
Solving Robust Inventory
Problems

by

Nuri Sercan Özbay

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2006

ABSTRACT

Solving Robust Inventory Problems

In this work we consider setting the optimal inventory control policies for a single

buffer when demand is uncertain, in a robust framework. Unlike traditional inventory

models we do not assume that the demand is random with a known distribution.

Instead, demand can take values from a given uncertainty set. Our objective is to

find the policy that minimize the maximum cost that is attainable by the demand

vectors in our uncertainty set. We consider the problem for two different types of

policies which are very common in practice and present a family of algorithms based

on decomposition that scale well to problems with hundreds of time periods. We also

present theoretical results on more general models.

Contents

1 Introduction 1

1.1 Literature review . 2

1.2 Our model and contributions . 6

1.2.1 Generic algorithm . 11

1.3 Notation . 14

2 The Static Problem 15

2.1 Prior work . 16

2.2 Demand uncertainty . 22

2.3 The decision maker’s problem . 23

2.4 The adversarial problem under the risk budgets model 24

2.4.1 A special case . 29

2.4.2 The adversarial problem as a mixed-integer program 31

2.5 The adversarial problem in the bursty demand model 33

2.6 Computational results for the static problem 34

i

3 The Basestock Problem 39

3.1 Preliminaries . 42

3.2 The decision maker’s problem . 44

3.3 The adversarial problem under the risk budgets model 48

3.3.1 Handling M. 53

3.3.2 Handling B. 54

3.3.3 Handling F . 58

3.3.4 The algorithm . 58

3.3.5 The approximate adversarial algorithm 60

3.3.6 Integral budgets case . 62

3.3.7 A bounding procedure for the risk budgets model 63

3.4 The adversarial problem under the bursty demand model 64

3.5 Experiments with the basestock model 68

3.5.1 The risk budgets model . 68

3.5.2 The bursty demand model . 74

3.6 Extensions . 80

3.6.1 Polyhedral uncertainty sets 80

3.6.2 Robust safety stocks . 81

3.6.3 Ambiguous uncertainty sets 88

3.6.4 Model superposition . 91

3.6.5 More comprehensive supply-chain models 93

ii

3.7 Summary of the results . 93

4 The Dynamic Problem 95

4.1 Preliminaries . 98

4.2 Characterization of optimal policies 101

4.3 Risk budgets model . 104

4.3.1 A special case . 106

4.4 Bursty demand model . 107

Appendices 109

A An alternative approach for solving PM 109

B NP-completeness proofs 116

B.1 Proof of Theorem 3.4.1 . 116

B.2 Proof of Theorem 3.6.1 . 119

C Algorithms for the discrete budgets model 121

C.1 Proof of Theorem 3.6.4 . 121

C.2 Proof of Theorem 3.6.5 . 126

iii

List of Figures

2.1 Example with many steps . 38

3.1 % error in basestock vs. % error in cost 74

3.2 Effect of scaling peaks on optimum basestock 79

iv

List of Tables

2.1 Solving the adversarial problem as a mixed-integer program 32

2.2 Parameters for data generation . 35

2.3 Running time and number of iterations 37

2.4 Running time and number of iterations for the budgets model 38

3.1 Performance of algorithm for risk budgets (T = 100). 69

3.2 Error in the basestock produced by using early termination. 69

3.3 Performance statistics – integral budgets 70

3.4 Ratio of adversarial time to total running time for the budgets model 71

3.5 Static vs Basestock Policies . 72

3.6 % increase in average cost of dynamic and static policies over the rolling

horizon basestock policy . 73

3.7 Behavior of algorithm for bursty demand model under a constant base-

stock . 75

3.8 Impact of window size on a 300-period model 76

v

3.9 Impact of initial inventory . 77

3.10 Variance vs Optimal Basestock . 79

vi

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Designing an efficient supply chain and operating it efficiently is one of the most im-

portant issues for a large number of modern organizations. For the past three decades,

increasing economic and competitive pressure has forced manufacturers to create bet-

ter ways to control every single step in their supply chain, from supplier contracts to

distribution channels. Due to recent fluctuations in the economy, matching supply to

demand has become even more challenging. Nowadays, there is a growing need for

more robust supply chains that are responsive to the changes in market conditions.

This work was inspired by a project carried out with an industrial partner and it con-

cerns the optimal stock ordering policies for a buffer in a supply chain in an uncertain

environment.

CHAPTER 1. INTRODUCTION 2

1.1 Literature review

The origins of Supply Chain/Inventory Management can be found as early as the

beginning of 20th century when Harris [H13] derived the Economic-Order-Quantity

formula that applies when the demand is assumed to be constant over time. Over

the few decades preceding his work numerous authors elaborated different variations

of Harris’ EOQ model. Although pioneers of the field were aware of the uncertainties

associated with the problem, the study of the problem in a stochastic setting was

only started in the 1950’s, with the seminal papers by Arrow, Harris and Marschak

[AHM51] and Dworetzky, Kiefer and Wolfowitz [DKW52]. Since then, supply chain

optimization problems have been studied extensively under stochastic settings using

different methodologies such as dynamic programming and stationary analysis. We

refer the reader to Zipkin [Z00] for a comprehensive discussion of various models in

supply chain/inventory management.

One of the most important advancements in supply chain management took place

when Clark and Scarf [CS60] proved the optimality of basestock policies for serial sys-

tems using dynamic programming, a powerful technique that would later be used by

many other authors to derive structural results about optimal inventory control poli-

cies. Subsequently, basestock policies became increasingly popular and were proved

to be optimal for many other inventory models. For further work on basestock poli-

cies see Iglehart [I63a, I63b], Veinott [V66], Ehrhart [E84] and Muharremoglu and

CHAPTER 1. INTRODUCTION 3

Tsitsiklis [MT01]. While such a policy is not necessarily optimal, it may be preferable

over optimal policies since it is easy to implement and often performs very well. Due

to its simplicity it is widely used in practice and finding optimal basestock levels itself

has drawn a lot of attention by both practitioners and researchers.

Traditional models for supply chain management are often criticized by practi-

tioners for their strong assumptions, among which is full knowledge of the underlying

demand distribution. In most real world applications, especially in industries with

short product life cycles, paucity of historical demand data makes it very hard to

determine a demand distribution that fits the observed data. In such situations the

inventory controller should make decisions using partial information, such as inaccu-

rate forecasts, about future demand, and estimates for the error in these forecasts.

To the best of our knowledge the first work on distribution free supply chain

management problems is due to Scarf [S58] who considered a single period newsvendor

problem and determined the orders that maximize the minimum expected profit over

all possible demand distributions for given first and second moments. Later, Gallego

and Moon [GM93, MG94] provided concise derivations of his results and extended

it to other cases. Gallego, Ryan and Simchi-Levi [GRS01] considered the multi-

period version of this problem with discrete demand distribution and proved the

optimality of basestock policies. Recently, Bertsimas and Thiele [BT04] and Ben-Tal

et. al. [BGNV05] studied some supply chain management problems with limited

demand information using the robust optimization framework. The central difference

CHAPTER 1. INTRODUCTION 4

of their work from previous work is that instead of assuming partial information about

the distribution of the demand, they assume that uncertain demand is explicitly

represented by a set that defines all possible demand values. In Chapter 2 we provide

a detailed discussion of their results. Also see [BGGN04] and [T05].

Robust Optimization is an increasingly accepted way to handle uncertainty. It

addresses parameter uncertainties in deterministic optimization problems. Unlike

Stochastic Programming it does not assume that the uncertain parameters are random

variables with known distributions, instead it represents uncertainty in parameters

using deterministic uncertainty sets in which all possible values of these parameters

reside. Typically, Robust Optimization adopts a min-max approach that guaran-

tees the feasibility of the obtained solution for all possible values of the uncertain

parameters in the given uncertainty sets.

Although the underlying ideas are older, the classical references for Robust Op-

timization are Ben-Tal and Nemirovski [BN98, BN99, BN00] where they studied a

group of convex optimization problems with uncertain parameters and showed that

they can be formulated as conic programs which can be solved in polynomial time.

