v

j

in the

(x; f

k

) space, then we require that the family of points

f(x

i

; f

i

k

) : 1 � i � dg [ fw

j

: U � (dimP

k

� d) � j � Ug (3.16)

be a�nely independent.

First we handle the Type 1 points. Choose a �xed i, 1 � i � d. For simplicity, when

describing the points in F (i) we will only give their f

h

coordinates. Let g

i

be a circulation


ow (in the space of commodity h), such that for any edge e 2 G

i

, g

k

e

>

P

j

t

hj

. Then:

� We obtain one point of the form g

i

+ a

i

, where a

i

is the 
ow vector obtained by

routing commodity h on A

i

(this will be called the �rst point in F(i))

� For each e 2 C(i) we obtain an additional point of the form g

i

+ a

i

+ �

i

e

, by pushing

a small amount of 
ow along the cycle obtained by adding e to A

i

.

Proceeding in this manner we produce 1 + c(i) points as desired.

Next, we construct the Type 2 points. By Lemma 3.2.3 it is clear that we can �nd

points w

j

2 P

k

satisfying (3.7) with equality so that the a�ne independence condition in

the de�nition of Type 2 points is satis�ed. By de�nition of P

k

, the digraph corresponding

to each of these points is strong, and so we can route commodity h arbitrarily, yielding

points v

j

2 F as desired.

We claim that the points v

j

, 1 � j � U are a�nely independent. For suppose that

for some coe�cients �,

P

j

�

j

v

j

= 0. By construction of the Type 2 points, we conclude

�

j

= 0 for j > d. So we just have to show that the vectors in [

i�d

F (i) are a�nely

independent. For 1 � i � d, subtract the �rst vector in F (i) from the other vectors in

F (i), obtaining a family F

0

(i). By construction, the last c(i) vectors in F

0

(i) will have

projection (0; 0) in the (x; f

k

) space, but for each e 2 C(i) precisely one of these vectors

will have a positive coordinate on edge e. Recall that for any such e we have e =2 G

j

for
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every j < i (property (2) of Lemma 3.2.4). So if there is a nontrivial linear combination

of the vectors in [

i�d

F

0

(i) that adds to zero, then only the �rst vector from each F (i) can

have a nonzero coe�cient. But these are a�nely independent because their projections in

the (x; f

k

) space are, again by Lemma 3.2.4. This concludes the proof.

Proof (Theorem 3.2.2). By applying the same technique as in Lemma 3.2.5, one com-

modity at a time, we conclude that inequality (3.7) de�nes a facet of P

f1;���;ng

. That is, we

can construct a family T of

dimP

k

+ (n� 1)(n(n� 1)� n+ 1) = n(n+ 1)(n� 1)� n(n� 1)� (2n� 1)

a�nely independent points in P

f1;���;ng

, each satisfying (3.7) with equality. Each of the

points of T yields a point in ICONG(2) by setting z = max

ij

P

k

f

kij

. Consequently, (3.7)

de�nes a facet of ICONG(2) if we can �nd one additional (a�nely independent) point.

This is easy: we simply take one of the points in T and set the z�coordinate larger than

max

ij

P

k

f

kij

. This concludes the proof of Theorem 3.2.2, modulo the proof of Lemma

3.2.3.

Notes:

(1) In the proof of Lemma 3.2.5 as given above, we need to allow positive 
ows of com-

modity h on edges entering h. On the other hand, when solving problem ICONG(2)

we can set all variables of the form f

hih

to 0. The proof of Theorem 3.2.2 can be

adapted to take this into account.

(2) Given a facet of P

k

, under what conditions is it also a facet of ICONG(2)? Of course

one expects that this is always the case. It can be shown that if in the de�nitions of

all the polyhedra above, the degree equations

P

j

x

ij

=

P

j

x

ji

= 2 are replaced with

inequalities (� 2) the corresponding result holds.
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One possible variant of inequality (3.7) is the following. Let k, S and T be as above,

and let U � S. Then

X

i2T;j2S

f

kij

+ t

k

(S)

X

i2SnU

x

ki

+

X

i2U

f

kki

� t

k

(S) (3.17)

is valid. However, computationally it has usually been the case that the variable upper-

bound inequalities are tight for a given commodity k and edges (k; i). As a consequence,

f

kki

tends to be close to (t

k

(S) + t

k

(T ))x

ki

with the result that (3.7) dominates (3.17).

It is di�cult to separate over inequalities (3.7) (or in general, over dicut collection in-

equalities, of which (3.7) is a special case). Moreover, we remind the reader of the result in

[28], that using all dicut collection inequalities yields the projection of the disaggregated

formulation. Further, as we saw in the previous section, this formulation cannot be ex-

pected to be substantially stronger. On the positive side, it can be shown that (under fairly

general conditions) (3.7) remains facet-de�ning even after �xing some of the x

ij

variables.

To close this section, we point out the following (perhaps curious) result.

Proposition 3.2.6 Let P = convfx 2 B

n(n�1)

: G[x] of degree 2g and Q = convfx 2

B

n(n�1)

: G[x] is strong and of degree 2 g. For n � 4, dimP = dimQ.

3.2.2 Source Inequalities

In this section we study three polyhedra related to variable upper-bound 
ow models (also

see [25] and [24], Sections II.2.4 and II.6.4 for similar models.)

For any �xed F > 0 and integer n > 2, let P

n

(2F ) be the convex hull of points

(x; f; z) 2 R

2n+1

(where x 2 R

n

; f 2 R

n

and z 2 R) satisfying:

n

X

i=1

f

i

= 2F (3.18)

n

X

i=1

x

i

= 2 (3.19)

x

i

= 1 if f

i

> 0 ; i 2 f1; � � � ; ng (3.20)
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f

i

� z ; i 2 f1; � � � ; ng (3.21)

0 � f

i

; i 2 f1; � � � ; ng (3.22)

x

i

2 f0; 1g ; i 2 f1; � � � ; ng (3.23)

In other words: we have a supply of 2F units of 
ow, that must be pushed through two

edges chosen from among n candidates. The largest of all 
ows is (a lower bound for) z.

In what follows e

i

2 R

n

will be the i'th unit vector, and e

ij

= e

i

+ e

j

. We have:

Lemma 3.2.7 The dimension of P

n

(2F ) is 2n� 1 for n > 2.

Proof. Consider the following 2n points in P

n

(2F ): (e

1i

; F e

1i

; F ) for 2 � i � n, (e

1i

; 2Fe

1

; 2F )

for 2 � i � n, (e

12

; 2Fe

2

; 2F ), and (e

23

; F e

23

; F ). The 2n � (2n + 1) matrix formed by

these vectors is

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 F F

.

.

. I

n�1

.

.

. FI

n�1

.

.

.

1 F F

1 2F 2F

.

.

. I

n�1

.

.

. 0

.

.

.

1 2F 2F

1 1 0 0 � � � 0 0 2F 0 0 � � � 0 2F

0 1 1 0 � � � 0 0 F F 0 � � � 0 F

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(3:24)

and it can be seen that the rows of this matrix are a�nely independent. (Actually, the

matrix has full row rank).

Because of equations (3.18) and (3.19), this result implies that the dimension of P

n

(2F )

is precisely equal to the number of variables minus the rank of the formulation.

In what follows, for any vector v and S � f1; � � � ; ng, v(S) =

P

i2S

v(i). Consider the

following inequalities:
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z � f(S) + Fx(S) � F; (3.25)

for all S � f1; � � � ; ng with 1 �j S j< n,

z � 2f(S) + 2Fx(S)� f

i

� 0; (3.26)

for all S � f1; � � � ; ng with 1 �j S j� n� 2 and i =2 S, and

f

i

� 2Fx

i

(3.27)

for all i 2 f1; � � � ; ng. Below we will show that these are facet de�ning. Inequalities (3.25)

and (3.26) strengthen the inequality z � F , which is valid because 2F units of 
ow must

be routed on 2 edges. Typically, the linear programming formulation (once we replace

(3.21) by an appropriate variable upper bound inequality) will \cheat" by spreading the

2F units of 
ow over more than 2 terms somewhat unevenly, while keeping z small. That is

to say, for some indices i we may have f

i

> Fx

i

. Inequalities (3.25) and (3.26) cut o� such

fractional points. It would be interesting to obtain these facets using the MIR procedure

([24]).

Lemma 3.2.8 Inequalities (3.25) - (3.27) de�ne facets of P

n

(2F ).

Proof. Consider inequality (3.25) for a given subset S. If x(S) = 0 or if x(S) = 2 the

inequality is valid, since in either case f(S)�Fx(S) = 0. If x(S) = 1, say x

i

= 1 for some

i 2 S, then z � f

i

= f

i

� F + F = f(S)�Fx(S) +F . To see that (3.25) is facet inducing,

assume w.l.o.g. that S = f1; � � � ; jSjg, and that jSj � n�2 (the case jSj = n�1 is similar).

Write s = jSj. Consider the 2n� 1 points (e

1i

; F e

1i

; F ) for each i =2 S, (e

i;s+1

; F e

i;s+1

; F )

for each i 2 S n 1, (e

1i

; 2Fe

1

; 2F ) for each i =2 S, (e

i;s+1

; 2Fe

i

; 2F ) for each i 2 S n 1 and

(e

s+1;s+2

; F e

s+1;s+2

; F ). Each of these points satis�es (3.25) with equality, and together
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they make up the matrix

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 � � � 0 F 0 � � � 0 F

.

.

.

.

.

. � � �

.

.

. I

n�s

.

.

.

.

.

. � � �

.

.

. FI

n�s

.

.

.

1 0 � � � 0 F 0 � � � 0 F

0 1 0 � � � 0 0 0 F 0 0 � � � 0 F

.

.

. I

s�1

.

.

. � � �

.

.

.

.

.

. FI

s�1

.

.

. � � �

.

.

.

.

.

.

0 1 0 � � � 0 0 0 F 0 0 � � � 0 F

1 0 � � � 0 2F 0 � � � 0 0 0 0 � � � 0 2F

.

.

.

.

.

. � � �

.

.

. I

n�s

.

.

.

.

.

. � � �

.

.

.

.

.

. � � �

.

.

.

.

.

.

1 0 � � � 0 2F 0 � � � 0 0 0 0 � � � 0 2F

0 1 0 � � � 0 0 0 0 0 0 � � � 0 2F

.

.

. I

s�1

.

.

. � � �

.

.

.

.

.

. 2FI

s�1

.

.

. � � �

.

.

.

.

.

.

0 1 0 � � � 0 0 0 0 0 0 � � � 0 2F

0 0 � � � 0 1 1 � � � 0 0 0 0 � � � 0 F F 0 � � � 0 F

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(3:28)

from which it is easy to argue that the points are a�nely independent, as desired. The

proofs that (3.26) and (3.27) are facet inducing are similar.

Proposition 3.2.9 The facet de�ning inequalities (3.25), (3.26) and (3.27), together with

(3.18), (3.19), (3.22) as well as the bounds 0 � x

i

� 1 (for every i) yield the polyhedron

P

n

(2F ) .

In terms of problem ICONG(2), inequalities (3.25) and (3.26) and (3.27) cannot be

used directly as cutting planes (for any given node k) because the value of F is not �xed.

But we obtain valid inequalities by (1) replacing x(S) with 2�x(V nS), (2) replacing F in

all linear terms with the total 
ow leaving k (

P

i;h

f

hki

), and (3) in the terms of the form

�Fx(S) by replacing F with a lower bound. Such a lower bound is available: half of the

sum of all demands with source node k. The resulting inequalities can be improved if an

upper bound on F is available, or better, if an upper bound u on the individual 
ows f

i
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is available. Such an upper bound is frequently available if we have an upper bound on

the value of the instance of ICONG(2). A di�erent perspective on this is the following.

Notice that in the preceding proofs we constructed points with f

i

= 2F for certain indices

i. That is, all 
ow is routed on one edge. In computation, we would expect that this

might not happen, i.e. 
ow would be split at least among two edges so as to keep z small.

This suggests that the above inequalities may not necessarily be active, especially after a

few rounds of cutting planes. What might be needed, instead, are inequalities that handle

cases where z is larger than F but much smaller than 2F .

To that e�ect we �rst consider, for given 0 < F � u the polyhedron Q

n

(2F; u) obtained

by replacing (in the formulation of P

n

(2F )) (3.20) with f

i

� ux

i

. This is of interest when

F < u. By adapting the proof of Lemma 3.2.8 one has:

Lemma 3.2.10 For all 0 < F < u (3.25) and (3.26) induce facets of Q

n

(2F; u) .

We omit this proof because it is very similar to the one for Lemma 3.2.8. All one has to

do is replace the points with z = 2F with points where z = u, which is possible because

F < u.

There is another way of improving on the above polyhedra, which arises by stating

that we have to push at least 2L units of 
ow, rather than exactly 2F units, for some

L. More precisely, consider for �xed 0 < L < u the polyhedron R

n

(2L; u) obtained by

replacing (in the formulation of Q

n

(2L; u)) (3.18) with

P

i

f

i

� 2L. Computationally, this

has been most useful when L < u < 2L, in which case the variable upper bound inequalities

become active. One can obtain facets for R

n

(2L; u) by starting with facets for Q

n

(2L; u)

and \lifting" them so as to be tight for at least one point in Q

n

(2u; u). In this way one

has (where V = f1; � � � ; ng):

Lemma 3.2.11 For every 0 < L < u the following inequalities de�ne facets of R

n

(2L; u):

z �

1

2

f(S)�

1

2

f(V nS)� Lx(S) + 2L; (3.29)

for all S � V with 2 �j S j� n� 1, and
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z � 2 (Lx(S)� f(S)) + f

j

+min

�

1;

u

2(u� L)

�

(f(V )� 2L) ; (3.30)

for all S � V with 2 �j S j� n� 2 and j 2 S, and

z � f

j

� Lx

j

+ L (3.31)

f

j

� (2L� u)x

j

(3.32)

z � f(V )� f

j

� u(1� x

j

) (3.33)

We obtained these inequalities using the lifting procedure described above, which guar-

antees that they are facets. Inequality (3.29) is especially active when we have a set S

with x(S) = 1 (or close to it) and f(S) > f(V nS). The inequality says that in an integral

solution the edge used in S must carry 
ow at least

1

2

f(S)�

1

2

f(V nS) +L (which is equal

to 2L � f(V nS), thus showing validity), a value strictly larger than L. As a result, the

inequality tends to cut o� fractional points with slight imbalances among the variables f

i

.

The other inequalities above have similar interpretations.

3.2.3 Flux Inequalities

In [17] the following procedure was used to obtain a lower bound for z in an instance of

ICONG(2): if F

�

is a lower bound on

P

k

P

i;j

f

kij

then clearly z � F

�

=2n. To compute

such a lower bound F

�

, we denote by F

1

the sum of the 2n largest demands, and for d > 1

F

d

the sum of the 2

d�1

n+ 1 through 2

d

n largest tra�c demands. Then

F

�

=

X

d

dF

d

(3:34)
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is a valid lower bound, since in a digraph with outdegrees at most 2, at most 2

d

n pairs

of vertices are at distance d, for any d. This lower bound tends to be weak because it

averages over all commodities. In particular, for any given node i at most 2

d

nodes can be

at distance d from i, yet the quantity F

d

may include more than 2

d

tra�c elements, all

with source node i. A heuristic way of improving the lower bound is given in [17].

Equation (3.34) can be strengthened if we adapt it to work one commodity at a time.

In what follows we consider a �xed commodity (i.e. source node) k. For a subset of edges

S, write f

k

(S) =

P

i;j2S

f

kij

. We call f

k

(S) the 
ux of commodity k on S. Denote by E

the set of all edges, i.e. the set of all ordered pairs of nodes. Then

f

k

(E) �

X

d

dT

d

(3:35)

where T

1

is the sum of the two largest demands with source k, and for d � 1, T

d

is the

sum of the 2

d�1

+1 through 2

d

largest such demands. This inequality can be strengthened

by noting that for any node i 6= k, if i is at distance one from k then i contributes t

ki

to

f

k

(E) (and otherwise i contributes at least 2t

ki

). So we can write

f

k

(E) �

X

i 6=k

(2� x

ki

)t

ki

+

X

d>2

h

(d� 2)

X

ft

ki

: i at distance d from kg

i

(3:36)

and so

f

k

(E) �

X

i 6=k

(2� x

ki

)t

ki

+

X

d>2

(d� 2)T

d

: (3:37)

This inequality can further be strengthened as follows. For any d let V (d) be the set of

nodes i such that t

ki

is included in T

d

. For any d > 1, let

s(d) =

X

2�h<d

minft

ki

: i 2 V (h)g: (3:38)
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Then:

f

k

(E) �

X

i 6=k

(2� x

ki

)t

ki

+

X

d>2

(d� 2)T

d

+

X

d>2

X

i2V (d)

(s(d) � (d� 2)t

ki

)x

ki

(3:39)

is a valid inequality. To see this, notice that if x

ki

= 1 for some i 2 V (d) with d > 2,

then the right-hand side of inequality (3.36) exceeds that of inequality (3.37) by at least

s(d) � (d� 2)t

ki

.

Example 3.2.12 Suppose the nonzero demands t

ki

are 100; 90; 75; 70; 68; 62 and 30, cor-

responding to nodes i = 1; � � � ; 7. Then inequalities (3.35), (3.37) and (3.39), respectively,

are

f

k

(E) � 830; (3.40)

f

k

(E) � 1020� 100x

k1

� 90x

k2

� 75x

k3

� 70x

k4

� 68x

k5

�62x

k6

� 30x

k7

; (3.41)

f

k

(E) � 1020� 100x

k1

� 90x

k2

� 75x

k3

� 70x

k4

� 68x

k5

�62x

k6

+ 2x

k7

: (3.42)

In the rest of this section we discuss valid inequalities involving quantities f

k

(S) as well

as further ways of strengthening (3.37) and (3.39). First we need an auxiliary result. The

following inequality, while not globally valid, does not cut o� at least one optimal integral

solution; and at the same time it is fairly useful towards strengthening the formulation.

Proposition 3.2.13 Let z

L

be a known lower bound on the value of a problem. For any

commodity k and node i the following inequality is valid, without loss of generality:

f

kki

� minft

ki

; z

L

gx

ki

(3.43)

Proof. If x

ki

= 0 validity is clear, and so assume x

ki

= 1, and that f

kki

< t

ki

. In this case

there is a path P from k to i carrying positive 
ow of commodity k. Since f

kki

< z, we can
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reroute a small amount of 
ow from this path to the edge (k; i) (and if necessary reroute


ow of other commodities from (k; i) to P ) without increasing the value of z.