Since then, there has been a large amount of research dealing with various aspects of

Robust Optimization. For example, Bertsimas and Sim [BS03] proposed a new poly-

hedral uncertainty set that guarantees feasibility with high probability for general

distributions for the uncertain parameters. They show that Linear Programs with

this uncertainty framework can be reformulated as Linear Programs with a small

CHAPTER 1. INTRODUCTION 5

number of additional variables. Also see [AZ05], where robustness is introduced in

the context of a combinatorial optimization problem.

Robust Optimization methodology was originally developed to deal with static

problems in which all of the decision variables are set prior to resolution of any un-

certainty. However, in most real life applications, the dynamic nature of the problems

allows decision makers to revise their decisions as more information about the uncer-

tain parameters becomes available. This is especially true for multi-period decision

making problems where static robust optimization models are unable to capture the

fact that the decision maker knows the values of uncertain parameters in the preced-

ing periods and can exploit this information when making his decisions. Recognizing

the need for incorporating the dynamic nature of the multi-period decision making

problems into Robust Optimization models, Ben-Tal et. al. [BGGN04], recently

proposed Affinely Adjustable Robust Counterpart models which feature the idea of

dynamically determining decision variables as affine functions of the portion of the

uncertain data that has been realized. By restricting the decisions to affine func-

tions of the past data they managed to produce tractable formulations for uncertain

Linear Programs. Ben-Tal et. al. [BGNV05] applied these ideas to a supply chain

management problem to get a polynomial time solvable formulation. We will review

this work more closely in Section 2.1.

Another field that deals with uncertainty in optimization problems is Adversarial

Queuing, which was first considered by Borodin et. al [BKRSW96]. They studied

CHAPTER 1. INTRODUCTION 6

packet routing over queuing networks when there is only limited information about

demand. Following an approach similar to Robust Optimization, they adopted a

worst case approach and proved some stability results that holds for all realizations

of the demand. They used a demand model that is first introduced by Cruz [C91] to

capture the burstiness of inputs in communication networks. Later, Andrews et. al.

[AAFKLL96] considered a similar problem with different network protocols.

1.2 Our model and contributions

In this thesis we develop procedures for setting the stock ordering policies for a buffer

in a supply chain subject to uncertainty in the demands. As mentioned before, our

work is motivated by experience with an industrial partner in the electronics industry

who faced the following difficulties: short product cycles, a complex supply chain

with multiple suppliers and long production leadtimes, a paucity of demand data

and a very competitive environment. The combination of these factors produced a

significant exposure to risk, in the form of either excessive inventory or shortages. The

supply chain of our industrial partner consisted of a network with multiple buffers;

however, in this work we consider a system made up of a single buffer.

We consider a buffer evolving over a finite time horizon. For t = 1, 2, . . . , T ,

the quantity xt denotes the inventory at the start of period t (possibly negative to

indicate a shortage) with x1 given. We also have a (per unit) inventory holding cost

CHAPTER 1. INTRODUCTION 7

ht, a backlogging cost bt, and a production cost ct. The dynamics during period t

work out as follows:

(a) First, one orders (produces, etc) a quantity ut ≥ 0, thereby increasing inventory

to xt + ut, and incurring a cost ctut,

(b) Next, the demand dt ≥ 0 at time t is realized, decreasing inventory to xt+1
.
=

xt + ut − dt,

(c) Finally, at the end of period t, we pay a cost of max{htxt+1,−btxt+1}.

This model can be extended in a number of ways, for example by considering

capacities, setup costs, or termination conditions. These features can easily be added

to the algorithms described in this thesis.

We are interested in operating the buffer so that the sum of all costs incurred

between time 1 and T is minimized. In order to devise a strategy to this effect,

we need to make precise steps (a) and (b). In what follows, we will refer to the

minimum-cost problem as the “basic inventory problem”.

In general, we are given a set D (the uncertainty set). Each element of D is a

vector (d1, d2, . . . , dT) of demands that is available to an adversary. At time t, having

previously chosen demand values d̂i (1 ≤ i ≤ t − 1), the adversary can choose any

demand value d̂t such that there is some vector (d̂1, . . . , d̂t−1, d̂t, dt+1, . . . , dT) ∈ D.

Given an uncertainty set D, we need a strategy to produce orders ut so as to min-

imize the maximum cost that can arise from demands in D. To make this statement

CHAPTER 1. INTRODUCTION 8

precise, we need to specify how (a) is implemented. In other words, for each time t

we need to describe a decision rule, such that the decision maker observes the current

state of the system (e.g. the current inventory xt) and prior actions on the part of

the adversary, and chooses ut appropriately. A policy is the the sequence of such

decision rules and we denote the set of all available policies by Π. Typical examples

of policies are the basestock policy in which our decision rule in each period is given

by the function max{σt − xt} for a given basestock level σt and the static policy in

which the decision maker determines the orders in advance independent of the state

of the system or actions of the adversary.

The main focus of this thesis concerns how to pick the optimal policy in the robust

setting, under various demand uncertainty sets D. In the succeeding three chapters we

consider the “basic inventory problem” for three different variants of Π. We propose

a generic methodology and using this methodology we develop algorithms to compute

the optimal stock ordering policies.

The inventory problem in the robust setting can be described as follows:

min
π∈Π

max
d∈D

cost(π, d), (1.1)

where for π ∈ Π and d ∈ D,

cost(π, d) =
T
∑

t=1

(ctut(π, d) + max{ htxt+1(π, d) , −btxt+1(π, d)}) (1.2)

where ut(π, d) denotes the order that would be placed by policy π at time t under

demands d1, d2, . . . , dt−1, and xt(π, d) would likewise denote the inventory at the start

CHAPTER 1. INTRODUCTION 9

of period t. Here, the quantity x1 (the initial inventory level) is an input and once

the demand variables (d1, d2, . . . , dt−1) ∈ D and the policy π have been chosen, ut

and xt are uniquely determined, for 1 ≤ t ≤ T . Notice that cost(π, d) is the cost

corresponding to policy π and demand pattern d; and worst-case the cost arising

from applying policy π is given by

max
d∈D

cost(π, d). (1.3)

We call (1.3) the adversarial problem.

In Section 1.2.1 we discuss a generic algorithm for solving (1.1) for different types

of policies and demand uncertainty sets (for different sets Π and D). The algorithm

is based on a common approach, Benders’ decomposition [B62], and extensive exper-

imentation shows it to be quite fast for the cases that are considered in this thesis.

Although we consider a specific inventory management problem, our methodology is

general and can be used to solve many other minmax type problems.

In Chapter 2, we limit our policy space to static policies. We assume that in each

period t, the order quantity is determined in advance and fixed regardless of the state

of the system, i.e. our decision rule is defined by a constant function of the state of the

system and the past actions by the adversary. We develop an algorithm to compute

the optimal static policy. We numerically prove the efficiency of our algorithm by

testing it on many large examples.

The static policy does not allow the inventory controller to dynamically use the

CHAPTER 1. INTRODUCTION 10

information that becomes available as the uncertainty in the system is resolved. How-

ever, this is unrealistic since in real world applications the decision maker can make

dynamic decisions. In Chapter 3 we consider the basestock policies as a tool to incor-

porate the dynamic nature of the problem into our methodology. We construct our

policy space with constant basestock policies, i.e. policies such that for 1 ≤ t ≤ T and

for a real constant σ, the order quantity in period t is equal to max{σ− xt, 0} where

xt denotes the inventory on-hand at the beginning of period t. Notice that when

using a basestock policy, the inventory controller determines an order-up-to level and

if the on-hand inventory is less that that level he places an order to push it back up

to its ideal level. Although basestock policies have their own limitations, the effect of

uncertainty on inventory levels (therefore inventory cost) is not as severe as under a

static policy because of the cap it places on inventory level. In Chapter 3 we present

a numerical comparison of optimal basestock policies with optimal static policies.

Part of the reason for our focus on basestock policies is that they have acquired

very wide use and can be shown to be optimal under stochastic inventory models.

Further, though basestock policies may not always be optimal, they are viewed as

producing easily implementable policies for practitioners. In Chapter 3 we propose

an algorithm to pick the optimal basestock level for an inventory buffer under sev-

eral robust uncertainty models. Extensive experimentation shows that our algorithm

proves to be very efficient.

At the other extreme we may consider making decisions dynamically. Instead of

CHAPTER 1. INTRODUCTION 11

determining the policy at the very beginning of the horizon, the inventory controller

can delay the ordering decision in each period t until the beginning of period t,

which makes it possible to use all of the information that becomes available by period

t. Naturally, such a policy performs very well under uncertainty since it gives the

inventory controller greater freedom to set the orders. We call this problem the

dynamic problem, and in Chapter 4 we give a characterization of the optimal policies

and show how to compute them.

1.2.1 Generic algorithm

Our generic algorithm, given next, maintains a working list D̃ of demand patterns

– each member of D̃ is a demand vector (d1, d2, . . . , dT) ∈ D. The algorithm also

maintains an upper bound U and a lower bound L on the value of problem (1.1).

This algorithm can be viewed as a form of Bender’s decomposition. [B62]

Note that the decision maker’s problem is of the same general form as the generic

problem (1.1) – however, the key difference is that while D is in general exponentially

large, at any point D̃ has size equal to the number of iterations run so far. One

of the properties of Benders’ decomposition is that, when successful, the number of

iterations until termination will be small. In experimental testing, this number turned

out quite small indeed, as we will see.

In fact, the decision maker’s problem proves to be quite tractable: roughly speak-

CHAPTER 1. INTRODUCTION 12

ing, it amounts to an easily solvable convex optimization problem. For example, in

the case of static policies the problem can be formulated as a linear program with

O(T |D̃|) variables and constraints.

Algorithm 1.2.1 GENERIC ALGORITHM

Initialize: D̃ = ∅, L = 0 and U = +∞.

1. Decision maker’s problem. Let π̃ be the solution to the problem:

minπ∈Π maxd∈D̃ cost(π, d).

Set L← maxd∈D̃ cost(π̃, d).

2. Adversarial problem. Let d̄ be the solution to the problem:

maxd∈D cost(π̃, d).

Set U ← min
{

U , cost(π̃, d̄)
}

.

3. Termination test. If U − L is small enough, then EXIT.

4. Formulation update. Otherwise, add d̄ to D̃ and return to Step 1.

On the other hand, the adversarial problem is non-convex. In at least one case we

can show that it is NP-hard. The problem can be also modeled as a mixed-integer

program, but tackling this mixed-integer program directly turns out not to be the best

approach. Instead, we devise simple combinatorial algorithms that prove efficient.

Benders’ decomposition algorithms have long enjoyed popularity in many con-

CHAPTER 1. INTRODUCTION 13

texts. In the case of stochastic programming with large number of scenarios, they

prove essential in that they effectively reduce a massively large continuous problem

into a number of much smaller independent problems. In the context of non-convex

optimization (such as the problem handled in this paper) the appeal of decomposition

is that it vastly reduces combinatorial complexity.

Benders’ decomposition methods can be viewed as a special case of cutting-plane

methods. As is the case for cutting-plane methods for combinatorial optimization,

there is no adequate general theory to explain why Benders’ decomposition, when

adequately implemented, tends to converge in few iterations. In the language of our

algorithm, part of an explanation would be that the demand patterns d̄ added to D̃

in each execution of Step 4 above are “important” or “essential”, as well as being

“extremal”.

A final point regarding Algorithm 1.2.1 is that neither Step 1 nor Step 2 need be

carried out exactly, except in the last iteration (in order to prove optimality). When

either step is performed approximately, then we cannot update the corresponding

bound (U or L) as indicated in the blueprint above. However, for example, per-

forming Step 2 approximately can lead to faster iterations, and at an early stage

an approximate solution can suffice since all we are trying to do, at that point, is

to quickly improve the approximation to the set D provided by the existing (and

much smaller) set D̃. Our implementations run the exact adversarial problem only

at certain iterations, as will be discussed in Chapter 3.

CHAPTER 1. INTRODUCTION 14

1.3 Notation

Notation 1.3.1 In what follows, for any time period t, and any value z, we write

Wt(z) = max{ htz , −btz }.

We will refer to the inventory holding/backlogging cost in any period as the inventory

cost.

CHAPTER 2. THE STATIC PROBLEM 15

Chapter 2

The Static Problem

In this chapter we consider the static robust inventory problem, which is defined by:

min
u≥0

T
∑

t=1

ctut + K(u) (2.1)

where for u = (u1, u2, . . . , uT) ≥ 0,

K(u) = max
T
∑

t=1

Wt(xt+1) (2.2)

s.t. xt+1 = xt + ut − dt, 1 ≤ t ≤ T,

(d1, d2, . . . , dT) ∈ D.

Here (2.2) is the adversarial problem: given orders u, the adversary chooses demands

d so as to maximize the total inventory cost. We study problem (2.1) not only because

it is of interest on its own right, but because it serves as a proof-of-concept for our

basic algorithmic ideas. In addition, by running the static model at every period

CHAPTER 2. THE STATIC PROBLEM 16

in a rolling horizon fashion, we obtain a dynamic strategy, though of course not a

basestock strategy. Our algorithms are especially effective on the static problem,

solving instances with thousands of time periods in a few seconds, and consequently

extensions of the static problem should also prove efficiently solvable.

2.1 Prior work

In recent work, Bertsimas and Thiele [BT04] studied robust supply chain optimization

problems. One particular contribution lies in how they model the demand uncertainty

set D. In their model there are, for each time period t, numbers 0 ≤ δt ≤ µt and Γt,

such that 0 ≤ Γ1 ≤ Γ2 ≤ . . . ≤ ΓT and Γt ≤ Γt−1 + 1 (for 1 < t ≤ T). A vector

of demands d is in D if and only if there exist numbers z1, z2, . . . , zT , such that for

1 ≤ t ≤ T ,

dt = µt + δtzt, (2.3)

zt ∈ [−1, 1], (2.4)

t
∑

j=1

|zj| ≤ Γt. (2.5)

Here, the quantity µj is the “mean” or “nominal” demand at time j, and the model al-

lows for an absolute deviation of up to δj units away from the mean. Constraints (2.5)

constitute non-trivial requirements on the ensemble of all deviations. The method in

[BT04] handles startup costs and production capacities, but it is assumed that costs

CHAPTER 2. THE STATIC PROBLEM 17

are stationary, e.g. there are constants h, b and c such that ht = h, bt = b, and ct = c

for all t. If we extend the model in [BT04] to the general case, the approach used in

[BT04] formulates our basic inventory problem as the following linear program:

C∗ = min
T
∑

t=1

(ctut + yt) (2.6)

s.t.

yt ≥ ht



x1 +
t
∑

j=1

(uj − µj) + At



 t = 1, . . . T, (2.7)

yt ≥ bt



−x1 +
t
∑

j=1

(µj − uj) + At



 t = 1, . . . T, (2.8)

u ≥ 0,

where for t = 1, . . . T ,

At = max
t
∑

j=1

δjε
t
j (2.9)

s.t.
t
∑

j=1

εt
j ≤ Γt,

0 ≤ εt
j ≤ 1, 1 ≤ j ≤ t.

Thus, LP (2.9) computes the maximum cumulative deviation away from the mean

demands, by time t, that model (2.3)-(2.5) allows. If we denote by ε̂t
j (1 ≤ j ≤ t) the

optimal solution to LP (2.9), then constraint (2.7) yields the inventory holding cost

that would be incurred at time t if the demands at time 1, 2, . . . , t took values

µ1 − δ1ε̂
t
1 , µ2 − δ2ε̂

t
2 , . . . , µt − δtε̂

t
t,

CHAPTER 2. THE STATIC PROBLEM 18

whereas constraint (2.8) yields the backlogging cost that would be incurred at time t

if the demands at time 1, 2, . . . , t took values

µ1 + δ1ε̂
t
1 , µ2 + δ̂2ε

t
2 , . . . , µt + δtε̂

t
t,

e.g. in each case the deviations maximize the respective cost (see the discussion

following equation (13) in [BT04]). Also, note that when computing At and At′ for

t 6= t′ we will in general obtain different implied demands, e.g. ε̂t
i 6= ε̂t′

i for i ≤ t, t′.