There are many reasons why inequalities (3.35) or (3.39) may fail to be tight, and we

discuss two of them next. Notice that for these inequalities to be tight or nearly so (at an

integral solution) commodity k must be routed using a shortest path tree that is balanced.

Such a tree will not exist if the graph contains certain subgraphs, which we might call

\obstructions". For example, if the graph contains edges (k; i) and (i; k) for a given i, then

there will be at most three vertices at distance 2 from k (rather than four) and this will

a�ect the number of vertices at all distances d � 2 from k. Thus in principle inequality

(3.35) can be strengthened as follows:

f

k

(E) �

X

d

dT

d

+

X

i;j

�

ij

(x

ij

+ x

ji

� 1)

+

(3.44)

for appropriate parameters �

ij

. Similar inequalities can be used with other obstructions.

By themselves, inequalities of this type are rather weak. However, it can be the case that

one can argue that at least some number of obstructions must occur in any digraph of

degree two. For example, it can be shown that for n = 8 at least one of three obstructions

must occur: at least one pair of parallel edges (i; j), (j; i), or a triple of edges (i; j), (i; h),

(h; j), or a quadruple (i; j), (i; h), (j; g), (h; g). This fact can be stated with an appropriate

valid inequality. In conjunction with inequalities (3.44), inequalities of this type can have

a powerful e�ect on the quality of the lower bound, especially near optimality. On the

other hand, determining the numbers of obstructions that must occur is a very di�cult

combinatorial problem and so this technique can be used strictly in an ad hoc manner.

The other reason why inequalities (3.35), (3.39) can be weak can be handled computa-

tionally, and it occurs when some demand is large compared with some known upper bound

on the value of the problem and with the other demands with same source. As a simple

example, suppose that the (positive) demands with source k are: 200; 50; 30; 20; 14; 10; 8

corresponding to nodes 1; � � � ; 7 and that we already know that 188 is an upper bound on
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the value of the problem. Since t

k1

is so large the linear program will usually set x

k1

= 1,

and so it is important to strengthen our inequalities in this case. But for (3.35) or (3.39)

to be tight we would again need a balanced tree, i.e. one where the demands of at least

two nodes are routed on edge (k; 1). But t

k1

> 188 and so less than t

k1

units of 
ow are

routed on this edge and the tree becomes unbalanced. If x

k1

= 1 it is easily seen that

f

k

(E) � 188 + 50 + 2(30 + 20) + 3(14 + 10 + 8 + 12) = 470 (3.45)

(whereas the right-hand side of (3.35) is 422). If x

k1

= 0 then f

k

(E) � 602. This can be

argued as follows. The inequality is clearly valid if node 1 is at distance three or greater

from k. If it is at distance two, the fact that z � 188 implies that at most three nodes can

be at distance two from k, and consequently

f

k

(E) � 50 + 30 + 2(200 + 20 + 14) + 3(10 + 8) = 602 (3.46)

as desired. As a result we have that f

k

(E) � 602� 132x

k1

is a valid inequality which will

dominate (3.39), and which can itself be improved in the same way that (3.39) improves

over (3.35).

The general procedure for handling this kind of situation is given next. We use the

following notation. Let D = fd

1

; d

2

; � � �g be a list of numbers. If Q = fQ

1

; Q

2

; � � �g is an

ordered partition of D,

w

j

(Q) =

X

d

h

2Q

j

d

h

; (3:47)

and

W (Q) =

X

j

jw

j

(Q): (3:48)

If S � D we let R(D;S) be an ordered partition fD

1

;D

2

; � � �g of D such that D

1

= S, and

for j � 2, D

j

contains the 2(2

j�2

� 1)jSj + 1 through 2(2

j�1

� 1)jSj largest elements of
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D n S, and we write

L(D;S) = W (R(D;S)); (3.49)

L

i

(D) = min

jSj=i

fL(D;S)g ; (3.50)

(note: the right-hand side of (3.35) equals L

2

(D), where D is the list of all demands with

source k). In what follows, z

U

and z

L

denote known upper and lower bounds on the value

of a given instance of ICONG(2). Now we have:

Lemma 3.2.14 Suppose that for some commodity k and node i 6= k we have z

U

< t

ki

. Let

D be the list of demands with source node k, and let Q = fD

1

;D

2

; � � � D

m

g be the ordered

partition that attains L

1

(D n t

ki

). De�ne:

l

d

= minft

kj

: t

kj

2 D

d

g; (3.51)

for d < m and also for d = m if D

m

has 2

m�1

members; l

m

= 0 otherwise. Also, write

l

m

+ 1 = 0. Set

i

1

= minfs : 2 � s � m+ 1; l

s

< t

ki

� z

L

g (3.52)

i

2

= minfs : s � i

1

; l

s

� t

ki

� z

U

g: (3.53)

Let P be the ordered partition that attains

min fL(D;S) : jSj = 2; t

ki

=2 Sg : (3.54)
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Then :

f

k

(E) �

P

j

(2� x

kj

)t

kj

+

�

P

d>2

(d� 2)w

d

(Q) +

P

d�i

2

l(d)

�

x

ki

+(i

2

� i

1

� 1)(t

ki

� z

U

)x

ki

+ (i

1

� 1)(t

ki

x

ki

� f

kki

)

+

�

P

d>2

(d� 2)w

d

(P)

�

(1� x

ki

)

(3:55)

is valid.

Proof. Suppose �rst that x

ki

= 0. Then the right-hand side of the inequality is

P

j

(2� x

kj

)t

kj

+

P

d>2

(d� 2)w

d

(P) and as in (3.39) it is easy to see that this is valid. Next, suppose x

ki

= 1.

By Proposition 3.2.13 f

kki

� z

L

. So, writing � = t

ki

� f

kki

,

� � t

ki

� z

L

: (3:56)

Let h be such that l

h

� �, and either � < l

h�1

or h = 2. Since � > 0, f

k

(E) � f

kki

is

lower bounded by a quantity of the form (c.f. (3.49)) L(D

0

; ft

ks

g), where D

0

is obtained

from D by replacing t

ki

with � and s 6= i. The assumption on � implies that the partition

that attains L(D

0

; ft

ks

g) can be obtained from Q by putting � in set h, and moving l

h

to

set h+ 1, l

h+1

to set h+ 2, and so on. So we can write:

f

k

(E) � f

kki

�

X

d

dw

d

(Q) + h�+

X

d�h

l

d

(3.57)

and arguing as when obtaining (3.37) from (3.35), this inequality can be strengthened as

follows:

f

k

(E)� f

kki

�

X

j 6=i

(2� x

kj

)t

kj

+

X

d>2

(d� 2)w

d

(Q) + h�+

X

d�h

l

d

: (3.58)

Further, f

kki

� z

U

implies that � � t

ki

� z

U

, and since by de�nition of i

2

we have that



Chpt. 3 Computational ...... Multicommodity Flow Problem 60

h � i

2

, we conclude

h�+

X

d�h

l

d

� i

1

�+

X

d�i

2

l

d

+ (i

2

� i

1

� 1)(t

ki

� z

U

)x

ki

: (3:59)

Moreover, i

1

� = (i

1

� 2)(t

ki

x

ki

� f

kki

) + 2(t

ki

� f

kki

) and so

X

j 6=i

(2� x

kj

)t

kj

+ i

1

� =

X

j

(2� x

kj

)t

kj

+ (i(1)� 2)(t

ki

x

ki

� f

kki

) + t

ki

x

ki

� 2f

kki

; (3:60)

and combining (3.58), (3.59) and (3.60) one obtains the right-hand side of (3.55).

Example 3.2.15 Let D = f300; 80; 70; 10; 10; 9; 7; 6; 5; 5; 5; 4; 3; 3; 2; 1g (where t

k1

= 300).

Suppose z

U

= 291 and z

L

= 262. Then

Q = ((80); (70; 10); (10; 9; 7; 6); (5; 5; 5; 4; 3; 3; 2; 2); (1))

(3:61)

l(2) = 10, l(3) = 6, l(4) = 2, l(5) = 0, i

1

= 2, i

2

= 3, and

P = ((80; 70); (300; 10; 10; 9); (7; 6; 5; 5; 5; 4; 3; 3); (2; 2; 1))

P

d>2

(d� 2)w

d

(Q) = 92

P

d�i

2

l

d

= 8:

(3:62)

The valid inequality is:

f

k

(E) �

P

j

(2� x

kj

)t

kj

+ 100x

k1

+ 300x

k1

� f

kk1

+ (38 + 10)(1� x

k1

)

=

P

j

(2� x

kj

)t

kj

+ 352x

k1

� f

kk1

+ 48:

(3:63)

A similar type of valid inequality can be used when t

ki

< z

U

, although the situation

is more complicated in this case. We will need some further notation. Let D be a list of
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numbers, and consider an element d

i

2 D and a number u � d

i

. Then we write

W (D; d

i

; u) = min

K

n

min

A;B

fL(A; d

i

) + L

1

(B)g

o

; (3:64)

where

(1) K is any list obtained from D by replacing, for some j 6= i, d

j

with two numbers of

the form d

j

� � and �, where 0 � � � d

j

, and

(2) A and B are lists whose union is K, such that d

i

2 A and the sum of the elements

of A is at most u.

Example 3.2.16 Let D = f20; 20; 9; 8; 5g, d

i

= 20 and u = 23. Then the minimum is

attained by setting K = f20; 20; 9; 8; 3; 2g, A = f20; 3g and B = f20; 9; 8; 2g.

Remark. The knapsack problem is a special case of that of computing quantitiesW (D; d

i

; u).

Inequality (3.35) can be strengthened as follows:

Proposition 3.2.17 Consider an instance of ICONG(2) where z

U

is a known upper bound

on the value of the problem such that for some commodity k and node i, t

ki

� z

U

. Let D

be the list of all demands with source node k. Then

f

k

(E) �W (D; t

ki

; z

U

)x

ki

+ (min

S

L(D;S))(1� x

ki

); (3.65)

where the minimum is taken over all pairs S with t

ki

=2 S.

The proof of this proposition follows easily from the de�nitions given above. We also

note that (3.65) can be strengthened by adding to the right-hand side terms involving

variables x

kj

; j 6= i.

Example 3.2.18 Let D = f300; 80; 50; 30; 25; 20; 16; 12g; t

ki

= 300 and z

U

= 305 (note



Chpt. 3 Computational ...... Multicommodity Flow Problem 62

that the sum of entries in D is 533). Then we have:

f

k

(E) � 561 +

X

j

(1� x

kj

)t

kj

� f

kki

+ 345x

ki

(3:66)

To see why this holds, notice that if x

ki

= 0 the last two terms disappear in the above

inequality disappear and we obtain inequality (3.37). If x

ki

= 1, then we can write f

kki

=

300 + �, where � � 5. It is easy to verify that in this case f

k

(E) � 561 +

P

j

(1� x

kj

)t

kj

�

�+ 25 + 20 = 561 +

P

j

(1� x

kj

)t

kj

� f

kki

+ 345.

The �nal type of 
ux inequalities that we use involve arbitrary node subsets S. Then

it is possible to write an inequality of the form

X

j2S

f

kij

� L+

X

j2S

�

ij

x

ij

+

X

i=2S;j2S

�

ij

f

kij

; (3.67)

much in the same way that inequalities (3.35), (3.37) where generated. It is computationally

di�cult to separate over inequalities of the form (3.67) and we have used them strictly in

an ad hoc manner (see Section 3.3). Nevertheless, these inequalities are experimentally

very useful when there are clusters: a cluster is a subset of nodes C such that the tra�c

demands are large amongst members of C, but low between C and its complement. In

such a case we would use inequality (3.67) with S = C, or S = C n i for some i 2 C.

3.2.4 Other Inequalities

Here we describe various simple inequalities that appear useful in computation.

The �rst such inequality is (3.43) described in the previous section: for any commodity

k and node i, f

kki

� minft

ki

; z

L

gx

ki

, for any lower bound z

L

on the value of the problem.

The next class of inequalities are intended to strengthen the variable upper-bound

inequalities (3.3). Consider any commodity k. In any feasible integer solution solution

there will be two edges of the form (k; h), say (k; a) and (k; b) where t

ka

� t

kb

. Since we

must route commodity k to satisfy the demand of each of a and b, as before one to argue

that without loss of generality both (k; a) and (k; b) carry an amount of commodity k of
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value at least t

ka

. Furthermore, for any edge (i; j), the 
ow of commodity k on this edge

does not include any 
ow destined to satisfy the demand at i.

As a consequence, in inequality (3.3) we can set

M

k

ij

=

X

h

t

kh

� t

ki

�min

h6=i

ft

kh

g: (3.68)

A di�erent (and usually more e�ective) way of tightening the variable upper bounds is

given by the following inequality, which is one of the \basic network inequalities" of [31]:

f

kij

� t

kj

x

ij

+

X

h6=i

f

kjh

; (3.69)

and whose validity is clear. In general, if S is a subset of nodes not containing node j, we

can write

X

i2S

f

kij

� minf1;

X

i2S

x

ij

gt

kj

+

X

h

f

kjh

: (3.70)

The following inequality can be used to tighten inequality (3.5) of the original formu-

lation. For any pair i, j we have:

z �

X

k

f

kij

+ z

L

(1� x

ij

): (3.71)

Experimentally, this inequality has been very e�ective in terms of improving the lower

bound z

L

.

3.3 Computational Results

In our computational experiments, the initial formulation consisted of the degree equations,

the 
ow conservation equations, and inequalities (3.71) to measure the maximum load (a

lower bound on the value of the problem is always available as discussed before). The

variable upper bounds strengthened as in (3.68) were used as cutting planes. Further, in
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many cases it proved advantageous to introduce new variables that aggregate others, in

this way obtaining a sparser formulation. For example, for any edge (i; j) we can add the

equation F

ij

=

P

k

f

kij

and use F

ij

instead of the right-hand side elsewhere. This strategy

usually resulted in faster solving linear programs. The inequalities that we used were (3.7),

those described in Lemma 3.2.11, (3.39), (3.2.13), (3.55), (3.65), (3.69), (3.70), as well as

some of the inequalities strengthening (3.35), such as (3.67). These, although very strong,

are di�cult to separate and we typically added some of them to the formulation before

running the automatic part of the algorithm.

We �rst applied the algorithm to the eight-node problems from [16] (also see [17]). As

stated before, the resulting mixed-integer programs have 56 f0; 1g variables, approximately

400 columns and start with approximately the same number of rows; typically we would

end up with roughly 2000 rows. Each of the linear programs took (on the average) 7 to

10 seconds on a SPARC2 machine, using Cplex 2.0. We observed that the improvement in

the lower bounds would taper o� rather quickly after three or four iterations, and thus the

overall algorithm would run in less than one minute. Some of our inequalities bene�t from

having good lower and upper bounds on the value of the problem. As a result, in all but

one of the cases we ran the cutting-plane algorithm twice: once to get a lower bound (and

an upper bound, see below) and then again with the bounds in place (in one of the cases

the algorithm was run three times).

Table 3.2 summarizes our experience with the eight-node problems. For each problem,

the column labeled \LP relax." gives the LP-relaxation value of ICONG(2) including all

variable upper-bound inequalities, the column labeled \strong ineqs." gives the best lower

bound obtained by the cutting plane algorithm, \upper bound" is our upper bound and

\GAP" is the percentage gap between our bounds.

We were able to solve problems ring and disconn by running branch-and-bound on

our extended formulation (with all variable upper bound inequalities added). This required

several tricks. For example, problem disconn has the following structure: the nodes are

partitioned into two classes, such that tra�c demands are large between nodes of the same
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problem LP- strong upper GAP

relax. ineqs. bound (%)

uniform2 10.00 66.25 66.67 0.63

quasunif1 9.92 58.63 61.83 5.46

quasunif2 11.72 62.70 65.67 4.73

ring 33.81 113.74 124.00

�

9.02

central 95.71 335.00 335.00

�

0.00

disconn 62.50 255.80 275.40

�

7.66

Table 3.2: Performance of cutting-plane algorithm and heuristics for design-routing prob-

lem (

�

= optimally solved).

class and small otherwise. The linear program will set the sum of the x variables going

from one class to the other to a value between 1 and 2. So we can branch, by setting

this sum of variables to 1, or 2, or at least 3. In each of these cases we can signi�cantly

strengthen the formulation by using inequalities of type (3.67) as well as others. Each of

the resulting three problems had an LP-relaxation value (after running the cutting plane

algorithm) within 3% of the optimum, and each was separately solved to optimality using

branch-and-bound (requiring a few hours in each case). A similar trick solved problem

ring. Problem central is quite easy and the cutting plane algorithm quickly found the

integer optimum.

The upper bounds in Table 3.2 were obtained by us by branch-and-bound, except

for the bound for problem quasiunif2 which was obtained by W. Cook, by running his

branch-and-bound algorithm on the extended formulation (which required several days of

computing). To obtain upper bounds, the strategy suggested by L. Wolsey worked rather

well for all problems: �x at 1 all f0; 1g-variables that are set that way by the cutting-

plane algorithm, and run branch-and-bound on the remaining variables. This approach

always found good solutions very quickly, sometimes in a few seconds. Typically these

quick solutions were no more than 5% away from the optimum (and sometimes closer than
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that). We also used a (slower) heuristic to obtain better upper bounds that would run

the cutting-plane algorithm, round to 1 some of the x

ij

variables (based on their fractional

value and using a randomized rule), and repeat until an integral solution was found. The

overall process ran relatively quickly and we ran it several times for each problem.

In order to further test the strength of our lower bounds, we randomly generated sparse

20-node problems. In these problems the nodes are partitioned into clusters of four or �ve

nodes each, such that tra�c demands between two nodes are positive if and only if both

nodes are in the same cluster. This structure makes it easy to �nd upper bounds { we

solve the problem restricted to each cluster separately. For problems of this type, it is

often the case that the optimal solution has edges between clusters and potentially these

upper bounds could be crude. As discussed below, however, the linear programs that arose

in these experiments were extremely di�cult, and consequently we did not run branch-

and-bound or our randomized heuristic on these problems, with the result that the simple

upper bounds were all we had.

When running the cutting-plane algorithm, we employed a similar strategy as for the

small problems, with one exception: the facet-de�ning inequalities (3.7) were used for (i.e.

separated over) all small subsets, and heuristically for large subsets. We do not include

a table of results for the randomly generated problems, but they can be summarized as

follows. In all but one of these experiments the lower bounds we obtained were within 8 to

9% of our upper bounds. In one problem with clusters of size 5, the gap was approximately

11%.