Linear program (2.6) should be contrasted with the “true” min-max problem:

R∗ = min
u≥0

R(u) (2.10)

where for u = (u1, u2, . . . , uT) ≥ 0,

R(u) = max
d,z,x

T
∑

t=1

(ctut + max{ htxt+1 , −btxt+1}) (2.11)

s.t.

xt+1 = xt + ut − dt, 1 ≤ t ≤ T,

dt = µt + δtzt,

zt ∈ [−1, 1],

t
∑

j=1

|zj| ≤ Γt, 1 ≤ t ≤ T.

We have that R∗ ≤ C∗ and the gap can be large. However, [BT04] empirically shows

that in the case of stationary costs (2.6) provides an effective approximation to (2.10).

This is significant because (2.11) is a non-convex optimization problem.

CHAPTER 2. THE STATIC PROBLEM 19

In addition, again in the case of stationary costs, it is shown in [BT04] that LP

(2.6) is essentially equivalent to an inventory problem with known demands, and as

a result the solution to the LP amounts to a basestock policy with basestock σt =

µt + b−h
b+h

(At−At−1), with A0 = 0. In fact, LP (2.6) can be solved “greedily” (every yt

simultaneously minimized) in the stationary case. Although the non-stationary case

is not considered in [BT04], we can say that the results from the stationary case do

not directly apply.

Next we review the results in [BGNV05] in the context of our basic inventory

problem. There are three ingredients in their model. First, motivated by prior work

[GW74], and by ideas from Control Theory [GSc71], the authors propose an affine

control algorithm. Namely, the algorithm in [BGNV05] will construct for each period

1 ≤ t ≤ T parameters α̂j
t (0 ≤ j ≤ t− 1) and impose the control law:

ut = α̂t
0 +

t−1
∑

i=1

α̂t
idi, (2.12)

in addition to nonnegativity of the ut (this extends the methodology described in

[BGGN04]). When used at time t, the values dj in (2.12) are the past demands.

Using (2.12), the inventory holding/backlogging cost inequalities for time t become:

yt ≥ ht



x1 +
t−1
∑

i=1





t
∑

j=i+1

α̂j
i − 1



 di − dt +
t
∑

j=1

α̂j
0



 t = 1, . . . T, (2.13)

yt ≥ bt



−x1 +
t−1
∑

i=1



1−
t
∑

j=i+1

α̂j
i



 di + dt −
t
∑

j=1

α̂j
0



 t = 1, . . . T, (2.14)

In addition, [BGNV05] posits that the quantities yt can be approximated (or at least,

CHAPTER 2. THE STATIC PROBLEM 20

upper-bounded) by affine functions of the past demand; the algorithm sets parameters

β̂t
j (0 ≤ j ≤ t− 1) with yt =

∑t−1
j=1 β̂t

jdj + β̂t
0. Inserting this expression into (2.13), and

rearranging, we obtain:

0 ≥ htx1 +
t−1
∑

i=1



ht





t
∑

j=i+1

α̂j
i − 1



− β̂t
i



 di − htdt + ht

t
∑

j=1

α̂j
0 − β̂t

0, (2.15)

which can be abbreviated as

0 ≥
t
∑

i=1

P t
i (α̂, β̂) di + P t

0(α̂, β̂), (2.16)

where each P t
i (α̂, β̂) is an affine function of α̂ and β̂ (and similarly with (2.14)). The

algorithm in [BGNV05] chooses the α̂ and β̂ values so that (2.15) holds for each

demand in the uncertainty set. This set is given by dt ∈ [µt − δt , µt + δt], where

0 ≤ δt ≤ µt are known parameters. Thus, (2.16) holds for each allowable demand if

and only if there exists values ν̂t
i , 1 ≤ i ≤ t, such that

0 ≥
t
∑

i=1

(

P t
i (α̂, β̂) µi + ν̂t

iδi

)

+ P t
0(α̂, β̂), (2.17)

−ν̂t
i ≤ P t

i (α̂, β̂) ≤ ν̂t
i , 1 ≤ i ≤ t. (2.18)

Inequalities (2.17) and (2.18), which are linear in α̂, β̂, ν̂ make up the system that is

enforced in [BGNV05] (there is an additional set of variables, similar to the ν̂, that is

used to handle the backlogging inequalities (2.14)). Notice, as was the case in [BT04],

that this approach is conservative in that we may have ν t
i 6= νt′

i for some i and t 6= t′,

i.e. the demands implied by some inequality (2.17) for some t may be different from

CHAPTER 2. THE STATIC PROBLEM 21

those arising from some other period t′. Thus, the underlying min-max problem (over

the uncertainty set dt ∈ [µt − δt , µt + δt] for each t) is being approximated.

Partly in order to overcome this conservatism, [BGNV05] introduces its third

ingredient. Given that the orders and the holding/backlogging costs are represented

as affine functions of the demands, the total cost can be described as an affine function

of the demands; let us write the total cost as Q0 +
∑

t Qtdt where each Qt = Qt(α̂, β̂)

is itself an affine function of α̂, β̂. To further limit the adversary, [BGNV05] models:

cost = max

{

Q0 +
∑

t

Qtdt : d ∈ E

}

, where (2.19)

E = {d : (d− µ)′S(d− µ) ≤ Ω} . (2.20)

Here, ’ denotes transpose, S is a symmetric, positive-definite T × T matrix of known

values, Ω > 0 is given and µ is the vector of values µt. Thus, (2.20) states that the

demands cannot simultaneously take values “far” from their nominal values µt. As

shown in [BGNV05], the system (2.19), (2.20) is equivalent to the problem:

cost = min E, (2.21)

subject to: Q0 +
∑

t

µtQt +
(

Ω Q′ S−1 Q
)1/2

− E ≤ 0. (2.22)

In this inequality, Q is the vector with entries Qt.

In summary, the approach used in [BGNV05] to handle the robust basic inventory

model solves the optimization problem with variables E, α̂, β̂ and ν̂; with objective

CHAPTER 2. THE STATIC PROBLEM 22

(2.21), and constraints (2.22), (2.17) and (2.18) (and nonnegativity of the orders,

enforced through (2.12)). Such a problem can be efficiently solved using modern

algorithms. [BGNV05] reports excellent results in examples with T = 24.

2.2 Demand uncertainty

Here we consider the following models for the demand uncertainty set:

1. The Bertsimas-Thiele model (2.3)-(2.5). We will refer to this as the risk budgets

model. We also consider a broad generalization of this model, which we term

the intervals model.

2. Based on empirical data from our industrial partner, and borrowing ideas from

adversarial queueing theory, we consider a simple model of burstiness in demand.

In this model, each time period t is either normal or a exceptional period, and

demand arises according to the rules:

(B.a) In a normal period, we have dt ∈ [µt − δt , µt + δt], where 0 ≤ δt ≤ µt are

given parameters.

(B.b) In a exceptional period, dt = Pt, where Pt > 0 is given.

(B.c) There is a constant 0 < W ≤ T such that in any interval of W consecutive

time periods there is at most one exceptional period.

CHAPTER 2. THE STATIC PROBLEM 23

The quantities Pt are called the peaks. (B.b) and (B.c) model a severe “burst”

in demand, which is rare but does not otherwise impact the “normal” demand.

For such a model we would employ a Pt value that is “large” compared to the

normal demand, e.g. Pt = µt + 3δt. However, our approach does not make any

assumption concerning the Pt, other than Pt ≥ 0. We will refer to (B.a)-(B.c)

as the bursty demand model.

There are many possible variations of this model, for example: having several

peak types, or non-constant window parameters W . Our algorithms are easily

adapted to these models.

The risk budgets and the bursty demand model will also be considered in the context

of basestock policies and the dynamic problem. Later in the thesis we will describe

other models.

2.3 The decision maker’s problem

Step 1 of our generic algorithms requires us to solve the decision maker’s problem

for a subset of the demand uncertainty set. Let D̂ ⊂ D. Then it is easy to see that

the decision maker’s problem for the set D̂ can be formulated as the following linear

program.

Min
T
∑

t=1

(

ctut + Kd
t

)

(2.23)

CHAPTER 2. THE STATIC PROBLEM 24

s.t Kd
t ≥ ht(x1 +

t
∑

i=1

(ui − di)) t = 1, 2, ..., T ∀ d ∈ D̂ (2.24)

Kd
t ≥ −bt(x1 +

t
∑

i=1

(ui − di)) t = 1, 2, ..., T ∀ d ∈ D̂ (2.25)

u ≥ 0 (2.26)

Here, Kd
t is a variable indexed by the period, t, and the demand vector, d.

Notice that the LP above has constraints (2.24) and (2.25) for every demand

vector d ∈ D̂. Similarly, our main problem (2.1) can be formulated as a semi-infinite

LP by having (2.24) and (2.25) for all d ∈ D. Fortunately, (2.23)-(2.26) has a compact

representation, i.e. there exists a small subset D̃ of D such that the LP constructed

by taking the constraints (2.24) and (2.25) corresponding to demand vectors in D̃ will

have that same optimal solution as our semi-infinite LP. Our algorithms construct

this compact representation.

2.4 The adversarial problem under the risk bud-

gets model

Here we consider the adversarial problem (step 2 of Algorithm 1.2.1) under the de-

mand uncertainty model (2.3)-(2.5). For simplicity of presentation, in this section we

will assume that the quantities Γt are integral – in Chapter 3, where we consider the

basestock problem with the risk budgets, we will allow the Γt to be fractional. But

the integral Γt case already incorporates most of the complexity of the problem.

CHAPTER 2. THE STATIC PROBLEM 25

We have the following result:

Lemma 2.4.1 Let d̄ be an extreme point of D. Then for 1 ≤ t ≤ T , either d̄t = µt

or |d̄t − µt| = δt.

Proof. We define zt = |d̄t − µt|/δt for 0 ≤ t ≤ T . Suppose that Lemma is not true

and there exist a time period t for which zt is non-integral. Let t′ be the largest such

index. Suppose
∑t′

t=1 zt < Γt′ . Let ε = min{Γt′ −
∑t′

t=1 zt, zt′ , 1 − zt′}. We form two

demand patterns d1 and d2 by setting d1
t′ = d̄t′ − εδt′ , d2

t′ = d̄t′ + εδt′ and d1
t = d2

t = d̄t.

Note that d1, d2 ∈ D and d̄ = d1+d2

2
which contradicts with the fact that d̄ is an

extreme point of D.

Suppose that
∑t′

t=1 zt = Γt′ . This means that there exists an index 1 ≤ t < t′ such

that zt is fractional. Let t′′ be the largest such index. Note that
∑t

t=1 zt < Γt for

every t′′ ≤ t < t′. We set

ε = min{Γt′′ −
t′′
∑

t=1

zt, ..., Γt′−1 −
t′−1
∑

t=1

zt, zt′′ , zt′ , 1− zt′′ , 1− zt′}.

Similar to the previous case we form two vectors d1 and d2 by setting d1
t′ = d̄t′ − εδt′ ,

d1
t′′ = d̄t′′ + εδt′′ , d2

t′ = d̄t′ + εδt′ , d2
t′′ = d̄t′′ − εδt′′ and d1

t = d2
t = d̄t. d1, d2 ∈ D, and

we can write d̄ as a linear combination of d1 and d2. Therefore d̄ is not an extreme

point.

Using this lemma, we can now devise an algorithm for the adversarial problem. Let

ũ be a vector of orders. In the remainder of this section we will assume that ũ is

CHAPTER 2. THE STATIC PROBLEM 26

fixed. For 1 ≤ t ≤ T , and for any integer k with 0 ≤ k ≤ Γt, let At(x, k) denote the

maximum cost that the adversary can attain in periods t, . . . , T , assuming starting

inventory at time t equal to x, and that k “units” of risk have been used in all periods

preceding t. Formally,

At(x, k) = max
d

T
∑

j=t

Wj



x +
j
∑

i=1

ũi −
j
∑

i=1

di



 (2.27)

Subject to
j
∑

i=t

{

|di − µi|

δi
: δi > 0

}

≤ Γj − k, t ≤ j ≤ T,

µj − δj ≤ dj ≤ µj + δj, t ≤ j ≤ T.

Using this notation, the value of the adversarial problem equals
∑T

t=1 ctũt + A1(x1, 0).

Now (2.27) amounts to a linearly constrained program (in the d variables plus some

auxiliary variables) and it is easily seen that the demand vector that attains the max-

imum in A1(x1, 0) is an extreme point of D. Thus, using Lemma 2.4.1, we have the

following recursion:

At(x, Γt) = Wt(x + ũt − µt) + At+1(x + ũt − µt, Γt), (2.28)

while for k < Γt,

At(x, k) = max
{

fu
t,k(x) , f d

t,k(x) , fm
t,k(x)

}

, (2.29)

where

fu
t,k(x) = Wt(x + ũt − µt − δt) + At+1(x + ũt − µt − δt, k + 1), (2.30)

f d
t,k(x) = Wt(x + ũt − µt + δt) + At+1(x + ũt − µt + δt, k + 1), (2.31)

fm
t,k(x) = Wt(x + ũt − µt) + At+1(x + ũt − µt, k). (2.32)

CHAPTER 2. THE STATIC PROBLEM 27

Here we write AT+1(x, k) = 0 for all x, k As a result of equation (2.29) and the

definition of the fu
t,k(x), f d

t,k(x), fm
t,k(x), we have:

Lemma 2.4.2 For any t and k, At(x, k) is a convex, piecewise-linear function of x.

Equations (2.28) and (2.29)-(2.32) provide a dynamic programming algorithm for

computing A1(x1, 0). In the rest of this section we provide simple details needed to

make the algorithm efficient.

We will use the following notation: the representation of a convex piecewise-linear

function f is the description of f given by the slopes and breakpoints of its pieces,

sorted in increasing order of the slopes (i.e., “left to right”).

Lemma 2.4.3 For i = 1, 2, let f i be a convex piecewise-linear function with slopes

si
1 < si

2 < . . . < si
m(i). Suppose that, for some q > 0, f 1 and f 2 have q pieces of

equal slope, i.e. there are q pairs 1 ≤ a ≤ m(1), 1 ≤ b ≤ m(2), such that s1
a = s2

b .

Then (a) g = max{f 1, f 2} has at most m(1) + m(2) − q pieces. Furthermore (b)

given the representations of f 1 and f 2, we can compute the representation of g in

time O(m(1) + m(2)).

Proof. First we prove (b). Let v1 < v2 < . . . < vn be the sequence of all breakpoints

of f 1 and f 2, in increasing order, where n ≤ m(1) +m(2)− 2. Suppose that for some

1 ≤ i < n we have that f 1(vi) ≥ f 2(vi) and f 2(vi+1) ≥ f 1(vi+1) where at least one of

CHAPTER 2. THE STATIC PROBLEM 28

the two inequalities is strict. Then the interval [vi, vi+1] contains a breakpoint of g. In

fact, with the exception of at most two additional breakpoints involving the first and

last pieces of f 1 and f 2, every breakpoint of g arises in this form or by exchanging

the roles of f 1 and f 2. This proves (b), since given the representation of f 1 and f 2

we can compute the sorted list v1 < v2 < . . . < vn in time O(m(1) + m(2)). To prove

(a), note that any piece of g is either (part) of a piece of m(1) or m(2); thus, since g

is convex, for any pair 1 ≤ a ≤ m(1), 1 ≤ b ≤ m(2), with s1
a = s2

b (= s, say) there is

at most one piece of g with slope s.