As stated before, the linear programs arising here are quite di�cult. Typically, the

�rst linear program solved by the cutting-plane algorithm (i.e. one without the variable

upper-bounds) required on the order of 5 minutes (still using Cplex 2.0 on a SPARC2).

After adding some cutting-planes, the solution time would grow very quickly, sometimes to

over one hour per LP. It is not clear precisely what makes these linear programs di�cult.

It is known that vubs (variable upper-bounds) make a formulation degenerate, and at �rst

glance that could be a problem here. However, very few vubs would be explicitly added
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to the formulation in the course of the algorithm. Moreover, the approach of randomly

perturbing the vub coe�cients did not seem to help at all. A similar approach would be

to perturb the objective function and run a dual simplex algorithm; this helped if the

perturbation was rather large, but undoing the perturbation proved just as hard as solving

the problem itself.

Table 3.3 displays information concerning the solution of one of the initial linear pro-

grams using various pivoting strategies, now running Cplex 2.1 (still on a SPARC2).

primal primal primal dual dual

steepest edge devex red. cost steepest edge std. pricing

iterations 3244(790) 8040(760) 25571(2573) 9288(2532) 18613(301)

time 275.60 484.03 445.57 846.38 1684.88

Table 3.3: LP solution statistics

This linear program has 8021 columns, 1320 rows and 32520 nonzeros. In the iterations

row, the data in parenthesis indicates Phase I pivots. Times are in seconds.

This data is typical (perhaps even a bit conservative) in that it shows that primal

steepest edge pivoting is the best strategy (at least using our LP solver). The interior

point code OB1 was also run on this problem, with negative results [21].

It is clear that in order to make branch-and-bound practicable (or even to run a tra-

ditional cutting-plane algorithm) a way must be found to speed-up the solution of these

linear programs. (Presumably the LPs for problems on more than twenty nodes will be

even more di�cult). One di�culty is that the \good" cutting-planes tend to be quite dense

and of di�erent types, and adding just a few of them can signi�cantly change the linear

program, so that starting from the previous optimal basis may not be helpful. This is an

important area of work to be tackled.
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3.4 Concluding Remarks

There are several strategies for dealing with the problems discussed in this chapter that

appear promising, although whether they are computationally practicable is not clear.

One approach would be to selectively (and dynamically) disaggregate the problem (so

that, for example, we may have several commodities corresponding to a given source node).

Such a formulation could be strengthened in particular by using appropriate versions of

our \
ux" inequalities (in fact, our inequalities (3.67) are an attempt to do something like

that). Of course, this would have to be done with care so as to avoid blowing up the

formulation, and we do not have an automatic criterion for doing this.

Another approach would be to develop a branch-and-cut algorithm with \local" cuts

at any node. In other words, it is usually the case for this problem that the formulation

can be signi�cantly strengthened at a branch. In particular, the 
ux inequalities and the

variable upper-bound inequalities can be strengthened. However, we do not know how to

do this automatically and further, the cuts involved would not be globally valid and very

di�erent types of cuts would be used at di�erent nodes.

One approach that worked, but appears very di�cult to implement, is that of carefully

adding new variables with a combinatorial interpretation. As mentioned above, we did this

for variables of the form (x

ij

+ x

ji

� 1)

+

and in particular this worked well for problem

uniform2: it narrowed the gap from 2.5 % to less than 1 %.

A �nal approach that does seem computationally e�cient is the following. For a node

i, denote F (i) =

P

k;j

f

kij

. We know that

P

j

t

ij

� F (i) and if z

u

is a known upper bound

on the value of the problem some of our inequalities will force F (i) � 2z

u

. One can proceed

as follows: �rst partition the interval [

P

j

t

ij

; 2z

u

] into a set of subintervals, each of a given

size �. Corresponding to any such subinterval we can branch, by forcing an inequality of

the form a � F (i) � a+ �. The rationale for this general approach is that the formulation

can be tightened if we roughly know the value of F (i). In particular, we may be able to

reject a subinterval in one run of the cutting-plane algorithm. Further, in our experiments

the interval [

P

j

t

ij

; 2z

u

] was not very large, which would allow � to be chosen rather small



Chpt. 3 Computational ...... Multicommodity Flow Problem 69

without generating many subintervals.

We have done some preliminary work in this area. However, we do not know how to

automatically choose the quantities � for an arbitrary problem (they should depend on the

node i and should be dynamically adjusted) and also how to branch in an intelligent way.

Finally, it is clear that we must be able to solve the linear programs substantially faster.
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Chapter 4

Capacitated Network Design - Polyhedral Structure and

Computation

4.1 Introduction and Formulation

In this chapter we study the polyhedral structure of a mixed-integer programming formu-

lation of the capacity expansion problem (CEP) and present computational results related

with a cutting-plane algorithm which uses facet de�ning inequalities to strengthen the

linear programming relaxation.

Given a capacitated network and point-to-point tra�c demands, the objective in CEP

is to add capacity to the edges, in integral multiples of various modularities (or \batches"),

and route tra�c, so that the overall cost is minimized. We note that CEP is strongly

NP-hard [10] as it contains the �xed-charge network design problem, and thus the Steiner

tree problem as a special case.

We assume that, for any �xed edge fi; jg of the network, 
ows on directed edges (i; j)

and (j; i) do not interfere with each other and thus we require that the total 
ow on

(i; j) (and on (j; i)) is at most the capacity of the edge fi; jg. This constraint arises in

telecommunications models because, generally, one cannot purchase \one-way" cables.

Here we study CEP when there are two batch sizes. We will assume that the larger

batch size is an integral multiple of the smaller one (again a realistic assumption). By

rescaling demands, we may assume that the smaller batch size is 1. We call the batch sizes



Chpt. 4 Capacitated Network Design 71

unit-batches and �-batches, where � > 1 is the capacity of the larger batch size. Given a

connected undirected graph G = (V;E) with existing capacities C

e

� 0 for all e 2 E, and

point-to-point tra�c demand between various pairs of nodes, let P

X

denote the convex hull

of feasible solutions to CEP. Then,

P

X

= conv

n

f 2 R

jKj�2�jEj

; x; y 2 Z

jEj

:

X

fi; jg 2 E

f

k

ji

�

X

fi; jg 2 E

f

k

ij

= t

ki

i 2 V; k 2 K i 6= k (4.1)

X

k2K

f

k

ij

� C

i;j

+ x

i;j

+ �y

i;j

fi; jg 2 E (4.2)

X

k2K

f

k

ji

� C

i;j

+ x

i;j

+ �y

i;j

fi; jg 2 E (4.3)

x

i;j

; y

i;j

; f

k

ij

� 0

o

where K denotes the set of commodities related with the tra�c demands, t

ki

is the net

demand of commodity k at i and f , x and y are the variable vectors related with 
ow, unit-

batches and �-batches, respectively. In this formulation equation (4.1) is a 
ow conservation

equation, and equations (4.2) and (4.3) indicate that total 
ow on directed edge (i; j) or

(j; i) can not exceed total capacity of the related edge fi; jg .

We note that the dimension of P

X

is equal to the number of variables minus the rank

of the formulation, that is, there are no additional implied equations. Although we do not

prove it explicitly, this result is implied by some of the polyhedral results presented in the

following sections.

Throughout this chapter, we will use x

i;j

and x

j;i

interchangeably to denote the same

variable x

e

when e = fi; jg and we will do the same for variables y and existing capacities

C as well.

In the literature on multicommodity network 
ow problems, there are two main ap-
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proaches related with the de�nition of the commodities. The �rst approach is to de�ne a

separate commodity for every non-zero point-to-point demand, resulting in O(jV j

2

) com-

modities in general. The second approach is to aggregate the demands with respect to

their source (or destination) nodes and de�ne a commodity for each node with positive

supply (or demand). The aggregated formulation has O(jV j) commodities.

For some problems similar to CEP (�xed charge network 
ow problem, for example)

the \�ne grain" disaggregated formulation results in a stronger LP-relaxation. The number

of variables in this formulation is O(jEjjV j

2

) as opposed to O(jEjjV j) of the aggregated

formulation and, as noted in Chapter 3 and [5], when developing a cutting-plane algorithm,

it can be prohibitively expensive to use the disaggregated formulation. Although it is possi-

ble to project the disaggregated formulation on the space of the aggregated formulation by

using a family of inequalities, called \dicut collection inequalities" [28], the related separa-

tion problem appears to be very di�cult. Here we adopt the second approach (aggregated

version) and de�ne a commodity for each supply node. We also note that for CEP, the

LP-relaxations for both of the formulations have the same value.

Our primary motivation for studying CEP is that it naturally arises as part of a much

larger and complex problem concerning ATM (asynchronous transfer mode) network design

that we are separately studying. This larger problem is in fact so complex and ill-de�ned

that a direct polyhedral study of it would be impractical and probably not advisable. How-

ever, the ATM problem contains several subproblems either identical or closely resembling

CEP. These problems have fully dense tra�c matrices (i.e. every node wants to talk to

every other node) and this is the main reason why we are using the aggregated formula-

tion. Our strategy to solve the ATM problem is to tighten-up formulations involving CEP,

and that is our primary concern here. Thus, our computational testing will focus on how

e�ective our inequalities are towards obtaining a strong formulation for CEP (as opposed

to developing an algorithm for solving CEP).

The polyhedral structure of CEP (or, rather, some closely related variants) has already

been previously studied. Magnanti and Mirchandani [22] have studied a special case of
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CEP in which there is a single commodity to be routed between two special nodes of the

network and there is no existing capacity on the network. In this paper, they present some

facet de�ning inequalities and show that this special case of CEP is closely related with the

shortest path problem. We will describe the results in [22] more completely later in this

chapter. Another special case, which arises is the context of the lot-sizing problem with

constant production capacities, has been studied by Pochet and Wolsey [27]. In this case,

the network related with CEP has a special structure and there is a single batch size. In

[27], Pochet and Wolsey fully describe the convex hull of a related polyhedron by using a

polynomial number of facets.

Some subproblems related with CEP have also attracted attention. Magnanti, Mir-

chandani and Vachani [23] study the polyhedral structure of a MIP formulation of the

network loading problem (NLP) with three nodes and a single batch size. In [23], Mag-

nanti et al. present a complete characterization of the projection of the related polyhedron

on the space of discrete variables.

In [26], Pochet and Wolsey study how to strengthen inequalities of the form

P

C

j

x

j

� b

and

P

C

j

x

j

� y, for y 2 R

+

and x

j

2 Z

n

+

, essentially using the so-called MIR procedure.

Inequalities of this form arise in our problem and we use some of their techniques.

Recently, Stoer and Dahl [30] studied a problem similar to ours where the 
ows are

undirected, there are no 
ow costs but the capacities to be added to edges are of a more

general form than those studied here. (We note that our formulation can be used to

model undirected 
ows). One primary feature of their approach is that (in terms of our

model) they would split the integral variables into sums of 0 � 1 variables. As a result

the inequalities they obtain have a rather combinatorial 
avor and when the demands are

small, this approach may be e�ective. Another feature of the approach in [30] is that they

study the projection of the formulation onto the space of the x and y variables, which is

possible since the problem in [30] does not have 
ow costs. Feasibility is achieved by means

of cutting planes that are generated algorithmically. A second class of models considered

in [30] can in addition handle side constraints, such as survivability constraints.
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Next, we brie
y introduce the notation used in this chapter. In what follows, the set of

all real numbers is denoted by R, and non-negative real numbers by R

+

. Similarly Z and

Z

+

denote the set of integers and non-negative integers respectively. We use \n" to denote

the ordinary set di�erence function and when it is not ambiguous, we denote fig by i.

For any vector v and a subset S of its indices, we de�ne v(S) =

P

i2S

v

i

. Similarly, for

a set A of directed edges and a set Q of commodities, we de�ne f

Q

(A) =

P

k2Q

P

a2A

f

k

a

.

We de�ne (�)

+

to be maxf0; �g and r(�; �) to be

r(�; �) =

8

>

<

>

:

�� �(d�=�e � 1) if �; � > 0;

0 otherwise

so that � = �(d�=�e � 1) + r(�; �) and � � r(�; �) > 0 if �; � > 0. We will abbreviate

r(�) for r(�; 1).

Let �(W ) = fe = fi; jg 2 E : i 2 W; j =2 Wg for W � V . Given W � V , we denote the

net tra�c of W by T (W ) where

T (W ) =

0

@

max

8

<

:

X

i2W

X

j2V nW

t

ij

;

X

i2V nW

X

j2W

t

ij

9

=

;

� C(�(W ))

1

A

+

:

For a feasible solution �p = (�x; �y;

�

f ) 2 P

X

, edge fi; jg 2 E is said to be \saturated "

if total 
ow on the directed edge (i; j) or (j; i) is equal to the total capacity of fi; jg, in

other words if maxf

�

f

K

ij

;

�

f

K

ji

g = �x

i;j

+ ��y

i;j

+ C

i;j

.

4.2 Cut-set Facets

We start with a generalization of the \cut-set" inequalities studied in [22] for the single

commodity problem. Given a set S � V , remember that T (S) gives a lower bound on the

capacity to be added across the cut separating nodes in S from the rest of the network.

When the value of this lower bound (implied by 
ow-conservation equations and capacity

constraints) is fractional, the LP-relaxation can be strengthened by forcing the added

capacity across the cut to be at least dT (S)e. These valid inequalities do not de�ne facets
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of the the CEP polytope unless the set S satis�es certain properties. We next state these

properties.

De�nition 4.2.1 Given a connected graph G = (V;E), a set S is called a \strong sub-

set" of V with respect to G if it is a proper subset of V and both G

S

= (S;E(S)) and

G

S

= (V n S;E(V n S)) are connected.

Before proceeding with the facet proof we note that, given S � V , the related cut-set

inequality is dominated by other cut-set inequalities whenever G

S

or G

S

is disconnected.

Theorem 4.2.2 Given a strong subset S of V

x(�(S)) + �y(�(S)) � dT (S)e (4:4)

de�nes a facet of P

X

provided dT (S)e > T (S) and dT (S)e � �.

Proof. Validity of (4.4) is obvious. To simplify notation, let E

0

= �(S) and

�

T = dT (S)e. By

construction we will show that the related face F = f(x; y; f) 2 P

X

: x(E

0

) + �y(E

0

) =

�

Tg

is not empty and then by contradiction, we will show that it is a facet.

For a �xed e

0

2 E

0

consider �p = (�x; �y;

�

f ) where

�x

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e =2 E

0

�

T e = e

0

0 otherwise

�y

e

=

8

>

<

>

:

M e =2 E

0

0 otherwise

(M is a large enough number ) and

�

f is such that all tra�c between nodes in S (V nS) is sent

using E(S) (E(V n S)) edges and tra�c crossing the cut is sent using edges with positive

existing capacity and the remaining through e

0

. Since both G

S

and G

S

are connected and

x(E

0

) > T (S),

�

f is feasible and thus �p 2 F .

Notice that the edges in E nE

0

are not saturated. Therefore, without saturating them,

it is possible to increase 
ow by a small amount for all commodities. We can do the same

for e

0

as well, so without loss of generality we will assume that

�

f

k

ij

;

�

f

k

ji

> 0 for all k 2 K



Chpt. 4 Capacitated Network Design 76

for edges with positive �x

i;j

. Assume that F is not a facet of P

X

, then there is an equation

of the form

�x+ �y + 
f = � (4:5)

satis�ed by all points p = (x; y; f) 2 F , where �; � and 
 are vectors of appropriate

dimension and � is a real number.

For all e =2 E

0

, it is possible to modify �p by keeping

�

f same and increasing �x

e

or �y

e

to

obtain another point in F , which implies that �

e

= �

e

= 0. We can also decrease �x

e

0

by �

and increase �y

e

0

by 1 to get a new point in F . Therefore �

e

0

= (1=�)�

e

0

and since e

0

2 E

0

is arbitrary, �

e

= (1=�)�

e

for all e 2 E

0

.

For any k 2 K, it is possible to obtain new points in F by modifying �p by simultaneously

increasing

�

f

k

i;j

and

�

f

k

j;i

by a small amount for edges fi; jg with positive �x

i;j

. Since e

0

is

arbitrary, we can conclude that 


k

ij

= �


k

ji

for all fi; jg 2 E and k 2 K.

To show that 
 = 0, we will �rst choose a spanning tree T = (V;E

00

) of G using edges

in E n E

0

and edge e

0

and then arbitrarily direct its edges to obtain the directed tree

T

0

= (V;A). If necessary by subtracting a linear combination of the 
ow-balance equalities

(4.1) of P

X

from (4.5) we can assume that 


k

a

= 0 for all k 2 K and a 2 A. Since 


k

ij

= �


k

ji

for any fi; jg 2 E, this implies that 


k

ij

= 0 for fi; jg 2 E

00

and k 2 K.

For fi; jg 2 (E nE

0

) n E

00

we can �nd the unique cycle formed by fi; jg and the edges

in E

00

. Notice that e

0

will not appear on this cycle since it is the only edge crossing the

cut. Since 
ows on the tree edges are positive in both directions for all commodities, we

can send small circulation 
ows of each commodity on this cycle and conclude that 


k

ij

= 0

for fi; jg 2 (E nE

0

) [ e

0

and k 2 K.

If jE

0

j = 1, then the proof is complete. On the other hand if jE

0

j � 2, then we choose

an edge fu; vg = e

1

2 E

0

di�erent from e

0

. Next, we modify �p by increasing �x

e

1

by 1 and

decreasing �x

e

0

by 1 and rerouting 
ow so that neither e

0

or e

1

is saturated and 
ows on

both e

0

and e

1

are positive for all commodities. Obviously this new point is on the face.

Now we �nd the unique cycle formed by e

1

and the edges in E

00

and send circulation 
ows

to argue that 


k

uv

= 0 for all k 2 K. Since e

1

is arbitrary, we can conclude that 
 = 0.
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Lastly, modifying �p as above also implies that if jE

0

j > 1, then there is a number �� 2 R

such that �

e

= �� = (1=�)�

e

for all e 2 E

0

. Therefore, (4.5) is a multiple of (4.4) (plus a

linear combination of 
ow-balance equations).

Usually, inequalities of the form (4.4) are accompanied by other valid inequalities (ob-

tained by means of the MIR procedure, see [24]) that exploit the following fact: If no

capacity is added across a cut using unit-batches, then enough capacity should be added

using an integer number of �-batches.

Example 4.2.3 Consider the instance of CEP with V = f1; 2g and E = f1; 2g. Let � = 4,

t

12

= 7:2, t

21

= 5:7 and C

1;2

= 0:8. The cut-set inequality for this case is:

x

1;2

+ 4y

1;2

� 7 (4:6)

since dmaxf7:2; 5:7g � 0:8e = 7. Now assume that the 
ow costs are zero, the cost of a

unit-batch is C

1

= 1 and the cost of a �-batch is C

�

= 3 (so that C

1

> C

�

=�). After

including (4.6) to the LP-relaxation of the problem, the optimal solution has x

1;2

= 0 and

y

1;2

= 7=4, not an integral solution. Notice that if y

1;2

< 2 then y

1;2

� 1, implying x

1;2

� 3,

and thus,

x

1;2

� 3(2� y

1;2

)

is a valid inequality which cuts o� the above fractional solution from the set of feasible

solutions.

We next generalize this idea and introduce a new family of cut-set facets.

Theorem 4.2.4 Given a strong subset S of V such that � > r(dT (S)e ; �) > 0, then

x(�(S)) + r(dT (S)e ; �)y(�(S)) � r(dT (S)e ; �) dT (S)=�e (4:7)

is a facet of P

X

provided dT (S)e > 1 or C(�(S)) > 0 or j�(S)j = 1.
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Proof. To simplify notation, let E

0

= �(S), T

+

= dT (S)=�e and r

+

= r(

�

T ; �). We will

�rst rewrite (4.7) as

x(E

0

) � r

+

(T

+

� y(E

0

)):

For any p = (x; y; f) 2 P

X

, if y(E

0

) � T

+

then it is easy to see that (4.7) is valid. On the

other hand if y(E

0

) � T

+

� 1 then (4.2) and (4.3) imply that

x(E

0

) � dT (S)e � �y(E

0

)

= �

�

dT (S)e

�

�

+ r

+

� �y(E

0

)

= r

+

+ �

��

dT (S)e

�

�

� y(E

0

)

�

� r

+

�

T

+

� y(E

0

)

�

:

We will �rst construct a point in F = f(x; y; f) 2 P

X

: x(E

0

) = r

+

(T

+

� y(E

0

))g and

then we will show that it is a facet.

If C(E

0

) > 0, then let e

0

2 E

0

, be an edge such that C

e

0

> 0, otherwise choose an

arbitrary edge e

0

2 E

0

and consider �p = (�x; �y;

�

f ) where

�x

e

=

8

>

<

>

:

M e =2 E

0

0 otherwise

�y

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e =2 E

0

T

+

e = e

0

0 otherwise

and

�

f is such that

�

f

k

ij

;

�

f

k

ji

> 0 for all k 2 K for edges with positive �y

ij

, and e

0

is not

saturated. Obviously �p 2 F .

Assume that F is not a facet of P

X

, and let

�x+ �y + 
f = � (4:8)

be an equation di�erent from (4.7) satis�ed by all points p = (x; y; f) 2 F .
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Using similar arguments as in the proof of Theorem 4.2.2, it is possible to choose a

spanning tree T = (V;E

00

) of G and show that �

e

= �

e

= 0 for all e =2 E

0

and �

e

= (1=r

+

)�

e

for all e 2 E

0

. Furthermore, we can also show that 


k

ij

= 0 for all fi; jg 2 (E n E

0

) [ fe

0

g

and k 2 K.

If jE

0

j � 2, then choose an edge fu; vg = e

1

2 E

0

di�erent from e

0

and consider the

point p

0

= (x

0

; y

0

; f

0

) 2 F where

x

0

e

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

M e =2 E

0

r

+

� 1 e = e

0

1 e = e

1

0 otherwise

y

0

e

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

M e =2 E

0

T

+

� 1 e = e

0

0 e = e

1

0 otherwise

and f

0

is such that neither e

0

nor e

1

is saturated and 
ow for all commodities is positive

on both directions for e

0

and e

1

. Notice that the conditions of the theorem and the choice

of e

0

imply that x

0

e

0

+ �y

0

e

0

+ C

0

e

0

> 0.

Now using this point we can �nd a cycle containing e

0

and e

1

and some of the edges in

E nE

0

and send circulation 
ows to argue that 


k

uv

= 0 for all k 2 K. Since e

1

is arbitrary,

we conclude that 
 = 0.

Lastly, p

0

2 F also implies that for some �� 2 R, �

e

= �� = (1=r

+

)�

e

for all e 2 E

0

.

Therefore (4.8) is a multiple of (4.7) (plus a linear combination of 
ow-balance equalities)

and (4.7) de�nes a facet of P

X

.

Notice that, given a strong subset S of V , if dT (S)e = 1, C(�(S)) = 0 and j�(S)j > 1,

then all of the points on the face de�ned by (4.7) satisfy the family of equations,

f

k

ij

� f

k

ji

= (x

i;j

+ y

i;j

)

X

v2V nS

t

kv

for i; k 2 S, fi; jg 2 �(S), and thus (4.7) is not facet de�ning. In the next section we

introduce some facets of the CEP polytope that include the 
ow variables as well as the

capacity variables, and these facets can be considered as generalizations of cut-set facets.
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The model studied in [22] di�ers from ours primarily in that there is a single commodity

(i.e. a single origin-destination node pair for which there is positive demand) and there

are three types of capacity batches that one can add to any edge. In [22] it is stated

that the above cut-set inequalities are facet-de�ning, as well as a third type of cut-set

inequality, which arises by applying the MIR procedure one additional time (to handle the

third type of capacity variable). It is shown therein that if there are no 
ow costs, then

under reasonable assumptions on the cost coe�cients the linear program containing all

cut-set inequalities has some optimal solution that is integral; and they present an e�cient

algorithm for computing that solution which uses the optimal dual variables.

We note that for the multicommodity case, the cut-set inequalities typically reduce

the integrality gap to 30% and they are also helpful in terms of pinpointing \interesting"

subset of vertices. Below we consider stronger inequalities which include the cut-set facets

as a special case.

4.3 Flow-cut-set Facets

In this section we generalize the cut-set facets to include the 
ow variables as well. Consider

a subset S of V and the cut-set facets (4.4) and (4.7) related with it. After including these

facets in the LP-relaxation of CEP, there exists feasible points to the extended formulation

which assign an integer amount of total capacity across the cut �(S) but allocate this

capacity fractionally among the edges in the cut. The 
ow-cut-set facets exclude some of

these points from the feasible region.

Given a subset S of V and a non-empty partition fE

1

; E

2

g of �(S), we will denote the

edges in E

i

directed away from S by A

i

(i.e. A

i

= f(u; v) : u 2 S; v =2 S; fu; vg 2 E

i

g), and

similarly by

�

A

i

we will denote the edges in E

i

directed to S.

Consider a simple instance of CEP where there is a single commodity to be routed

from S to

�

S. Furthermore, assume that the cost of routing 
ow through A

1

is smaller

than that of A

2

but cost of adding capacity on E

1

is bigger. In this case, solutions to the

LP-relaxation will assign just enough (fractional) capacity to the E

2

edges, but send all
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the 
ow using A

2

. When combined with cut-set facets, the 
ow-cut-set facets force the

capacity added to E

2

to be integral. These facets have the following common structure,

bx(E

2

) + cy(E

2

) + f

Q

(A

1

) � d (4:9)

where Q is a subset of S and b; c; d 2 R.

Before proceeding any further, we �rst prove the following technical lemma, which will

help us keep the facet proofs less lengthy. In Lemma 4.3.2 we consider a facet of the form

(4.9) and investigate some properties of the equations which are satis�ed by all points of

this facet.

De�nition 4.3.1 Given two sets S and Q such that Q � S � V we de�ne t(W;V n S) =

P

i2W

P

j =2S

t

ij

, and we call Q a \commodity subset " of S if t(q; V n S) > 0 for all

q 2 Q.

Lemma 4.3.2 Given a strong subset S of V , a commodity subset Q of S, a nonempty

partition fE

1

; E

2

g of �(S) and a face

F =

8

<

:

(x; y; f) 2 P

X

: b

X

e2E

2

x

e

+ c

X

e2E

2

y

e

+

X

a2A

1

X

k2Q

f

k

a

= d

9

=

;

of P

X

where b; c; d 2 R, assume that the equation �x+�y+
f = � is satis�ed by all points

in F . Then, without loss of generality ,

(i) If F is proper (i.e. F 6= ;), then �

e

= �

e

= 0 for all e 2 E nE

2

:

(ii) If there exists �p = (�x; �y;

�

f ) 2 F such that �x(E

2

) + ��y(E

2

) + C(E

2

) >

�

f

K

(A

2

);

then 


k

a

= 0 for all k 2 K; a =2 A

1

and k =2 Q; a 2 A

1

:
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(iii) If 


k

a

= 0 for k 2 K; a =2 A

1

and there is a point p̂ = (x̂; ŷ;

^

f) 2 F satisfying

x̂(E

2

) > 0; then there exists �� 2 R such that �

e

= �� for all e 2 E

2

; and

similarly if ŷ(E

2

) > 0, then there exists

�

� 2 R such that �

e

=

�

� for all

e 2 E

2

:

(iv) If 


k

a

= 0 for k 2 K; a =2 A

1

and there is a point ~p = (~x; ~y;

~

f) 2 F such that

~

f

Q

(A

1

) > 0; then for all k 2 Q there exists �


k

2 R such that 


k

a

= �


k

for all

a 2 A

1

: Furthermore, if

~

f

Q

(A

2

) > 0 as well, then, there exists �
 2 R such that

�


k

a

= �
 for all k 2 K; a 2 A

1

Proof.

(i) Given p = (x; y; f) 2 F choose a �xed edge e 2 E n E

2

, and let p

0

= (x

0

; y

0

; f

0

) be

identical to p with the exception that x

0

e

= �x

e

+ 1. Then p

0

2 F and consequently �

e

= 0.

Similarly �

e

= 0.

(ii) Given �p = (�x; �y;

�

f) 2 F satisfying �x(E

2

) + ��y(E

2

) + C(E

2

) >

�

f

K

(A

2

), we can assume

that �x(E

2

) + ��y(E

2

) + C(E

2

) >

�

f

K

(

�

A

2

) as well, since it is possible to route some of the


ow on

�

A

2

using edges in E nE

2

(after increasing the capacities, if necessary).

Let e

0

2 E

2

be such that C(e

0

) = max

e2E

2

fC(e)g and modify �p to obtain p

0

=

(x

0

; y

0

; f

0

) 2 F , where

x

0

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E nE

2

�x(E

2

) e = e

0

0 otherwise

y

0

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E nE

2

�y(E

2

) e = e

0

0 otherwise

and f

0

is obtained from

�

f by rerouting any 
ow in excess of existing capacities on edges

E

2

n e

0

, to e

0

, using the edges in E n �(S). Notice that e

0

is not saturated.

Let T = (V;E

00

) be a spanning tree of V such that E

00

� (E n �(S)) [ e

0

. As in the

proof of Theorem 4.2.2, we can �rst argue that 


k

ij

= 0 for all fi; jg 2 E

00

, k 2 K and then

by using circulation 
ows, show that 


k

ij

= 0 for all k 2 K; a =2 A

1

and k =2 Q; a 2 A

1

.
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(iii) Whenever x̂(E

2

) > 0 and jE

2

j > 1, it is possible to choose e

0

with x

e

0

> 0 and

e

1

2 E

2

n e

0

and construct a new point similar to p̂ by increasing x̂

e

1

by x̂

e

0

and decreasing

x̂

e

0

to zero and then rerouting 
ow. Therefore, �

e

= �� for e 2 E

2

. Similarly, �

e

=

�

� for

e 2 E

2

if ŷ(E

2

) > 0.

(iv) Without loss of generality we can assume that

~

f does not saturate edges in E n E

2

.

For an arbitrary q 2 Q, if

~

f

q

(A

1

) > 0, then let a 2 A

1

be a directed edge with

~

f

q

a

> 0.

Whenever jE

1

j > 1, we can choose a

0

2 A

1

n a and construct p

00

= (~x; ~y; f

00

) where f

00

is obtained from

~

f by routing some 
ow of commodity q to go through a

0

instead of a.

Therefore, 


q

a

= �


q

for all a 2 A

1

.

On the other hand, if

~

f

q

(A

1

) = 0 then jQj > 1 and

~

f

q

a

> 0 for some a 2 A

2

. In this

case, it is possible to �nd q

0

2 Q n q such that

~

f

q

0

a

0

> 0 for some a

0

2 A

1

, and construct

p

00

= (~x; ~y; f

00

) 2 F where f

00

is obtained from

~

f by rerouting 
ow to decrease

~

f

q

a

and

~

f

q

0

a

0

by minf

~

f

q

a

;

~

f

q

0

a

0

g and increase

~

f

q

0

a

and

~

f

q

a

0

by the same amount. This new point has

f

00

q

(A

1

) > 0, and thus 


q

a

= �


q

for all a 2 A

1

.

Therefore, if

~

f

Q

(A

1

) > 0 then for all q 2 Q and a 2 A

1

, 


q

a

= �


q

. Furthermore if

~

f

Q

(A

2

) > 0 as well, then the above argument also implies that �


q

= �
.

All of the facet de�ning inequalities presented in this section exploit the following basic

idea. Consider the polyhedron

P = conv

�

x 2 Z

+

; f 2 R

+

: f + ax � b

	

when a > r(b; a) > 0 (i.e. a; b > 0 and b is not an integer multiple of a), and let CP denote

its continuous relaxation. As described in [24], it is easy to observe that all of the points

in CP n P violate the inequality f � r(b; a)(db=ae � x) and consequently P can also be

expressed as,

P =

�

x; f 2 R

+

: f + ax � b; f � r(b; a)(db=ae � x)

	

:

Also notice that, for an arbitrary polyhedron, if f +ax � b is a valid inequality for x 2 Z

+
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and f 2 R

+

then

f � r(b; a)(db=ae � x) (4:10)

is a valid (MIR) inequality.

Given two sets S and Q such that Q � S � V , it is easy to see that the total 
ow of

commodities in Q leaving S should be su�cient to satisfy the total demand in V n S. Let

fE

1

; E

2

g be a partition of �(S), and remember that A

i

denotes the edges in E

i

oriented

from S to V n S. Then, we can write

f

Q

(A

1

) + f

Q

(A

2

) � t(Q;V nS)

implying

f

Q

(A

1

) + x(E

2

) + �y(E

2

) + C(E

2

) � t(Q;V nS)

and

f

Q

(A

1

) + x(E

2

) + �y(E

2

) � t(Q;V nS)� C(E

2

): (4:11)

We now write an inequality of the form (4.10) using the fact that f

Q

(A

1

) 2 R

+

and

x(E

2

) + �y(E

2

) 2 Z

+

. For a given subset Q of S, the following theorem develops a lower

bound on f

Q

(A

1

) when x(E

2

)+�y(E

2

) is less than the minimum integral capacity that can

carry the total demand of Q in V n S. We also note that (4.12) of Theorem 4.3.3 becomes

the cut-set inequality (4.4) when E

1

= ;.

Theorem 4.3.3 Given a strong subset S of V , a commodity subset Q of S and a nonempty

partition fE

1

; E

2

g of �(S), let T

0

= t(Q;V nS)� C(E

2

), r

0

= r(T

0

) and

�

T = dT

0

e.

(i) If 1 > r

0

> 0 then

f

Q

(A

1

) � r

0

�

�

T � x(E

2

)�minf�;

�

Tgy(E

2

)

�

(4:12)

is a facet of P

X

provided T

0

> 1 or C(E

2

) > 0.
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(ii) If 1 > T

0

> 0 and C(E

2

) = 0 then

f

Q

(A

1

) � T

0

(1� x(E

2

)� y(E

2

)) (4:13)

is a facet of P

X

provided jQj = 1.

Proof. Since (ii) is a special case of (i), we will only show the validity of (i). When

�

T � �,

validity of (i) is same as (4.10). If � >

�

T , then it is easy to see that (4.12) is valid when

y(E

2

) > 0, and if y(E

2

) = 0 then the above derivation is still valid.

(i) Choose a �xed edge e

0

2 E

2

and consider p

1

= (x

1

; y

1

; f

1

) 2 F , where

x

1

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E nE

2

�

T e = e

0

0 otherwise

y

1

e

=

8

>

<

>

:

M e 2 E nE

2

0 otherwise

and f

1

is a feasible 
ow vector satisfying (f

1

)

Q

(A

2

) = t(Q;V n S), (f

1

)

Q

(A

1

) = 0 and

(f

1

)

KnQ

(A

2

) = 0. Notice that since S is a strong subset and x

1

(E

2

) + y

1

(E

2

) > T

0

, it is

possible to �nd a 
ow vector f

1

. Next consider p

2

= (x

2

; y

2

; f

1

) which is identical to p

1

with the exception that y

2

e

0

= 1 and x

2

e

0

= x

1

e

0

�minf�;

�

Tg. Clearly p

2

2 F .

If F is not a facet, then there is an equation �x + �y + 
f = � di�erent from (4.12)

satis�ed by all points (x; y; f) 2 F . Applying Lemma 4.3.2 with p

1

and p

2

, we can argue

that 


k

a

= 0 unless q 2 Q and a 2 A

1

; �

e

= �

e

= 0 for e 2 E n E

2

and there exist

��;

�

� 2 R such that, �

e

= ��, �

e

=

�

� for all e 2 E

2

. Furthermore, p

1

; p

2

2 F also imply that

�

� = minf�;

�

Tg��.

Next consider p

3

= (x

3

; y

1

; f

3

) 2 F where x

3

is identical to x

1

with the exception that

x

3

e

0

=

�

T�1, and f

3

is a feasible 
ow vector satisfying (f

3

)

Q

(A

2

) = x

3

(E

2

)+y

3

(E

2

)+C(E

2

)

and (f

3

)

Q

(A

1

) = r

0

> 0. Notice that that (f

3

)

Q

(A

2

) = t(Q;V nS)�r

0

> 0 and using Lemma

4.3.2 we can conclude that 


k

a

= �
 for k 2 Q; a 2 A

1

, furthermore, p

1

; p

3

2 F also imply

that �� = r

0

�
.

Finally p

1

2 F implies that � = ��

�

T , and consequently, �x+ �y + 
f = � is a multiple
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of (4.13) plus a linear combination of 
ow-balance equalities.

(ii) The proof is identical to the �rst part with the only di�erence being (f

3

)

Q

(A

2

) = 0.

But since jQj = 1, Lemma 4.3.2 still implies that 


k

a

= �
 for k 2 Q; a 2 A

1

.