In our implementation, we use the method implicit in Lemma 2.4.3 together with

the dynamic programming recursion described above. We will present computational

experience with this algorithm later. Here we present some comments on its com-

plexity.

Note that in each equation (2.30)-(2.32) the corresponding function f u
t,k, f d

t,k or fm
t,k

has at most one more breakpoint than the At+1 function in that equation. Neverthe-

less, the algorithm we are presenting is, in the worst case, of complexity exponential

in T . However, this is an overly pessimistic worst-case estimate. Comparing equa-

tions (2.30) and (2.31), we see that f u
t,k(x) = f d

t,k(x− 2δt). Thus, as is easy to see (see

Lemma 2.4.4 below) max{fu
t,k, f

d
t,k} has no more breakpoints than fu

t,k, which also has

at most one more breakpoint than At(x, k + 1).

Further, Lemma 2.4.3 (a) is significant in that when we consider equations (2.30)-

(2.32) we can see that, in general, the functions f u, f d and fm will have many pieces

CHAPTER 2. THE STATIC PROBLEM 29

with equal slope. In fact, in our numerical experiments, we have not seen any example

where the number of pieces ofA1(x, 0) was large. We conjecture that for broad classes

of problems our dynamic-programming procedure runs in polynomial time.

2.4.1 A special case

There is an important special case where we can prove that our algorithm is efficient.

This is the case where the demand uncertainty set is described by the condition that

dt ∈ [µt− δt , µt + δt] for each t. In terms of the risk budgets model, this is equivalent

to having Γt = t for each t. We will refer to this special case as the box model.

In this case, the extreme points of the demand uncertainty set D are particularly

simple: they satisfy dt = µt − δt or dt = µt + δt for each t. Let At(x) denote the

maximum cost that the adversary can attain in periods t, . . . , T , assuming that the

starting inventory at time t equals x. Then:

At(x) = max
{

fu
t (x) , f d

t (x)
}

, (2.33)

where

fu
t (x) = Wt(x + ũt − µt − δt) + At+1(x + ũt − µt − δt), (2.34)

f d
t (x) = Wt(x + ũt − µt + δt) + At+1(x + ũt − µt + δt). (2.35)

and as before we set AT+1(x) = 0. We have, as a consequence of Lemma 2.4.3:

CHAPTER 2. THE STATIC PROBLEM 30

Lemma 2.4.4 Let f be a piecewise-linear, convex function with m pieces, and let a

be any value. Then g(x)
.
= max{ f(x) , f(x + a) } is convex, piecewise-linear with at

most m pieces.

Proof. This follows directly from part (a) of Lemma 2.4.3.

Corollary 2.4.5 For any t, the number of pieces in At(x) is at most T − t + 2.

Corollary 2.4.6 In the box model, the adversarial problem can be solved in time

O(T 2).

Corollary 2.4.6 is significant for the following reason. In the box case, our min-max

problem (2.1) can be written as:

min
u≥0

T
∑

t=1

ct ut + z (2.36)

Subject to z ≥
∑

j∈J

hj



x1 +
j
∑

i=1

ũi −
j
∑

i=1

di



 −
∑

j∈J̄

bj



x1 +
j
∑

i=1

ũi −
j
∑

i=1

di



 ,

for all d ∈ D, and each partition (J, J̄) of {1, . . . , T). (2.37)

This linear program has T +1 variables but 2T |D| constraints. However, by Corollary

2.4.6, we can solve the separation problem for the feasible set of the linear program in

polynomial time – hence, we can solve the min-max problem in polynomial time, as

well [GLS93]. This result is of theoretical relevance only – in the box demands case,

our generic Benders’ algorithm proves especially efficient.

CHAPTER 2. THE STATIC PROBLEM 31

2.4.2 The adversarial problem as a mixed-integer program

Even though we are using a dynamic-programming algorithm to solve the adversarial

problem, we can also use mixed-integer programming. In the following formulation ũ

is the given vector of orders. For each period t, there is a zero-one variable pt which

equals 1. All other variables are continuous, and the Mt are large enough constants.

max
d,x,p,I,B,z

T
∑

t=1

(It + Bt) (2.38)

Subject to

for 1 ≤ t ≤ T,

xt+1 = xt + ũt − dt, (2.39)

ht xt+1 ≤ It ≤ ht xt+1 + ht Mt(1− pt), (2.40)

0 ≤ It ≤ ht Mt pt, (2.41)

−bt xt+1 ≤ Bt ≤ −bt xt+1 + bt Mtpt, (2.42)

0 ≤ Bt ≤ bt Mt (1− pt), (2.43)

dt = µt + δt zt, (2.44)

pt = 0 or 1, (2.45)

t
∑

j=1

|zt| ≤ Γt. (2.46)

Equations (2.40)-(2.43) imply that when if ht xt+1 > 0 then pt = 1, and when pt = 1

then It = ht xt+1 and Bt = 0; whereas if −bt xt+1 > 0 then pt = 0, and when pt = 0

CHAPTER 2. THE STATIC PROBLEM 32

then Bt = −bt xt+1 and It = 0. In order for the formulation to be valid we need to

choose the constants Mt appropriately large – however, for efficiency of solvability,

they should be chosen just large enough, and this can be done in a straightforward

fashion.

Problem (2.38) bears a passing similarity to the traditional economic lot-sizing

problem [WW58, BRW84]. As a result, we would expect modern mixed-integer pro-

gramming software to handle the problem with ease. The following table shows

sample computational experience using Cplex 9.0 on a current workstation to solve

three examples. In this table “time” is the time to termination (in seconds) and “BB

nodes” is the number of branch-and-cut nodes.

T 24 48 96

time (sec.) 0.12 227 16449

BB nodes 84 215922 7910537

Table 2.1: Solving the adversarial problem as a mixed-integer program

These results are disappointingly poor – in fact, in the example with T = 96,

achieving a near-optimal solution was already quite expensive. This makes the mixed-

integer programming approach uncompetitive with the dynamic programming algo-

rithm given above, which solves problems with T = 500 in seconds.

Nevertheless, it is possible that a more efficient specialized algorithm for solving

the mixed-integer program (2.38), or for a reformulation of it (there are many) could

CHAPTER 2. THE STATIC PROBLEM 33

be developed. In fact, notice that by replacing equation (2.46) with the general con-

dition d ∈ D we can in principle tackle the adversarial problem for general polyhedral

set D.

2.5 The adversarial problem in the bursty demand

model

Here we consider the adversarial problem for the bursty demand model given in

Section 2.2. We can adapt the dynamic programming recursion used for the risk

budgets model as follows. As previously, we assume a given vector ũ of orders.

For each period t, and each integer 1 ≤ k < min{W, t}, let Πt(x, k) denote the

maximum cost attainable by the adversary in periods t, . . . , T assuming that the initial

inventory at the start of period t is x, and that the last peak occurred in period t−k.

Similarly, denote by Πt(x, 0) the maximum cost attainable by the adversary in periods

t, . . . , T assuming that the initial inventory at the start of period t is x, and that no

peak occurred in periods t− 1, t− 2, . . . , max{1, t−W + 1}. Writing ΠT+1(x, k) = 0,

we have, for 1 ≤ t ≤ T :

Πt(x, k) = max
d∈{µt−δt,µt+δt}

{Wt(x + ũt − d) + Πt+1(x + ũt − d, k + 1)} ,

for 1 ≤ k < min{W − 1, t}, (2.47)

Πt(x, W − 1) = max
d∈{µt−δt,µt+δt}

{Wt(x + ũt − d) + Πt+1(x + ũt − d, 0)} ,

CHAPTER 2. THE STATIC PROBLEM 34

for W − 1 < t, (2.48)

Πt(x, 0) = max
{

Π1
t (x) , Π0

t (x)
}

, where (2.49)

Π1
t (x) = max

d∈{µt−δt,µt+δt}
{Wt(x + ũt − d) + Πt+1(x + ũt − d, 0)} , (2.50)

Π0
t (x) = Wt(x + ũt − Pt) + Πt+1(x + ũt − Pt, 1). (2.51)

We solve this recursion using the same approach as for (2.28)-(2.32), i.e. by storing the

representation of each function Πt(x, k) (which clearly are convex piecewise-linear).