Example 4.3.4 Consider the instance of CEP with jSj = j

�

Sj = 1 E

1

= e

1

, E

2

= e

2

and assume that T

0

= 6:8 and � = 4. A possible solution to this instance (that is, with

appropriate cost coe�cients) has y(E

2

) = 1:7, x(E

2

) = 0 and f(A

1

) = 0 and this fractional

solution is cut-o� by the 
ow-cut-set inequality

f(A

1

) � 0:8 (7� 4y(E

2

)� x(E

2

)) (4:14)

since the right hand side is 0:16. After including (4.14) in the formulation the new solution

has y(E

2

) = 1:75, x(E

2

) = 0 and f(A

1

) = 0.

As this example demonstrates, (4.12) and (4.13) are not su�cient to force y(E

2

) to be

integral when both x(E

2

) and f(A

1

) are zero. Next we write another inequality of the

form (4.10) which implies that if f

Q

(A

1

) = x(E

2

) = 0 then y(E

2

) can not be less than the

minimum integral capacity that can carry t(Q;V nS)� C(E

2

).

Theorem 4.3.5 Given a strong subset S of V , a commodity subset Q of S and a nonempty

partition fE

1

; E

2

g of �(S), let T

0

= t(Q;V nS) � C(E

2

), T

+

= dT

0

=�e and �r = r(T

0

; �).

Then,

f

Q

(A

1

) + minf1; �rgx(E

2

) � �r

�

T

+

� y(E

2

)

�

(4:15)

is a facet of P

X

provided T

0

> 1 and � > �r.

Proof. To show that (4.15) is a valid for P

X

we �rst note that it is implied by non-

negativity constraints whenever y(E

2

) � T

+

or minf1; �rgx(E

2

) � �r (T

+

� y(E

2

)). So we

will concentrate on the case when y(E

2

) � T

+

� 1 and minf1; �rgx(E

2

) < �r (T

+

� y(E

2

)),

and rewrite the lower bound on the total 
ow of Q-commodities on A

1

edges,

f

Q

(A

1

) � T

0

� x(E

2

)� �y(E

2

)



Chpt. 4 Capacitated Network Design 87

= �

�

T

+

� 1

�

+ �r � x(E

2

)� �y(E

2

)

= �

�

T

+

� 1� y(E

2

)

�

+ �r � x(E

2

): (4.16)

Next we consider two cases. When �r > 1 then using y(E

2

) � T

+

� 1 and � � �r, (4.16)

can be modi�ed as

f

Q

(A

1

) � �r(T

+

� 1� y(E

2

)) + �r � x(E

2

)

= �r

�

T

+

� y(E

2

)

�

� x(E

2

):

On the other hand, if �r < 1, then using � > 1 and x(E

2

) < (T

+

� y(E

2

)), we can write

f

Q

(A

1

) � �

�

T

+

� 1� y(E

2

)� x(E

2

)

�

+ �r

� �r

�

T

+

� y(E

2

)� x(E

2

)

�

:

and conclude that (4.15) is a valid inequality.

To show that (4.15) is a facet we will construct several points on the related face. Let

e

0

2 E

2

and consider p

1

= (x

1

; y

1

; f

1

) 2 F , where

x

1

e

=

8

>

<

>

:

M e 2 E nE

2

0 otherwise

y

1

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E nE

2

T

+

e = e

0

0 otherwise

and f

1

is a feasible 
ow vector such that it does not saturate e

0

and (f

1

)

Q

(A

1

) = 0. Next

we construct p

2

= (x

1

; y

2

; f

2

) 2 F where y

2

is same as y

1

except y

2

e

0

= T

+

� 1 and f

2

is a

feasible 
ow vector saturating all the edges in E

2

and satisfying (f

2

)

Q

(A

1

) = �r. Lastly we

construct p

3

= (x

3

; y

2

; f

3

) 2 F where x

3

is same as x

1

except x

2

e

0

= 1, and f

3

saturates all

the edges in E

2

and satis�es (f

3

)

Q

(A

1

) = �r �minf1; �rg.

Assume that (4.15) is not a facet and let �x + �y + 
f = � be an equation di�erent

from (4.12) satis�ed by all points (x; y; f) 2 F . Notice that if t(Q;V nS) > �r (i.e. when



Chpt. 4 Capacitated Network Design 88

C(E

2

) > 0 or t(Q;V nS) > �), then (f

2

)

Q

(A

2

) > 0 and if t(Q;V nS) = �r, then �r > 1 and

(f

3

)

Q

(A

2

) > 0. Therefore, applying Lemma 4.3.2 with p

1

, p

2

, and p

3

we can show that

there exist ��;

�

�; �
 2 R satisfying;

�

e

=

8

>

<

>

:

�� e 2 E

2

0 otherwise

�

e

=

8

>

<

>

:

�

� e 2 E

2

0 otherwise




k

a

=

8

>

<

>

:

�
 a 2 A

1

; k 2 Q

0 otherwise:

Furthermore, p

1

; p

2

; p

3

2 F also imply that, �
 =

�

�=�r, �� = minf1; �rg�
, and � =

�

�T

+

.

Example 4.3.4 (continued) Recall that, after including (4.14) in the formulation,

the solution had y(E

2

) = 1:75, x(E

2

) = 0 and f(A

1

) = 0. As T

0

= 6:8 and � = 4, this

solution does not satisfy (4.15) since the right hind side of

f(A

1

) + x(E

2

) � 2:8 (2� y(E

2

)) (4:17)

is positive. After including (4.17) in the formulation, the new solution is y(E

2

) = 1:1

�

6,

x(E

2

) = 2:

�

3 and f(A

1

) = 0, still not an integral solution.

The last 
ow-cut-set facet (4.18) can be considered as an extension of (4.10) to three

variables, and it states that when y(E

2

) is not su�cient to carry all the 
ow, and x(E

2

)

is not big enough to carry the remainder, then f(A

1

) can not be zero. We also note that

(4.18) of Theorem 4.3.6 becomes the cut-set inequality (4.7) when E

1

= ;.

Theorem 4.3.6 Given a strong subset S of V , a commodity subset Q of S and a nonempty

partition fE

1

; E

2

g of �(S), let T

0

= t(Q;V nS) � C(E

2

), r

0

= r(T

0

), T

+

= dT

0

=�e and

r

+

= r(dT

0

e ; �). Then,

f

Q

(A

1

) � r

0

�

r

+

�

T

+

� y(E

2

)

�

� x(E

2

)

�

(4:18)

is a facet of P

X

provided T

0

> 1 and 1 > r

0

.

Proof. We �rst show (4.18) is valid. This can be shown by applying the MIR procedure

twice, but we will present a direct proof. For any p = (x; y; f) 2 P

X

, (4.18) is valid
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whenever y(E

2

) � T

+

or x(E

2

) � r

+

(T

+

� y(E

2

)). Now consider the case when y(E

2

) �

T

+

� 1 and x(E

2

) � r

+

(T

+

� y(E

2

))� 1. We know that

f

Q

(A

1

) � T

0

� x(E

2

)� �y(E

2

)

= �

�

T

+

� 1

�

+ (r

+

� 1) + r

0

� x(E

2

)� �y(E

2

)

= �

�

T

+

� 1� y(E

2

)

�

+ r

+

� 1� x(E

2

) + r

0

:

Using � � r

+

and 1 � r

0

we can write

f

Q

(A

1

) � r

+

�

T

+

� 1� y(E

2

)

�

+ r

+

� 1� x(E

2

) + r

0

= r

+

�

T

+

� y(E

2

)

�

� 1� x(E

2

) + r

0

� r

0

�

r

+

�

T

+

� y(E

2

)

�

� 1� x(E

2

)

�

+ r

0

= r

0

�

r

+

�

T

+

� y(E

2

)

�

� x(E

2

)

�

:

Therefore, (4.18) is a valid inequality for P

X

. To see that it is a facet, we will construct

several points on the related face. Let e

0

2 E

2

and consider p

1

= (x

1

; y

1

; f

1

) 2 F , where

x

1

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E nE

2

r

+

e = e

0

0 otherwise

y

1

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E nE

2

T

+

� 1 e = e

0

0 otherwise

and f

1

is a feasible 
ow vector such that it does not saturate e

0

and satis�es (f

1

)

Q

(A

1

) = 0.

Next we construct p

2

= (x

2

; y

2

; f

1

) 2 F where x

2

and y

2

are same as x

1

and y

1

except

x

2

e

0

= 0 and y

2

e

0

= T

+

. Lastly we construct p

3

= (x

3

; y

1

; f

3

) 2 F where x

3

is same as x

1

except x

2

e

0

= r

+

� 1, and f

3

saturates all the edges in E

2

and satis�es (f

3

)

Q

(A

1

) = r

0

.

Using similar arguments as in the proof of Theorem 4.3.5, we can use points p

1

; p

2

and

p

3

to show that (4.18) is a facet of P

X

.
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Example 4.3.4 (continued) When applied to the given instance, (4.18) becomes

f(A

1

) � 0:8 (3 (2� y(E

2

))� x(E

2

)) (4:19)

and including (4.19) in the formulation �nally results in the integral solution with y(E

2

) =

1, x(E

2

) = 2 and f(A

1

) = 0:8.

4.4 Three-partition Facets

When deriving the cut-set or the 
ow-cut-set facets, the main idea is to �nd an edge-

cut dividing the network into two connected components, and develop lower bounds on

the variables related with the edges appearing on this cut. A natural extension of this

approach is to consider a multi-cut, partitioning the network into three components, and

study the facets related with this multicut.

Let � � E be such a multicut and fS

1

; S

2

; S

3

g be the related partition of the node

set. If each S

i

is strong, then it is possible to develop a lower bound on the capacity to be

added across this multicut as follows. First we add up the cut-set inequalities (4.4) related

with each S

i

and then divide both sides of the resulting inequality by two to get the valid

(implied) inequality x(�) + �y(�) � (dT (S

1

)e+ dT (S

2

)e+ dT (S

3

)e)=2. Notice that if the

right hand side is fractional (i.e.

P

i

dT (S

i

)e is odd), then it is possible to strengthen the

inequality by replacing the right hand side by its ceiling to obtain,

x(�) + �y(�) �

�

dT (S

1

)e+ dT (S

2

)e+ dT (S

3

)e

2

�

: (4:20)

Although one would expect the strengthened inequality to be a facet of the CEP poly-

tope (similar inequalities are facet de�ning for NLP, see [23]), in some cases it does not

even de�ne a supporting hyperplane. The following example demonstrates one such case.

Example 4.4.1 Consider the single batch-size version of CEP when jV j = 3, G is the

complete graph K

3

and there is no existing capacity. Let t

12

= t

13

= t

23

= 5 and t

21

=
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t

31

= t

32

= 0. For this case (4.20) becomes, x

12

+ x

13

+ x

23

� 13 as T (1) = T (3) = 10 and

T (2) = 5.

Notice that before reaching its destination, each unit of t

12

; t

13

or t

23

has to go through

the directed edges (1; 2); (1; 3) or (2; 3) at least once. This observation implies that

x

12

+ x

13

+ x

23

� t

12

+ t

13

+ t

23

= 15

is a valid inequality, dominating (4.20).

4.4.1 A Three Node Problem

Next, we study the polyhedral structure of this simpli�ed version of CEP (i.e. when there

is a single batch-size and G = K

3

= (V

3

; E

3

)). We denote the integral polyhedron related

with this problem by P

X3

and its continuous relaxation by CP

X3

. For CP

X3

, Lemma 4.4.2

establishes the necessary conditions on the capacity variables x, under which one can �nd

a feasible 
ow vector.

Lemma 4.4.2 Given �x 2 R

3

, there exists a 
ow vector

�

f such that (�x;

�

f ) 2 CP

X3

if and

only if

(i) �x(i) � T (i) for all i 2 V

3

,

(ii) �x(E

3

) + C(E

3

) � t

ij

+ t

ik

+ t

kj

for all permutations � = (i; j; k) of V

3

; and

(iii) �x

i;j

� 0 for all fi; jg 2 E

3

:

Proof. The necessity of (i) - (iii) is obvious. To show that they are su�cient, we construct

a feasible 
ow vector

�

f which satis�es the following two conditions for every ordered pair

of nodes (i; j):

� If �x

i;j

+ C

i;j

� t

ij

then t

ij

is sent directly from node i to node j.

� If �x

i;j

+ C

i;j

< t

ij

then �x

i;j

+ C

i;j


ow is routed on (i; j) and t

ij

� �x

i;j

� C

i;j

via k.
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It is easy to check that

�

f satis�es the 
ow-balance equalities, and for all i 6= j

X

v

�

f

v

ij

= minft

ij

; �x

i;j

+ C

i;j

g+ (t

ik

� �x

i;k

� C

i;k

)

+

+ (t

kj

� �x

k;j

� C

k;j

)

+

:

To show that

�

f also satis�es the capacity constraints, we consider the following two cases.

For any ordered pair (i; j), if t

ij

� �x

i;j

+ C

i;j

then both (t

ik

� �x

i;k

� C

i;k

)

+

and (t

kj

�

�x

k;j

� C

k;j

)

+

are zero due to (i) applied to node i and node j, respectively, and thus

P

v

f

v

ij

= �x

i;j

+ C

i;j

.

On the other hand, when t

ij

< �x

i;j

+C

i;j

, then the total 
ow on (i; j) equals t

ij

+(t

ik

�

�x

i;k

�C

i;k

)

+

+ (t

kj

� �x

k;j

�C

k;j

)

+

. When either the second or the third term is zero, this

is at most �x

i;j

+ C

i;j

by (i) applied to i or j, respectively. When they are both positive,

this is also at most �x

i;j

+ C

i;j

by (ii).

In other words, Lemma 4.4.2 states that CP

X3

can be projected on the space of x vari-

ables by using (i) - (iii). We note that (i) - (ii) of Lemma 4.4.2 belong to a family of

inequalities called \metric inequalities" (see [15], for example). It is known that these

inequalities are su�cient to project the continuous relaxation of a capacitated multicom-

modity 
ow polyhedron on the space of the discrete variables. In Lemma 4.4.2 we identify

the important metric inequalities for CP

X3

. Also notice that if we de�ne

� = max

�=(i;j;k)

ft

ij

+ t

ik

+ t

kj

g

then (ii) can be replaced by a single inequality �x(E

3

) + C(E

3

) � �.

Corollary 4.4.3 Given �x 2 Proj

x

(CP

X3

), if �x satis�es (i) with strict inequality for all

nodes, and if �x(E

3

) + C(E

3

) > �, then it is possible to �nd a feasible 
ow vector

�

f such

that (�x;

�

f ) 2 CP

X3

and

�

f does not saturate edge e 2 E

3

if x

e

+ C

e

> 0.

Corollary 4.4.4 Given an integral vector �x 2 Proj

x

(CP

X3

), �x + C > 0, if �x satis�es (i)

with strict inequality for all nodes, and if �x(E

3

) + C(E

3

) > �, then it is possible to �nd a

feasible 
ow vector

�

f such that (�x;

�

f) 2 P

X3

and

�

f does not saturate any edge e 2 E

3

.
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Using Lemma 4.4.2, we next show that the projection of P

X3

on the space of the discrete

variables can be obtained by strengthening (i) and (ii). Lemma 4.4.5 can be considered as

a generalization of the result by Magnanti, Mirchandani and Vachani. In [23] Magnanti et

al. study a similar three-node network design problem (called NLP) where it is assumed

that there is a single batch size and there is no existing capacity on the edges. Furthermore,

the capacity constraints are di�erent from the ones we study here, and consequently they

can assume that there are only two source nodes with positive supply nodes.

Lemma 4.4.5

proj

x

(P

X3

) =

n

x 2 R

3

:

x(i) � dT (i)e for all i 2 V

3

(4.21)

X

i>j

x

i;j

� max

��

P

i

dT (i)e

2

�

; d� � C(E

3

)e

�

(4.22)

x

i;j

� 0 (4.23)

o

Proof. Let Q be the polyhedron de�ned by (4.21) - (4.23) and notice that proj

x

(P

X3

) �

Q � proj

x

(CP

X3

).

Consider any extreme point �x of Q. If the inequalities de�ning �x include (4.22) or one

of (4.23), it is easy to see that �x is integral. The remaining case occurs when �x is de�ned

by inequalities (4.21) alone. In this case �x

i;j

= (dT (i)e + dT (j)e � dT (k)e)=2 implying

�x

1;2

+�x

1;3

+�x

2;3

= (dT (i)e+dT (j)e+dT (k)e)=2. Since �x must also satisfy (4.22), it follows

that

P

i

dT (i)e

2

�

�

P

i

dT (i)e

2

�

implying

P

i

dT (i)e=2, and thus �x is integral.
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We also note that (4.21) - (4.23) provide a non-redundant description of proj

x

(P

X3

)

when

max

��

P

i

dT (i)e

2

�

; d� � C(E

3

)e

�

>

P

i

dT (i)e

2

(4:24)

and (4.22) is redundant when (4.24) holds as an equality.

4.4.2 Main Three-Partition Facets

In the remainder of this section, we will work with three-partitions of V and using the

obvious relationship between three-partitions and K

3

, we describe some facets of P

X

using

(4.22) of Lemma 4.4.5 and its extensions. Given a partition � = fS

1

; S

2

; S

3

g of V , we use

�(i; j) to denote �(S

i

) \ �(S

j

) and � to denote �(1; 2) [ �(1; 3) [ �(2; 3). For typograph-

ical ease, we use x(i; j); y(i; j) and C(i; j) in place of x(�(i; j)); y(�(i; j)) and C(�(i; j))

respectively.

Given a three-partition of V , for the generalization of (4.22) of Lemma 4.4.5 to de�ne a

facet of P

X

, the partition has to satisfy certain properties. We next state these properties.

De�nition 4.4.6 Given a capacitated network G = (V;E) and related tra�c demands, a

three-partition fS

1

; S

2

; S

3

g of V is called a \critical partition " of V if every S

i

is a

strong subset of V , dT (S

i

)e > T (S

i

) for i = 1; 2; 3 and

dT (S

i

)e < dT (S

j

)e+ dT (S

k

)e

for any permutation (i; j; k) of f1; 2; 3g.

As in Section 4.3, we �rst consider a generic three-partition facet and investigate some

properties of the equations which are satis�ed by all points of this facet.

Lemma 4.4.7 Given a critical partition � = fS

1

; S

2

; S

3

g of V and a proper face

F =

8

>

<

>

:

(x; y; f) 2 P

X

:

X

j>i

a

i;j

X

e2�(i;j)

x

e

+

X

j>i

b

i;j

X

e2�(i;j)

y

e

= c

9

>

=

>

;
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of P

X

, where a

i;j

; b

i;j

2 R, j > i, and c 2 R, assume that equation �x + �y + 
f = � is

satis�ed by all points in F .

If there exists �p = (�x; �y;

�

f ) 2 F such that �x(�) + ��y(�) > maxf

P

i

T (i)=2; � � C(�)g

and �x(i; j) + �y(i; j) + C(i; j) > 0 for all j > i then without loss of generality ,

(i) �

e

= �

e

= 0 for all e 2 E n�;

(ii) 
 = 0;

(iii) for any j > i; if �x(i; j) > 0 then there exists ��

i;j

2 R such that �

e

= ��

i;j

;

for all e 2 �(i; j); and

(iv) if �y(i; j) > 0; then there exists

�

�

i;j

2 R such that �

e

=

�

�

i;j

for all

e 2 �(i; j):

Proof.

(i) Given e 2 E n�, let p

0

= (x

0

; y

0

; f

0

) be identical to p with the exception that x

0

e

= �x

e

+1.

Then p

0

2 F and consequently �

e

= 0. Similarly = �

e

= 0.

(ii) Choose edges e

i;j

= (u

i

; v

j

) 2 �(i; j) for all j > i such that C(e

i;j

) = max

e2�(i;j)

fC

e

g,

and using �p construct p

0

= (x

0

; y

0

; f

0

) 2 F where

y

0

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E n�

�y(i; j) e = e

i;j

0 otherwise

x

0

e

=

8

>

>

>

>

>

<

>

>

>

>

>

:

M e 2 E n�

�x(i; j) e = e

i;j

0 otherwise

and f

0

is a feasible 
ow vector. Since �p 2 F , p

0

is also in F and using Corollary 4.4.4 we

can assume that x

e

i;j

+ �y

e

i;j

+C(e

i;j

) > maxff

K

u

i

;v

j

; f

K

v

j

;u

i

g for all j > i.

Let T = (V;E

00

) be a spanning tree of V such that E

00

� fe

1;2

; e

1;3

g [ (E n�). As in

the proof of Theorem 4.2.2, we can �rst argue that 


k

ij

= 0 for fi; jg 2 E

00

, k 2 K and then

by using circulation 
ows, show that 


k

ij

= 0 for fi; jg 2 E nE

00

, k 2 K as well.
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(iii) If j�(i; j)j � 2 then let e

0

2 �(i; j) be an edge with �x

e

0

> 0. To obtain a new point in

F , we �rst choose an edge e

1

2 �(i; j) di�erent from e

0

, and perturb �p by decreasing x

e

0

to zero and increasing x

e

1

by �x

e

0

(if necessary increase x

e

for e =2 �) and rerouting some

of the 
ow on e

0

to go through e

1

so that 
ows on e

0

and e

1

do not exceed capacity. This

new point together with �p imply that �

e

0

= �

e

1

and since e

1

2 �(i; j) is arbitrary, we can

conclude that �

e

= ��

i;j

for all e 2 �(i; j).

(iv) The proof is identical to part (iii).

Given a three-partition � = fS

1

; S

2

; S

3

g of V , we denote dT (S

i

)e by

�

T (i) and

P

u2S

i

P

v2S

j

t

ij

by T (i; j).

We use � for max

�

fT (i; j) + T (i; k) + T (k; j)g and

�

� for d� � C(�)e. Lastly we de�ne

� to be

� = max

(&

P

i

�

T (i)

2

'

;

�

�

)

:

The following is a straight forward extension of Lemma 4.4.5 to three-partitions of V .

Theorem 4.4.8 Given a critical partition � = fS

1

; S

2

; S

3

g of V , if � �

�

T (i) � � for

i = 1; 2; 3, then,

x(�) + �y(�) � � (4:25)

is a facet of P

X

provided � > maxf

P

i

�

T

i

=2; � � C(E)g.

Proof. Validity of (4.25) is due to Lemma 4.4.5. As before, we will start with constructing

a point on the related face F = f(x; y; f) 2 P

X

: x(�) + �y(�) = �g:

Choose a �xed e

i;j

2 �(i; j) for all j > i, and let

�

T (3) �

�

T (2) �

�

T (1). Consider the
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point p

1

= (x

1

; y

1

; f

1

), where

x

1

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

�

P

i

�

T (i)=2

�

�

�

T (3) e = e

1;2

�

P

i

�

T (i)=2

�

�

�

T (2) e = e

1;3

�

P

i

�

T (i)=2

�

�

�

T (1) +

�

��

�

P

i

�

T (i)=2

��

e = e

2;3

0 otherwise

y

1

e

=

8

>

>

<

>

>

:

M e =2 �

0 otherwise

and f

1

is some feasible 
ow vector which exists by Corollary 4.4.4. Observe that p

1

2 F .

Notice that, since � is a critical partition ,

&

P

i

�

T (i)

2

'

�

�

T (j) �

&

P

i

�

T (i)

2

'

�

�

T (3) =

&

�

T (1) +

�

T (2)�

�

T (3)

2

'

� 1

for all j. It is also true that

�

P

i

�

T (i)=2

�

�

�

T (j) � 0 for j = 1; 2; 3. Therefore x

1

� 0 and

x

1

(1; 2); x

1

(1; 3) > 0. To use Lemma 4.4.7, we also need to show that x

1

(2; 3) > 0. Assume

that x

1

(2; 3) = 0, and therefore � =

�

P

i

�

T (i)=2

�

, and

�

P

i

�

T (i)=2

�

=

�

T (1). In this case

0 =

$

X

i

�

T (i)=2

%

�

�

T (1) �

�

T (2) +

�

T (3)�

�

T (1)� 1

2

together with the choice of

�

T (1) implies that

�

T (1) =

�

T (2) =

�

T (3) = 1. Consequently,

� = 2 is less than �+

�

T (1), a contradiction. Therefore, x

1

(2; 3) is also positive.

Assuming F is not a facet, let

�x+ �y + 
f = � (4:26)

be an equation di�erent from (4.25) satis�ed by all points p = (x; y; f) 2 F .

Using Lemma 4.4.7 with p

1

it is easy to see that 
 = 0 and �

e

= �

e

= 0 for e 2 E n�.

It is also true that, for j > i, if e 2 �(i; j), then �

e

= ��

i;j

. To show that there exists

�� 2 R such that, �

e

= �� for all e 2 �, we consider two cases. If

P

i

�

T (i) is odd, then
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it is possible to perturb p

1

by increasing x

1

e

2;3

and decreasing x

1

e

1;2

or x

1

e

1;3

. On the other

hand, if

P

i

�

T (i) is even then, ��

P

i

�

T (i) > 0 and we can perturb p

1

by decreasing x

1

e

2;3

and increasing x

1

e

1;2

or x

1

e

1;3

. In both cases the resulting capacities satisfy the feasibility

conditions by Lemma 4.4.5 so that it is possible to �nd a related 
ow vector.

Now consider a di�erent point p

2

= (x

2

; y

1

; f

2

) where

x

2

e

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

P

i

�

T (i)=2

�

�

�

T (3) +

�

��

�

P

i

�

T (i)=2

��

e = e

1;2

�

P

i

�

T (i)=2

�

�

�

T (1) e = e

2;3

x

1

e

otherwise

and f

2

is some feasible 
ow vector. Notice that x

2

1;2

� � so that by perturbing p

2

, we can

show that �

e

1;2

= (1=�)�

e

1;2

. Constructing di�erent points with x

e

2;3

� � and x

e

1;3

� � we

can conclude that �

e

= �� = (1=�)�

e

for all e 2 �. Therefore, (4.26) is a multiple of (4.25)

(plus a linear combination of 
ow-balance equalities), and thus F is a facet of P

X

.

Next we consider the case when given a critical partition fS

1

; S

2

; S

3

g of V , ��

�

T (i) � �

does not hold for all S

i

. Let

�

T (3) �

�

T (2) �

�

T (1). If � > ��

�

T (3), then

��

�

T (3) �

 

P

i

�

T (i)

2

+

1

2

!

�

�

T (3) �

�

T (1) +

�

T (2)�

�

T (3) + 1

2

implies that 2� +

�

T (3) >

�

T (1) +

�

T (2) + 1 �

�

T (3). Therefore, this case arises when

2�� 1 >

�

T (1)+

�

T (2)�

�

T (3), or, in other words, when the sum

�

T (1)+

�

T (2) is not very big

when compared to

�

T (3).

Theorem 4.4.9 Given a critical partition � = fS

1

; S

2

; S

3

g of V , let

�

T (3) �

�

T (2) �

�

T (1).

If ��

�

T (3) < � and

�

T (3) � �, then

x(�) + (��

�

T (3))y(1; 2) + �y(1; 3) + �y(2; 3) � � (4:27)

is a facet of P

X

provided � >

P

i

�

T

i

=2.
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Proof. For any point p = (x; y; f) 2 P

X

inequality (4.27) is clearly valid when y(1; 2) = 0.

On the other hand, if y(1; 2) � 1, then notice that

x(�) + (��

�

T (3))y(1; 2) + �y(1; 3) + �y(2; 3)

� x(1; 3) + x(2; 3) + (��

�

T (3)) + �y(1; 3) + �y(2; 3)

= x(S

3

) + �y(S

3

) + (��

�

T (3))

�

�

T (3) + (��

�

T (3)) = �:

Let F be the related face, assuming that it is not a facet, let �x+ �y + 
f = � be an

equation di�erent from (4.27) satis�ed by all points p = (x; y; f) 2 F .

Notice that

�

T (1) +

�

T (2) >

�

T (3) � � implies that

P

i

�

T (i) > 2� so that � > � � 2.

Therefore, we can use point p

1

of Theorem 4.4.8 to show that 
 = 0, �

e

= �

e

= 0 for all

e 2 E n�, and �

e

= �� for all e 2 �.

Next, using p

2

of Theorem 4.4.8 we construct p

3

= (x

3

; y

3

; f

2

) 2 F which is identical

to p

2

with the exception that x

3

e

1;2

= 0 and y

3

e

1;2

= 1. Existence of p

2

2 F together with

p

3

2 F imply that �

e

1;2

= (�� T (3))�

e

1;2

.

Lastly, we construct p

4

= (x

4

; y

3

; f

4

) where x

4

is identical to x

3

with the exception

that x

e

2;3

= (T (2)� �)

+

and x

e

1;3

= T (3) � (T (2)� �)

+

. Notice that x(�) + �y(�) �

x(�) + (��

�

T (3))y(1; 2) = �, and x

e

1;3

= min fT (3); T (3)� T (2) +�g � �.

To show that p

4

2 P

X

and thus p

4

2 F , we �rst note that x

4

(S

3

) =

�

T (3) and x

4

(S

2

) +

�y

3

(S

2

) = � +

�

�

T (2)� �

�

+

� (

�

T (2). Furthermore if (

�

T (2)� �)

+

= 0 then ~x

e

1;3

=

�

T (3) �

�

T (1), on the other hand, if

�

T (2) > � then

x

4

e

1;3

+ �y

4

e

1;2

=

�

T (3)�

�

T (2) + 2�

>

�

T (3)�

�

T (2) + 2�� 2

�

T (3)

= 2��

�

T (2)�

�

T (3)

>

�

T (1):
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Therefore p

4

2 F and since it is possible to perturb p

4

by decreasing x

4

e

1;3

by � and

increasing y

4

e

1;3

by 1, we can conclude that �

e

1;3

= ��

e

1;3

. Constructing a similar point

with x

e

2;3

� � we can also argue that �

e

2;3

= ��

e

2;3

and complete the proof.

4.4.3 Other Three-Partition Facets

Next we study facets of the CEP polytope which primarily exclude points with y(�) = �=�

from the feasible region when �=� is fractional. We basically consider two cases depending

on which one of the two terms dominates in determining �. But, before proceeding any

further, we need some more notation. Given a partition � = fS

1

; S

2

; S

3

g of V , we de�ne

r

+

(i) to denote r(

�

T (i); �) and T

+

(i) to denote

�

�

T (i)=�

�

. Notice that

�

T (i) = � (T

+

(i) � 1)+

r

+

(i) for all S

i

2 �. We further de�ne r

max

= maxfr

+

(i)g, r

min

= minfr

+

(i)g and

r

med

=

P

i

r

+

(i)� r

min

� r

max

.

Notice that if

�

T (3) �

�

T (2) �

�

T (1), then T

+

(3) � T

+

(2) � T

+

(1). Furthermore, when

�

T (3) <

�

T (1) +

�

T (2), T

+

(3) is no more than T

+

(2) + T

+

(1), and

$

P

i

T

+

(i)

2

%

� T

+

(i) �

$

P

i

T

+

(i)

2

%

� T

+

(3) =

$

T

+

(1) + T

+

(2)� T

+

(3)

2

%

� 0:

The following theorem has the same spirit as Theorem 4.2.4 and (4.28) is a MIR in-

equality. Remember that

� = max

(&

P

i

�

T (i)

2

'

;

�

�

)

and we note that the required conditions can hold only if the second term strictly dominates

the �rst. In other words, (4.28) is a facet only if � >

�

P

i

�

T (i)=2

�

.

Theorem 4.4.10 Given a critical partition � = fS

1

; S

2

; S

3

g of V , let

�

T (3) = maxf

�

T (i)g

and r

+

(1) � r

+

(2). If � > r(�; �), then

x(�) + r(�; �)y(�) � r(�; �) d�=�e (4:28)



Chpt. 4 Capacitated Network Design 101

is a facet of P

X

provided one of the following conditions is true.

(i) d�=�e � 1 � d

P

i

T

+

(i)=2e :

(ii) d�=�e = d

P

i

T

+

(i)=2e >

P

i

T

+

(i)=2 , r(�; �) � r

+

(2) and

�

T (2) > 1:

(iii) d�=�e = d

P

i

T

+

(i)=2e =

P

i

T

+

(i)=2 , r(�; �) � r

max

, r(�; �) > r

min

and

T

+

(1) + T

+

(2) > T

+

(3):

Proof. Validity of (4.28) should be clear. To show that F = f(x; y; f) 2 P

X

: x(�) +

r(�; �)y(�) = r(�; �) d�=�eg is a facet, we �rst analyze cases (i) and (ii).

(i); (ii) Choose a �xed edge e

i;j

2 �(i; j) for all j > i, and consider p

1

= (x

1

; y

1

; f

1

) where

y

1

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

b

P

i

T

+

(i)=2c � T

+

(3) e = e

1;2

d

P

i

T

+

(i)=2e � T

+

(2) e = e

1;3

d�=�e � T

+

(1)� 1 e = e

2;3

0 otherwise

x

1

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

1 e = e

1;2

0 e = e

1;3

r(�; �)� 1 e = e

2;3

0 otherwise

and f

1

is a feasible 
ow vector. Notice that d�=�e � T

+

(1)� 1 � dT

+

(2)=2e � 1 � 0, and

therefore x

1

; y

1

� 0. To see that it is possible to �nd a feasible 
ow vector f

1

, �rst note

that x

1

(�)+�y

1

(�) = � and p

1

satis�es cut-set inequalities for S

1

and S

3

. Next, observe

that the capacity across the cut �(S

2

) is

x

1

(�(S

2

)) + �y

1

(�(S

2

)) � �

 $

P

i

T

+

(i)

2

%

+

�

�

�

�

� 1� T

+

(1)� T

+

(3)

!

+ r(�; �)

� �

 $

P

i

T

+

(i)

2

%

+

&

P

i

T

+

(i)

2

'

� T

+

(1)� T

+

(3)� 1

!

+ r(�; �)

� �

�

T

+

(2)� 1

�

+ r(�; �)
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� T

+

(2)

(where the last inequality follows from r(�; �) � r

+

(2)) so that p

1

satis�es the cut-set

inequality for S

2

as well. Therefore, using Lemma 4.4.2, p

1

2 P

X

and thus p

1

2 F .

Assuming F is not a facet, let �x + �y + 
f = � be an equation di�erent from (4.28)

satis�ed by all points p = (x; y; f) 2 F . Observe that x

1

(1; 2) > 0 and y

1

(1; 3) =

d

P

i

T

+

(i)=2e�T

+

(2) � (T

+

(3)+T

+

(1)�T

+

(2))=2 � T

+

(1)=2 > 0. Lastly, if y

1

(2; 3) = 0

then,

y

1

(2; 3) = 0 =

�

�

�

�

� T

+

(1)� 1 �

P

i

T

+

(i) + 1

2

� T

+

(1)� 1 �

T

+

(2)� 1

2

� 0

implies that d�=�e = d

P

i

T

+

(i)=2e and T

+

(2) = 1. In this case x

1

(2; 3) = r(�; �) � 1 �

r

+

(2)� 1 =

�

T (2)� 1 > 0. Therefore, we can conclude that x

1

(2; 3) + �y

1

(2; 3) > 0.

Using Lemma 4.4.7, we can now argue that 
 = 0 and �

e

= �

e

= 0 for all e 2 E n�.

Moreover, it is possible to perturb p

1

by decreasing x

e

1;3

and increasing x

e

1;2

or x

e

2;3

,

implying that for some �� 2 R, �

e

= �� whenever e 2 �.

We next construct a point p

2

= (x

2

; y

2

; f

2

) 2 F where x

2

= 0, y

2

is identical to y

1

with the exception that y

2

e

2;3

= d�=�e � T

+

(1), and f

2

is some feasible 
ow vector which

exists by Lemma 4.4.2. Perturbing p

2

by increasing y

2

e

1;2

and decreasing y

2

e

1;3

or y

2

e

2;3

, we

conclude that there exists

�

� 2 R, such that �

e

=

�

�, for all e 2 �. Furthermore, p

1

; p

2

2 F

implies that

�

� = r(�; �)�� and thus F is indeed a facet.

(iii) Choose a �xed edge e

i;j

2 �(i; j) for all j > i, and consider p

3

= (x

3

; y

3

; f

3

) 2 F where

y

3

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

(T

+

(1) + T

+

(2)� T

+

(3)) =2 e = e

1;2

(T

+

(1) + T

+

(3)� T

+

(2)) =2 e = e

1;3

(T

+

(2) + T

+

(3)� T

+

(1)) =2 e = e

2;3

0 otherwise

x

3

e

=

8

>

>

<

>

>

:

M e =2 �

0 e 2 �
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and f

3

is a feasible 
ow vector. Since y

3

(i; j) > 0 for all j > i, we can apply Lemma 4.4.7

with p

3

and show that 
 = 0, �

e

= �

e

= 0 for all e 2 E n�, and for all j > i, there exists

�

�

i;j

2 R such that �

e

=

�

�

i;j

for all e 2 �(i; j).