2.6 Computational results for the static problem

To investigate the behavior of our algorithms for the static case, we ran several sets

of tests, with results reported in Table 2.3. In this table, we report tests involving

the budgets and the bursty model of uncertainty, with three different kinds of data:

random, periodic and discounted. Further, we consider T = 50, 200, and500. We ran

500 tests for each separate category, and for each category we report the average,

maximum and minimum running time and number of steps to termination.

For all of the data types, we generate problem parameters randomly. We assume

that each period corresponds to a week and that a year has 52 weeks. In the periodic

case we generate cost parameters and demand intervals corresponding to 3 months

(13 weeks) and assume that data repeats every 3 months. For the discounted case we

generate the cost data corresponding to one period and extend this to other periods by

discounting this data using a yearly rate of 0.95. We generated the demand intervals

CHAPTER 2. THE STATIC PROBLEM 35

[l1, l2] [h1, h2] p

c [0,2] [6,8] 0.5

h [5,10] [15,25] 0.5

b [5,15] [20,30] 0.5

d [0,100] [200,400] 0.7

Table 2.2: Parameters for data generation

in that case randomly (see below). For the pure random case, data in each period is

generated independently from the other periods.

In generating the cost parameters we assumed that there are two possibilities. In

each period, each cost parameter is uniformly distributed either in some interval [l1, l2]

with probability p or in interval [h1, h2] with probability 1−p. We generated the mid-

points of the intervals where demand resides using the same method. The half-lengths

of the intervals are generated by multiplying the mid-point value with a random

number which is uniformly distributed between 0 and 1. Table 2.2 demonstrates the

parameters we used.

The peak quantities in the bursty demand model were generated by multiplying

the mid-point of the demand interval by 5.

For the demand model with risk budgets we generated budgets in two ways. First,

randomly. Here, starting from budget 0, we generated a budget for each period t by

setting Γt = Γt−1 + ζ where ζ = 1 with probability q and ζ = 0 otherwise. The

CHAPTER 2. THE STATIC PROBLEM 36

parameter q is likewise randomly chosen with uniform distribution.

We also tested our algorithm on stationary instances in which the budgets are

generated by the procedure given in [BT04]. Let d be a demand vector and let

C(d, Γ) be the cost of this demand vector with the optimal robust policy computed

by our algorithm for the budget vector Γ. The method in [BT04] assumes that d

is a random vector and generates the Γ vector that minimizes an upper bound on

E[C(d, Γ)] assuming that the first two moments of the distribution is given. The

algorithm gives budgets which are not necessaryly integral. We round them down,

since our algorithm for the static model can only handle the integral budget case.

These results are given in Table 2.4.

We note the low number of iterations – this shows that on average approximately

four demand patterns suffice to prove optimality (of the optimal policy). The max-

imum we observed is larger but still quite modest. In fact, Table 2.3 may overstate

the amount of work needed to converge. This is because in addition to requiring few

iterations, frequently the algorithm quickly converged to a near-optimal solution and

the additional iterations were needed in order to close a very small gap. Figure 2.1

shows a typical example of this behavior. In the figure the gap between the lower and

the upper bounds for the cost decreases rapidly and after fifth iteration we obtain a

solution that is very close to the optimal in terms of cost.

CHAPTER 2. THE STATIC PROBLEM 37

Running Time (sec.) Number of Iterations

periods average max min average max min

Random

(bursty)

50 0.073 0.28 0.01 4.23 10 3

200 3.28 1.21 0.37 4.45 9 3

500 53.6 241 3.94 4.44 11 3

Random

(budgets)

50 0.03 0.10 0.01 4.10 8 3

200 1.22 3.60 0.58 4.39 10 3

500 20.00 43.90 10.90 4.18 8 3

Periodic

(bursty)

50 0.07 0.17 0.01 4.03 7 3

200 3.00 11.90 0.35 4.26 9 3

500 42.10 149.00 3.85 3.74 7 3

Periodic

(budgets)

50 0.04 0.85 0.01 4.33 26 3

200 0.61 10.00 0.26 4.13 17 3

500 5.99 33.70 3.19 3.85 11 3

Discounted

(bursty)

50 0.07 0.19 0.01 4.03 7 3

200 3.47 16.20 0.42 4.83 11 3

500 55.40 336.00 4.68 4.76 15 3

Discounted

(budgets)

50 0.03 0.42 0.01 4.28 20 3

200 0.92 38.70 0.32 4.37 35 3

500 9.32 238.00 2.71 4.56 26 3

Table 2.3: Running time and number of iterations

CHAPTER 2. THE STATIC PROBLEM 38

Running Time (sec.) Number of Iterations

periods average max min average max min

50 0.22 4.51 0.00 9.21 42 2

200 5.73 39.82 0.05 8.90 23 2

500 50.28 1049.00 0.61 7.11 13 2

Table 2.4: Running time and number of iterations for the budgets model

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

x 10
5

Iteration Number

C
os

t

Figure 2.1: Example with many steps

CHAPTER 3. THE BASESTOCK PROBLEM 39

Chapter 3

The Basestock Problem

The main focus of this chapter concerns how to pick optimal basestock policies in a

robust setting, under various demand uncertainty sets D. Our focus is motivated,

primarily, by the fact that basestock policies have acquired very wide use. Basestock

policies can be shown to be optimal under many inventory models [Z00]. Further,

even though such policies may not always be optimal, they are viewed as producing

easily implementable policies in the broader context of a “real-world” supply chain,

where it is necessary to deal with a number of complex details (such as the logis-

tics of relationships with clients and suppliers) not easily handled by a mathematical

optimization engine. In the concrete example of the problem faced by our indus-

trial partner, we stress that using a (constant) basestock policy was an operational

constraint.

The inventory problem in the robust setting, using a constant (time-independent)

CHAPTER 3. THE BASESTOCK PROBLEM 40

basestock, can be described as follows:

min
σ≥0

V (σ) (3.1)

where for σ ≥ 0,

V (σ) = max
d,x,u

T
∑

t=1

(ctut + max{ htxt+1 , −btxt+1}) (3.2)

s.t.

ut = max{σ − xt , 0}, 1 ≤ t ≤ T, (3.3)

xt+1 = xt + ut − dt, 1 ≤ t ≤ T, (3.4)

(d1, d2, . . . , dT) ∈ D. (3.5)

Here, (3.2)-(3.5) is the adversarial problem – once the demand variables (d1, d2, . . . , dT)

∈ D have been chosen, constraints (3.3)-(3.4) uniquely determine all other variables.

Note that the quantity x1 (the initial inventory level) is an input. Also, because of

the “max” in (3.2) and (3.3), the adversarial problem is non-convex.

Note that we assume σ ≥ 0 in (3.1) – in fact, our algorithms do not require

this assumption. Under special conditions, the optimal basestock might be negative;

however, we expect that the nonnegativity assumption would be commonly used and

hence we state it explicitly.

Problem (3.1) posits a constant basestock over the entire planning horizon. How-

ever, we would expect that in practice the policy would be periodically reviewed ((3.1)

CHAPTER 3. THE BASESTOCK PROBLEM 41

would be re-optimized) to adjust the basestock in a rolling horizon fashion, though

perhaps not at every time period. The stipulation for a constant basestock in (3.1)

can be viewed as an operational feature aimed at achieving stability (and “imple-

mentability”) of the policy used to operate the supply chain in the face of large, and

difficult to quantify, demand uncertainty. Clearly such a policy could prove subopti-

mal. However, when used under periodic review, and with an appropriate discounting

function and termination conditions, the policy should still prove sufficiently flexible.