Next for each e

i;j

we perturb p

3

by decreasing y

e

i;j

by 1 and increasing x

e

i;j

by r(�; �)

to obtain new points in F . Using these points together with p

3

, we conclude that for all

j > i, if e 2 �(i; j) then, �

e

= r(�; �)

�

�

i;j

.

Lastly, let fa; b; cg be a permutation of f1; 2; 3g so that r

+

(a) � r

+

(b) � r

+

(c). Since

r(�; �) > r

min

= r

+

(c), it is possible to permute p

3

by decreasing y

e

b;c

by 1, increasing

x

e

b;c

by r(�; �) � 1 and increasing x

e

a;b

by 1. Similarly, it is possible to permute p

3

by

decreasing y

e

a;c

by 1, increasing x

e

a;c

by r(�; �)� 1 and increasing x

e

a;b

by 1. These new

points are in F , and thus

�

�

a;b

=

�

�

a;c

=

�

�

b;c

, implying that F is a facet of P

X

.

We also note that it is possible to relax the condition

�

T (2) > 1 from (ii) of Theorem

4.4.10, but in this case C(2; 3) has to be positive whenever

�

T (2) = 1. To avoid complicating

the proof any further, we chose to skip this.

In the remainder of this section, we consider the case when for a critical partition

fS

1

; S

2

; S

3

g of V , � is equal to

�

P

i

�

T (i)=2

�

, and we identify facets of P

X

that exclude

some of the fractional points from the feasible region when y(�) is less than d�=�e. Before

that we will make an observation concerning the identity

�

T (i) = � (T

+

(i)� 1)+ r

+

(i) and

the cut-set inequalities. First note that

X

i

�

T (i) = �

 

X

i

T

+

(i)� 3

!

+

X

i

r

+

(i)

implying

P

i

�

T (i)

2

= �

 

P

i

T

+

(i)

2

�

3

2

!

+

P

i

r

+

(i)

2

:
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Therefore, depending on

P

i

T

+

(i), we can write

&

P

i

�

T (i)

2

'

=

8

>

>

>

<

>

>

>

:

�

��

P

i

T

+

(i)

2

�

� 2

�

+

�

P

i

r

+

(i)

2

�

if

P

i

T

+

(i) is odd

�

��

P

i

T

+

(i)

2

�

� 2

�

+

�

�+

P

i

r

+

(i)

2

�

if

P

i

T

+

(i) is even.

Next, note that when x(�) = 0, the cut set inequalities imply that y(�) � d

P

i

T

+

(i)=2e

and when y(�) = d

P

i

T

+

(i)=2e � 1, then

x(�) �

8

>

>

<

>

>

:

r

min

if

P

i

T

+

(i) is odd

r

med

if

P

i

T

+

(i) is even.

This is easy to see as y(�) = d

P

i

T

+

(i)=2e� 1 implies that y(�(S

i

)) � T

+

(i)� 1 holds for

some i 2 f1; 2; 3g and using the cut-set inequality (4.7), x(�(S

i

)) � r

+

(i). Furthermore if

P

i

T

+

(i) is even, then either y(�(S

i

)) � T

+

(i) � 2 for some i 2 f1; 2; 3g and x(�(S

i

)) �

r

+

(i)+�, or y(�(S

i

)) � T

+

(i)�1 and thus x(�(S

i

)) � r

+

(i) holds for two separate subsets.

Next, we study the case when

P

i

T

+

(i) is odd more closely. For a given p = (x; y; f) 2

P

X

, let k denote (d

P

i

T

+

(i)=2e � y(�))

+

. Using the previous observations and the three-

partition inequality (4.25) we can write,

x(�) �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if k = 0

r

min

if k = 1

d

P

i

r

+

(i)=2e+ �(k � 2) if k � 2:

(4:29)

As seen in Figure 4.1, it is possible to write valid inequalities stronger than x(�) +

�y(�) �

�

P

i

�

T (i)=2

�

when x(�) < d

P

i

r

+

(i)=2e. We note that (1=�)

�

P

i

�

T (i)=2

�

, the

value y(�) assumes when x(�) + �y(�) =

�

P

i

�

T (i)=2

�

and x(�) = 0 is not necessarily

integral and it is strictly less than d

P

i

T

+

(i)=2e. Depending on the value of d

P

i

r

+

(i)=2e,

(1=�)

�

P

i

�

T (i)=2

�

can be larger or smaller than d

P

i

T

+

(i)=2e�1, but in either case point p

2

lies above the line x(�)+�y(�) =

�

P

i

�

T (i)=2

�

. In other words, r

min

+� (d

P

i

T

+

(i)=2e � 1) �
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�

P

i

�

T (i)=2

�

.

6

y(�)

- x(�)

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

(1=�)

�

P

i

�

T (i)=2

�

�

P

i

�

T (i)=2

�

r

p

3

d

P

i

T

+

(i)=2e � 2

d

P

i

r

+

(i)=2e

r

p

2

d

P

i

T

+

(i)=2e � 1

r

min

d

P

i

T

+

(i)=2e

r

p

1

Figure 4.1: Finding new cuts using cut-set and 3-partition inequalities (

P

i

T

+

(i) is odd).

We �rst consider the case when p

2

lies above the line joining p

1

and p

3

.

Theorem 4.4.11 Given a critical partition � = fS

1

; S

2

; S

3

g of V , if � =

�

P

i

�

T (i)

2

�

and

r

min

�

1

2

�

P

i

r

+

(i)

2

�

, then,

x(�) �

1

2

&

P

i

r

+

(i)

2

' &

P

i

T

+

(i)

2

'

� y(�)

!

(4:30)

is a facet of P

X

provided � > maxf2; ��C(�)g and both

P

i

T

+

(i) and

P

i

r

+

(i) are odd.

Proof. Validity of (4.30) is due to (4.29). To see that it is a facet, let

�

T (3) �

�

T (2) �

�

T (1),

and F be the face of P

X

implied by (4.30). Choose a �xed edge e

i;j

2 �(i; j) for all j > i,
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and consider p

1

= (x

1

; y

1

; f

1

) where

y

1

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

b

P

i

T

+

(i)=2c � T

+

(3) e = e

1;2

b

P

i

T

+

(i)=2c � T

+

(2) e = e

1;3

b

P

i

T

+

(i)=2c � T

+

(1) e = e

2;3

0 otherwise

x

1

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

d

P

i

r

+

(i)=2e � r

+

(3) e = e

1;2

d

P

i

r

+

(i)=2e � r

+

(2) e = e

1;3

b

P

i

r

+

(i)=2c � r

+

(1) e = e

2;3

0 otherwise

and f

1

is a feasible 
ow vector. Clearly y

1

� 0, �y

1

(�) + x

1

(�) = � and p

1

satis�es the

cut-set inequalities for all S

i

2 �. As we show next, x

1

� 0 and thus p

1

2 F .

To see that x

1

� 0, note that when

P

i

r

+

(i) is odd, r

min

�

1

2

�

P

i

r

+

(i)

2

�

implies

r

med

+ r

min

�

P

i

r

+

(i)

2

+

1

2

1

2

(r

med

+ r

min

) �

r

max

2

+

1

2

r

med

+ r

min

� r

max

+ 1

so that x

1

� 0 and x

1

(1; 2); x

1

(1; 3) > 0. To see that x

1

(2; 3) + �y

1

(2; 3) > 0, notice that

if y

1

(2; 3) = 0 then,

0 =

T

+

(3) + T

+

(2)� T

+

(1)� 1

2

�

T

+

(3)� 1

2

implies that T

+

(3) = T

+

(2) = T

+

(1) = 1. If at the same time x

1

(2; 3) = 0 then

0 =

r

+

(3) + r

+

(2)� r

+

(1)� 1

2

=

�

T (3) +

�

T (2)�

�

T (1)� 1

2

�

�

T (3)� 1

2

implying

�

P

i

�

T (i)=2

�

= 2, a contradiction.

If we let �x + �y + 
f = � be an equation satis�ed by all p = (x; y; f) 2 F , then by

applying Lemma 4.4.7 with p

1

, we can show that 
 = 0 and �

e

= �

e

= 0 for all e 2 E n�.
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It is possible to modify p

1

by decreasing x

e

1;2

or x

e

1;3

by 1 and increasing x

e

2;3

by 1 (and

modifying 
ow) to obtain new points in F , which implies that there is an �� 2 R such that

�

e

= �� for all e 2 �.

Lastly, we construct p

2

= (x

2

; y

2

; f

2

) 2 F where x

2

= 0 , f

2

is a feasible 
ow vector

and y

2

is identical to y

1

with the exception that y

2

e

1;2

= y

1

e

1;2

+ 1 and y

2

e

1;3

= y

1

e

1;3

+ 1.

Since it is possible to �nd new points by modifying p

2

by decreasing y

e

1;2

or y

e

1;3

by 1 and

increasing y

e

2;3

by 1, we can argue that for some

�

� 2 R, �

e

=

�

� for all e 2 �. Finally

p

1

; p

2

2 F implies that

�

� =

1

2

�

P

i

r

+

(i)

2

�

��, which completes the proof.

We next consider the case when p

2

lies below the line joining p

1

and p

3

. Notice that

when r

min

< (1=2) d

P

i

r

+

(i)=2e, (4.30) of Theorem 4.4.11 is not valid, but in this case we

can write two new valid inequalities using p

1

and p

2

or p

2

and p

3

. These inequalities are,

x(�) � r

min

 &

X

i

T

+

(i)=2

'

� y(�)

!

(4.31)

and

x(�) � r

min

+

 &

X

i

r

+

(i)=2

'

� r

min

! &

X

i

T

+

(i)=2

'

� y(�)� 1

!

:(4.32)

Unfortunately, these inequalities do not de�ne facets of P

X

since any point on the faces

related with (4.31) and (4.32) also satis�es y(a) = T

+

(a) � 1 where a = argmin

�

�

T (i)

	

.

We next present a facet of P

X

which combines (4.31) and (4.32).

Theorem 4.4.12 Given a critical partition � = fS

1

; S

2

; S

3

g of V , let r

+

(3) � r

+

(2) �

r

+

(1). If � =

�

P

i

�

T (i)=2

�

, and r

+

(1) �

1

2

d

P

i

r

+

(i)=2e, then

x(1; 2) + x(1; 3)

r

+

(1)

+

x(2; 3)

min fr

+

(2); d

P

i

r

+

(i)=2e � r

+

(1)g

�

 &

P

i

T

+

(i)

2

'

� y(�)

!

(4:33)

de�nes a facet of P

X

provided max

i

fT

+

(i)g > 1 and

P

i

T

+

(i) is odd.

Proof. Before showing that (4.33) is a valid inequality, we �rst de�ne x(1) to denote

x(1; 2) + x(2; 3), � to denote 1=r

+

(1) and � to denote the coe�cient of x(2; 3) in (4.33).

We further let g(x) to denote the left hand side of (4.33) so that g(x) = �x(1) + �x(2; 3).
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Notice that d

P

i

r

+

(i)=2e � 2r

+

(1) together with r

+

(2) � r

+

(1) implies that � � � and

�r

+

(2) � 1.

First note that (4.33) is valid for any p = (x; y; f) 2 P

X

whenever y(�) � d

P

i

T

+

(i)=2e.

Next, consider the case when y(�) � d

P

i

T

+

(i)=2e � 1, so that, there exists an index

i 2 f1; 2; 3g with y(�(S

i

)) < T

+

(i). If y(�(S

1

)) < T

+

(1) then, the cut-set inequality for S

1

implies x(1) � r

+

(1) and thus g(x) � 1. On the other hand, if y(�(S

1

)) � T

+

(1) then, using

the cut-set inequalities for S

2

or S

3

we have x(�) � r

+

(2) and g(x) � �x(�) � �r

+

(2) � 1.

The last case we consider is when y(�) is at most d

P

i

T

+

(i)=2e � 2. Let k(i) =

(T

+

(i)� y(�(S

i

)))

+

and K = d

P

i

T

+

(i)=2e�y(�) � 2 and note that

P

i

k(i) � 2K�1. If

k(1) � 1 then, to �nd a lower bound on g(x), we look at the optimal value of the following

linear program.

min z = �x(1) + �x(2; 3)

st. x(1) � r

+

(1)k(1)

x(1) + x(2; 3) � �(K � 2) + d

P

i

r

+

(i)=2e

x(1); x(2; 3) � 0

where, we minimize g(x) subject to some valid inequalities. It is easy to see that the

optimal solution has x(1) = r

+

(1)k(1) and x(2; 3) = �(K � 2) + d

P

i

r

+

(i)=2e � r

+

(1)k(1)

yielding,

z =

r

+

(1)k(1)

r

+

(1)

+

�(K � 2) + d

P

i

r

+

(i)=2e � r

+

(1)k(1)

min fr

+

(2); d

P

i

r

+

(i)=2e � r

+

(1)g

� k(1) + (K � 2) +

d

P

i

r

+

(i)=2e � r

+

(1)k(1)

min fr

+

(2); d

P

i

r

+

(i)=2e � r

+

(1)g

� k(1) + (K � 2) + 1�

r

+

(1) (k(1)� 1)

min fr

+

(2); d

P

i

r

+

(i)=2e � r

+

(1)g

� k(1) + 1 + (K � 2)� k(1) + 1
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so that g(x) � z � K.

On the other hand, if k(1) = 0, then k(2) + k(3) � 2K � 1 and maxfk(1); k(2)g � K.

Writing the cut-set inequalities for S

2

and S

3

we have, x(�) � maxfx(1; 2)+x(2; 3); x(1; 2)+

x(2; 3)g � maxfr

+

(2)k(2); r

+

(3)k(3)g � r

+

(2)K. Therefore g(x) � �x(�) � �r

+

(2)K �

K and (4.33) is satis�ed by all p = (x; y; f) 2 P

X

.

To show that F , the face related with (4.33), is a facet of P

X

, we �rst choose a �xed

edge e

i;j

2 �(i; j) for all j > i, and let (a; b; c) be a permutation of f1; 2; 3g such that

T

+

(a) � T

+

(b) � T

+

(c). Then, we construct a point p

1

= (x

1

; y

1

; f

1

) where

y

1

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

d

P

i

T

+

(i)=2e � T

+

(a) e = e

b;c

d

P

i

T

+

(i)=2e � T

+

(b) e = e

a;c

b

P

i

T

+

(i)=2c � T

+

(c) e = e

a;b

0 otherwise

x = 0 and f

1

is a feasible 
ow vector. Notice that p

1

satis�es the feasibility conditions

of Lemma 4.4.2. Assume that �x + �y + 
f = � is an equation satis�ed by all points

p = (x; y; f) 2 F , and note that y

1

(e

a;c

); y

1

(e

b;c

) > 0 since

P

i

T

+

(i) is odd, and y

1

(e

a;b

) > 0

by T

+

(a) > 1. Using the fact that y(�) > �, we can applying Lemma 4.4.7 with p

1

to

show that 
 = 0 and �

e

= �

e

= 0 for all e 2 E n �. Furthermore, since it is possible to

modify p

1

by decreasing y(e

a;c

) or y(e

b;c

) by 1 and increasing y(e

a;b

) by 1 (and modifying


ow) to obtain new points in F , we can argue that there exists

�

� 2 R such that �

e

=

�

� for

all e 2 �.
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Next, we construct p

2

= (x

2

; y

2

; f

2

) 2 F where

y

2

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

b

P

i

T

+

(i)=2c � T

+

(3) e = e

1;2

b

P

i

T

+

(i)=2c � T

+

(2) e = e

1;3

d

P

i

T

+

(i)=2e � T

+

(1) e = e

2;3

0 otherwise

x

2

e

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

M e =2 �

r

+

(1) e = e

1;2

0 otherwise

and f

2

is a feasible 
ow vector. Applying Lemma 4.4.7 with p

2

and using the fact that

p

1

; p

2

2 F , we can argue that �

e

=

�

�=r

+

(1) for all e 2 �(1; 2). Constructing a similar point

with x

e

1;2

= 0 and x

e

1;3

= r

+

(1) we can also show that �

e

=

�

�=r

+

(1) for all e 2 �(1; 3).

Lastly, if r

+

(2) > d

P

i

r

+

(i)=2e � r

+

(1), then we construct p

3

= (x

3

; y

3

; f

3

) 2 F where

y

3

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

b

P

i

T

+

(i)=2c � T

+

(3) e = e

1;2

b

P

i

T

+

(i)=2c � T

+

(2) e = e

1;3

b

P

i

T

+

(i)=2c � T

+

(1) e = e

2;3

0 otherwise

x

3

e

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M e =2 �

d

P

i

r

+

(i)=2e � r

+

(3) e = e

1;2

b

P

i

r

+

(i)=2c � r

+

(2) e = e

1;3

d

P

i

r

+

(i)=2e � r

+

(1) e = e

2;3

0 otherwise

and f

3

is a feasible 
ow vector. Note that r

+

(2) > d

P

i

r

+

(i)=2e � r

+

(1) implies that

r

+

(1)+r

+

(2) � r

+

(3) so that x

3

; y

3

� 0 and p

3

satis�es the feasibility conditions of Lemma

4.4.2. Since x

3

2;3

> 0 and p

1

; p

3

2 F , we can conclude that �

e

=

�

�=(d

P

i

r

+

(i)=2e � r

+

(1))

for all e 2 �(2; 3) and thus F is a facet of P

X

.

On the other hand, when r

+

(2) = min fr

+

(2); d

P

i

r

+

(i)=2e � r

+

(1)g, in order to show

that �

e

=

�

�=r

+

(2) for all e 2 �(2; 3), it su�ces to construct a point p

4

= (x

4

; y

4

; f

4

) where

x

4

is identical to x

2

with the exception that x

4

e

2;3

= r

+

(2), x

4

e

1;2

= 0 and y

4

is identical to

y

2

with the exception that y

4

e

1;3

= y

2

e

1;3

+ 1, y

4

e

2;3

= y

2

e

2;3

� 1.
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In Theorems 4.4.11 and 4.4.12, we considered the case when � =

�

P

i

�

T (i)=2

�

and

P

i

T

+

(i) is odd. If

P

i

T

+

(i) is even, then for any p = (x; y; f) 2 P

X

we can bound x(�)

from below by

x(�) �

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if k = 0

r

med

if k = 1

�

�+

P

i

r

+

(i)

2

�

+ �(k � 2) if k � 2:

(4:34)

where k = (d

P

i

T

+

(i)=2e � y(�))

+

. Using (4.34), it is possible to develop valid inequalities

of the form (4.30) , (4.31) or (4.32), but these inequalities are not facet de�ning.

4.5 Computational Results

In this section, we present the results of our computational experience with a cutting-plane

algorithm. Here we remind the reader that the problem we are studying, CEP, is part of a

much larger problem. Our objective in this study is to strengthen the formulation of CEP.

The computational experiments test how well our inequalities perform in this regard. The

separation routines described herein are not extremely sophisticated, although they appear

to be reasonably fast.

4.5.1 The Cutting-Plane Algorithm

We developed an iterative algorithm which uses the facet de�ning inequalities as cutting-

planes and includes them in the formulation whenever they are valid (and violated but

not necessarily facet de�ning). The algorithm has three modules, one for each class of

facets we presented in Sections 4.2 - 4.4. We used these modules in a hierarchical manner,

and for a given iteration, executed a module only if no violated cuts are found by the

previous modules. For each module, there is an upper limit on the number of cuts that

can be introduced to the extended formulation in a single iteration. Limiting the number

of cuts helps to keep the size of the LP reasonable. During the course of our study, we

observed that it is better to use these modules in the following order: the cut-set module,
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the three-partition module and the 
ow-cut-set module.

When implementing the cutting plane algorithm, we used CPLEX, Version 2.1 as the

linear programming optimizer and after obtaining the extended formulations, we applied

CPLEX mixed integer optimizer to �nd optimal (integral) solutions.

We used two sets of real-life data, which arise, as described before, as part of ATM

network design problems. The tra�c demand matrices are fully dense and it is not practical

to use the disaggregated formulation (i.e. de�ning a commodity for every source-destination

pair) for these problems. As we explain later, we also made some modi�cations on the data

to generate additional test problems while disturbing the underlying structure in a minimal

way. The �rst data set is of a network with 15 nodes and 22 edges (see Figure 4.2). The

tra�c demands are fairly large when compared with the existing capacity on the edges and

there is a cost related with 
ow variables as well as the capacity variables. The second

network (see Figure 4.3) is much denser when compared with the �rst one and it has 16

nodes and 49 edges. In this data set, tra�c demands are quite small and there is no

existing capacity. Further, there is no cost related with the 
ow variables. In both of the

test problems cost of adding capacity on an edge has a �xed component (related with the

switches on both ends of the edge) and a variable component proportional to the actual

length of the edge. The unit-batches correspond to so-called OC-3 facilities and and �-

batches correspond to OC-12 facilities and thus, � is 4. The cost related with these facilities

is such that cost of an OC-12 facility is more than the cost of one OC-3 facility but it is

less than that of two OC-3 facilities and, therefore, in the optimal solution x variables are

either 0 or 1. We included these bounds for the x variables in the original formulation but

did not modify the valid inequalities using this information.

For each of the three modules of the algorithm, there is an exponential number of

related facets and to implement the algorithm we need to �nd a practical way to choose

violated inequalities, or, in other words, we need to �nd a way to solve the separation

problem. The main purpose of our computational study is to see how closely we can

approximate the the CEP polytope using the facet de�ning inequalities presented in the
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previous sections. Therefore, little e�ort was spent on the separation problem and it is

likely that our cutting plane algorithm can be substantially speeded up by developing

more e�cient separation modules. As the networks related with the data sets are quite

di�erent and the valid inequalities basically depend on the underlying network, we postpone

addressing the separation problem and look at the data sets more closely.

4.5.2 Data Set 1

For every strong subset of the node set, there two related cut-set facets and even when

the number of nodes is small (15 in this case), there are potentially 2

jV j

subsets to be

considered. Notice that the number of strong subsets of a graph is closely related with the

density of the graph and as seen in Figure 4.2, the network related with this instance is

fairly sparse.
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Figure 4.2: Network 1, n = 15 and m = 22

For this example network, there are only 190 strong subsets and it is feasible to check

all of them to see if the related cut-set facets are violated or not. Recall that for a subset

to qualify as a strong subset , both the subset and its complement have to be connected.

For example, for a tree with n vertices and n� 1 edges, only 2(n� 1) of the 2

n

subsets are

strong subsets .

Similarly, the number of critical partitions of Network 1 is not very large (close to one

thousand) and it is possible to check all of them in each iteration to see if they are violated
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or not. Lastly, we need to consider a number of 
ow-cut-set facets for each strong subset

S, each commodity subset Q of S and each nonempty partition fE

1

; E

2

g of �(S). In our

experiments we noticed that these cuts are more e�ective when (i) Q is \compact", i.e.

small and connected, (ii) jE

2

j is small and (iii) edges in E

2

are \close" to Q, mostly when

they are incident with nodes in Q. Using these observations, for each strong subset S, we

generated sets Q such that Q = fvg for all v 2 S and Q = fu; vg for all u; v 2 S and

fu; vg 2 E. For choosing E

1

and E

2

, we looked at the partitions that consist of no more

than three edges in E

2

.

We �rst run the algorithm without a time limit and generated an extended formulation

by including all of the violated cuts in the original LP-relaxation. The optimal integral

solution to this problem has a cost of 2231 and the lower bound generated by the extended

LP is 2222, only 0:4% away from the optimum. This run took approximately 30 minutes on

a SPARC10 - 40 machine and the statistics of this run are presented in Table 4.1. We de�ne

the \scaled gap" to be the di�erence between the value of the extended formulation and the

optimal (integral) solution divided by the di�erence between the value of the LP-relaxation

and the optimal (integral) solution.

As seen in Table 4.1, after 21 seconds the algorithm produces an extended formulation

that reduces the scaled gap to under 3% and after one minute of run time the scaled gap

is under 2%. After iteration 9 it takes almost half an hour to cut the scaled gap from 1:9%

to 1:3%.

When we applied (CPLEX) branch and bound using the resulting extended formulation,

the (integral) optimum was found in a few seconds. To balance the run-time between the

cutting-plane algorithm and branch and bound, we next limited the use of 
ow-cut-set

facets and stopped the algorithm after 70 seconds. After this modi�cation, total run-time

(i.e. generating the extended formulation and running branch and bound) is reduced to

under two minutes. When we applied the branch and bound without any cuts, it took

more than an hour to �nd the integral optimal solution.

Next, we modi�ed the original data (`Cap1') to generate new problem instances and
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iteration number cut LP gap scaled time

number of cuts type value (%) gap(%) (sec)

0 0 - 1534 31.0 100 .42

1 45 c-s 1971 11.4 36.8 1.62

2 7 c-s 1998 10.0 32.3 2.08

3 37 3-p 2156 3.4 11.0 2.95

4 3 c-s 2156 3.4 11.0 4.17

5 7 3-p 2203 1.2 3.9 4.67

6 2 3-p 2204 1.2 3.9 5.45

7 57 f-c 2210 0.9 2.9 21.13

8 58 f-c 2215 0.7 2.3 51.32

9 56 f-c 2218 0.6 1.9 93.58

10 57 f-c 2220 0.5 1.6 239.93

11 30 f-c 2221 0.4 1.3 488.80

12 1 3-p 2221 0.4 1.3 490.62

13 24 f-c 2222 0.4 1.3 746.68

14 12 f-c 2222 0.4 1.3 1000.73

15 2 f-c 2222 0.4 1.3 1251.58

16 1 f-c 2222 0.4 1.3 1502.82

17 0 - 2222 0.4 1.3 1755.48

Table 4.1: Example run of the algorithm on Data Set 1 (no time limit).

to test the performance of the algorithm when applied to instances with di�erent nature.

Keeping the underlying network the same, we generated four more instances by changing

the data as follows: Second data set is same as the �rst one, but the existing capacities are

assumed to be zero, the third set is obtained by doubling the tra�c demands and the last

two sets are generated by respectively increasing and decreasing the 
ow costs. Tables 4.2

and 4.3 summarize the results of these runs.

We run the cutting-plane algorithm on a SPARC10 Model 40 and the branch and

bound on a SPARC10 Model 51 (both using CPLEX 2.1) and the run-times are presented

in Tables 4.2 and 4.3 are CPU-times on these machines. We note that for all of the test

problems, the total CPU-time needed to �nd the optimal solution is under two minutes

and the algorithm is not e�ected by the changes in the input as long as the underlying
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problem z(LP) z(ELP) z(IP) gap(%) sc. gap(%) time(sec)

1: Cap1 1534 2218 2231 0.58 1.87 74

2: NoXcap1 4075 4576 4607 0.67 5.83 89

3: 2traf1 5608 6339 6354 0.23 2.01 74

4: NoFC1 949 1623 1631 0.49 1.17 83

5: 5FC1 2411 3105 3132 0.86 3.74 81

Table 4.2: Example problems generated using Data Set 1

problem # of cuts B&B time Pure B&B time

1: Cap1 299 10sec 1hour

2: NoXcap1 336 15sec 12mins

3: 2traf1 124 11sec hours

4: NoFC1 282 8sec hours

5: 5FC1 307 9sec 30mins

Table 4.3: B&B times for Data Set 1

network stays the same. As seen in the Tables 4.2 and 4.3, when we apply branch and

bound without any cutting-planes, the run-times vary from 12 minutes to several hours.

For Problems 3 and 4 when we terminated the run after more than 3 hours of CPU-time,

the branch and bound tree had more than 20,000 nodes and the gap between the upper

and lower bounds was still large. This is very encouraging as it is a measure of how robust

the algorithm is.

4.5.3 Data Set 2

As seen in Figure 4.3, the network related with this data set is dense and consequently the

number of strong subsets is quite large. There are more than 25,000 strong subsets related

with this network and although it is still feasible to consider all of the cut-set facets, it is

not possible to do the same for all of the three-partition or 
ow-cut-set facets.

For this instance, we modi�ed the algorithm and de�ned 
ags related with each strong
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subset . When executing the cut-set module, we marked a strong subset if the related

cut-set inequalities are violated or when the slacks related with the cuts are less than 10%

of the right hand side. Using these 
ags, we only considered the three-partitions which

are formed by these subsets. Similarly, we only used the 
ow-cut-set facets related with

the chosen subsets. The number of \important" strong subsets , selected as above, was

under 100 and in terms of �nding a good lower bound, they were as e�ective as the whole

list. We also note that, in this case the 
ow-cut-set facets were not very e�ective as tra�c

demands are small and the 
ow costs are zero.
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Figure 4.3: Network 2, n = 16 and m = 49

The LP-relaxation related with this data set has a value of 1,950 and the corresponding

optimal integral solution has a value of 10,704 (as we learned later). The best lower bound

we obtained by applying the cutting plane algorithm, with the modi�cations describes

above, was 8,491. In other words, this lower bound is 20% less than the optimal value
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and the scaled gap is more than 25%. When we applied the branch and bound using the

resulting extended formulation, the gap between the upper and lower bounds generated

by CPLEX was more than 10% (after a few hours) and the program run out of memory

(after many hours of CPU-time and) before it found an integral optimal. When we applied

branch and bound using the LP-relaxation, the program was not able to �nd a reasonable

lower bound before running out of memory. This is easy to see as the LP-relaxation is very

loose.

We next studied the fractional optimal solution to the extended formulation and realized

that the overall capacity added to the whole network (that is, x(E)+y(E)) was quite small.

This is basically because the tra�c demands are small. Even though the cut-set facets and

the three-partition facets force the degree (i.e. x(�(S)) + y(�(S)) ) of a strong subset

to be at least one, these cuts are myopic, and they do not force a lower bound on the

overall capacity. Since there is no existing capacity for this problem and as the resulting

network has to be connected, the optimal solution should add capacity on at least 15 (=

# of nodes�1) edges so that the optimal solution would contain enough edges to form a

connected network.

Using this observation, we then added a new module to the algorithm that checks

whether or not some simple valid spanning tree cuts are satis�ed by fractional solutions.

In this module we have two kinds of valid inequalities. The �rst one of these can be obtained

by shrinking a subset of nodes and requiring the resulting network to have enough edges

to form a tree. The second one basically states that after deleting some edges (that is

shrinking pairs of nodes) the solution to the design problem should have enough number of

edges to form a spanning tree together with the deleted edges. We used the list of strong

subsets for the �rst family of the spanning tree cuts and shrank the edges with x

e

+ y

e

> 1

for the second one.

After including this module in the cutting plane algorithm, the lower bound generated

by the extended formulation went up to 10,339 or, only 3:4% o� the optimal solution. Using

the resulting formulation, branch and bound was able to �nd an optimal solution, with the
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entire procedure taking under half an hour. To study the e�ect of this new module more

closely, we ran the algorithm by disabling all other modules and the resulting lower bound

was 9,071, or less than 10% away from the optimum. However, the resulting extended

formulation was very ine�ective for the branch and bound.

Lastly, we generated a larger extended formulation by �rst applying the algorithm and

then setting some of the design variables to zero and then applying this procedure iteratively

until we generate an integral solution. This way we generated many valid inequalities and

using this formulation, branch and bound was able to �nd a solution more easily. This

procedure took around 15 minutes, or reduced the run-time to a half. What this procedure

essentially does is to imitate a branch-and-cut algorithm and form an extended formulation

which includes some cuts that will help the branch and bound after some variables are set

to zero.

We also generated two more problems related with this data set by increasing the tra�c

demands and by changing the objective function coe�cients of the 
ow variables. In Tables

4.4 and 4.5, we summarize the statistics related with these of the problems.

problem z(LP) z(ELP) z(IP) gap(%) sc. gap(%) time(sec)

1: Cap2 1950 10339 10704 3.4 4.2 160

2: 2traf2 3901 10792 11789 8.5 12.7 175

3: 1FC2 (a) 4092 12779 14384 10.9 15.3 177

4: 1FC2 (b) 4092 13379 14384 7.0 9.8 5hrs

Table 4.4: Example problems generated using Data Set 2

In Table 4.4, problems 3 and 4 correspond to the same problem for di�erent lengths of

run-time.

As it can be seen in Tables 4.4 and 4.5, the algorithm is not as successful for the second

and third problems (these are the ones we generated by modifying the original data).

For the second problem, the scaled gap is more than 10% after the �rst phase and
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problem # of cuts B&B time Pure B&B time

1: Cap2 247 15min unsolved

2: 2traf2 258 3hrs unsolved

3: 1FC2 (a) 508 10hrs

�

unsolved

Table 4.5: B&B times for Data Set 2

the branch and bound takes just under three hours. When applying the algorithm to this

data set, we limited the use of 
ow-cut-set facets (to keep the size of the extended-LP

small). Since these inequalities play a more important role when the volume of tra�c

is high, this change results in a larger gap and thus a much longer branch and bound

time. Nonetheless, in terms of application, we want to note that the solution time for this

problem is reasonable.

For the third problem (1FC2 (a)), we should say that the extended formulation gen-

erated by the cutting-plane algorithm is not strong enough and we could not solve the

problem to optimality using CPLEX (sequential) branch and bound. The run time and

the optimal value reported in Table 4.5 were obtained by J. Eckstein by running his par-

allel branch-and-bound code CMMIP on a 64 processor CM-5 machine [9]. Starting with

the extended formulation, the code took approximately 10 hours to solve this problem to

optimality, generating a B-B tree with 2.4 million nodes. This negative result shows that

the facet de�ning inequalities that we have presented in this chapter are not su�cient to

solve hard problems (i.e. dense graphs, dense tra�c matrices with 
ow costs) and more

work needs to be done on the polyhedral structure of CEP.

4.5.4 Reconstructing Valid Inequalities

As a further test of the strength of our inequalities, we performed the following experiments.

Suppose we have generated valid inequalities for a problem instance, and the demand data

were to change in a small way. Then the inequalities would generally become invalid.
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However, we can recompute the coe�cients in the inequalities so that they become valid

once again, in a small fraction of the time it took to compute the original inequalities.

Note that the resulting inequalities are probably not facet-de�ning. Nevertheless, how

strong are they? This question has great practical signi�cance, since we will usually solve

many problems that di�er slightly from one another in the demand amounts. To test this,

for selected problems we (a) generated an extended formulation as described above, and

then (b) randomly perturbed each demand by 10 % and 20 %. Table 4.6 describes the

results of these tests. Here LP is the LP-relaxation of the perturbed problem, RELP is

Data Set 2 Data Set 1

Perturbation 10% 20% 10% 20%

z(LP) 1955.83 1967.58 1423.44 1401.54

z(RELP) 10315.51 10316.61 2118.73 2112.92

z(ELP) 10315.51 10321.59 2160.97 2157.63

z(IP) 10704.00 10704.00 2182.37 2164.57

B&B time 430sec 382sec 9sec 9sec

Gap 3.6% 3.6% 2.9% 2.4%

Sc. Gap 4.4% 4.4% 8.3% 6.8%

Table 4.6: Perturb & Reconstruct

the reconstructed extended formulation, ELP is the extended formulation for the perturbed

problem (obtained in the normal way) and IP is the perturbed mixed-integer program. As

we can see, the strategy of recomputing cuts appears quite e�ective. In a certain sense,

this shows that our inequalities are \stable" and more \combinatorial" than driven by the

demand amounts.

4.6 Concluding Remarks

There are several areas that we plan to explore in the future. The cutsets we described

above involve families of subsets of nodes. Roughly speaking, our algorithms maintained
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a list of \active" subsets. It is easy to decide when a subset is no longer active, but all the

approaches we can think of for generating new active sets involve problems similar to the

maximum-cut problem.

Another issue is that of generating strong inequalities involving partitions of the node

set into more than three classes. Early work on our part appears to show that the structure

of the \better" facets is quite complex (they strongly depend on the demand amounts {

one can easily generate interesting-looking combinatorial facets that never come into play).

Instead, we are developing an approach for automatically computing face-de�ning violated

inequalities. Roughly, this approach involves recursively solving problems of type CEP that

have a simpler structure.

A simple change to our formulation is that of replacing each edge by three parallel

edges, one for existing capacity, one for x-capacity and one for y-capacity, and similarly

splitting the 
ows in the edge into a sum of three values. This will merely increase the

number of continuous variables by a factor of three, but the bene�t is that we will have a

richer family of \
ow cut-set" inequalities. As a preliminary step in this direction, we are

improving our separation procedure for these inequalities. We note that there are other

ways of tightening the split formulation.

A di�erent kind of reformulation involves using path variables instead of 
ow variables.

However, the integral variables remain the same, and potentially the resulting problem is

just as di�cult as the original one (although there are more ways of strengthening the path

formulation).
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