In the case of our industrial partner, the use of a constant basestock level was a

required feature.

At the other extreme one could ask for a time-dependent basestock policy, i.e. we

might have a different basestock value σt for each 1 ≤ t ≤ T . We will give a result

regarding the adversarial problem in this general setting in Section 3.6. Also, there are

intermediate models between the two extremes of using different basestocks at each

time interval and a constant basestock: for example,we might allow the basestock to

change at the midpoint of the planning horizon. Or, with seasonal data, we might

use a fixed basestock value for each “season”. Even though we do not study such

models in this paper, simple extensions of the algorithms we present can in principle

handle them.

A different model is that of safety stocks. A safety stock policy with margin λ is

one that uses, at time t a basestock policy with σt = µ̂t + λδ̂t, where µ̂t and δ̂t, are

given constants (typically, estimates of the mean demand and standard deviation of

CHAPTER 3. THE BASESTOCK PROBLEM 42

demand at time t, but not necessarily so, and in our study, arbitrary constants). We

present some results concerning this model in Section 3.6.2.

The following three sections consider how to solve problem (3.1) using our generic

algorithm (1.2.1), under the risk budgets and bursty demand uncertainty models.

Section 3.2 considers the decision maker’s problem. The adversarial problem is studied

in Section 3.3 (for the risk budgets model) and Section 3.4 (bursty demands model).

3.1 Preliminaries

In the context of algorithm (1.2.1), a policy π̃ consists of a basestock value σ̃, and this

will be the output of each decision maker’s problem; the corresponding adversarial

problem will consist of computing the quantity V (σ̃) defined in equations (1.2)-(3.3).

Prior to describing our algorithms, we note a simple observation.

Definition 3.1.1 Let d be a demand vector. For 1 ≤ t ≤ T , write Rt,d = x1 −

∑t−1
j=1 dj. Write R0,d = +∞.

Definition 3.1.2 Consider a demand vector d and a basestock value σ. We denote

by t∗ = t∗σ,d the smallest t ≤ T with Rt,d ≤ σ. If no such t exists we set t∗σ,d = T + 1.

In other words, Rt,d is the amount of inventory at the start of period t if no orders

are placed in periods 1, . . . , t− 1, and t∗σ,d indicates the first period where, under the

policy using basestock σ, the starting inventory does not exceed σ.

CHAPTER 3. THE BASESTOCK PROBLEM 43

Example 3.1.3 Suppose T = 6, d = (10, 8, 0, 15, 4, 9) and x1 = 100. Then R1,d =

100, R2,d = 90, R3,d = R4,d = 82, R5,d = 67 and R6,d = 63. Also,

t∗σ,d =



































































































1, for 100 ≤ σ,

2, for 90 ≤ σ < 100,

3, for 82 ≤ σ < 90,

5, for 67 ≤ σ < 82,

6, for 63 ≤ σ < 67,

7, for σ < 63.

Remark 3.1.4 For 1 ≤ t ≤ T , we have that t∗σ,d = t for σ ∈ [Rt,d , Rt−1,d). Further,

(writing t∗ for t∗σ,d) if we use basestock σ under demands d,

(a) For every t ≥ t∗, xt ≤ σ, and for every t ≤ t∗, xt = Rt,d.

(b) For t < t∗, ut = 0. For t < t∗ − 1 we have, by definition of t∗, that 0 ≤ σ ≤

Rt+1,d = xt+1, hence the cost incurred at t equals ht (Rt+1,d) = Wt (Rt+1,d).

We might have that xt∗ < 0, in which case in period t∗− 1 we pay a backlogging

cost. In any case, the cost incurred in period t < t∗ can be summarized as

Wt (Rt+1,d).

(c) At t = t∗ the ordering cost equals ct∗ (σ −Rt∗,d) and the inventory cost is

Wt(σ − dt∗).

(d) For t > t∗ we incur an ordering cost of ctdt−1 and an inventory cost of Wt(σ −

dt).

CHAPTER 3. THE BASESTOCK PROBLEM 44

3.2 The decision maker’s problem

Here we have a finite set D̃ ⊆ D and we wish to compute the basestock value that

minimizes the maximum cost over any demand pattern in D̃. Consider any demand

d ∈ D. Let icostt(σ, d) and ocostt(σ, d) denote the inventory and ordering costs

incurred at time t, under demands d, if we use basestock σ, respectively. Further, we

denote cost(σ, d) =
∑

t(ocostt(σ, d) + icostt(σ, d)).

Lemma 3.2.1 For fixed d,
∑

t ocostt(σ, d) is a piecewise linear function of σ with

T + 1 pieces.

Proof. Notice that

∑

t

ocostt(σ, d) =







































0 if σ ≤ RT,d

ct(σ −RT,d) if RT−1,d < σ ≤ RT,d

ct(σ −Rt,d) +
∑T−1

i=t ci+1di if Rt,d < σ ≤ Rt−1,d for 1 ≤ t ≤ T − 1

Here we assume that R0,d =∞ ∀d ∈ D.

Lemma 3.2.2
∑

t icostt(σ, d) is a convex function of σ if either Rt,d ≥ 0 for every

1 ≤ t ≤ T + 1 or Rt,d ≤ 0 for every 1 ≤ t ≤ T + 1.

Proof. Suppose that Ri,d ≥ 0 for all 1 ≤ i ≤ T . Then the cost corresponding to

period t can be written as

CHAPTER 3. THE BASESTOCK PROBLEM 45

icostt(σ, d) =



















ht(Rt,d − dt) if σ ≤ Rt,d

ht(σ − dt) if σ > Rt,d

= ht max{σ − dt,Rt,d − dt}

which is a convex function of σ. Similarly if Ri,d ≤ 0 for all 1 ≤ i ≤ T , then for

1 ≤ i ≤ T

icostt(σ, d) = max{ht(σ − dt),−bt(σ − dt)}

which is convex in σ.

Consequently, icostt(σ, d) is a convex for all 1 ≤ t ≤ T .

Now suppose that there exist a time period 2 ≤ t′ ≤ T such that Rt′,d < 0 and

Rt′−1,d ≥ 0.

Lemma 3.2.3 cost(σ, d) is a convex function of σ for the sets L = {σ : σ ≤ Rt′−1,d}

and R = {σ : σ ≥ Rt′−1,d}.

Proof. First we consider L. For σ ∈ L the one period cost functions can be written

as follows. For 1 ≤ t ≤ t′ − 1 we have

icostt(σ, d) = ht(Rt,d − dt)

which is a linear function.

For t′ ≤ t ≤ T

icostt(σ, d) = max{ht(σ − dt),−bt(σ − dt)}.

CHAPTER 3. THE BASESTOCK PROBLEM 46

Therefore, cost(σ, d) is convex in L.

Now we consider σ ∈ R. Similar to L we will show that one period cost is a convex

function of σ for each time period. For 1 ≤ t ≤ t′ − 1

icostt(σ, d) =



















ht(Rt,d − dt) if σ ≤ Rt,d

ht(σ − dt) ifσ > Rt,d

= max{ht(σ − dt), ht(Rt,d − dt)}.

For t′ ≤ t ≤ T

icostt(σ, d) = max{ht(σ − dt),−bt(σ − dt)}.

icostt(σ, d) is clearly convex for all 1 ≤ t ≤ T in both cases.

Corollary 3.2.4 maxd̃∈D̃ cost(σ, d̃) is piecewise convex with at most (T+2)|D̃| pieces,

with each convex piece being piecewise-linear.

Our objective is to compute σ ≥ 0 so as to minimize maxd̃∈D̃ cost(σ, d̃). To do this,

we rely on Corollary 3.2.4 :

(i) Compute, and sort, the set of breakpoints of all functions cost(σ, d̃). Let 0 ≤

β1 < β2 . . . < βn be the sorted list of nonnegative breakpoints, where n ≤

(T + 2)|D̃|.

(ii) In each interval I of the form [0, β1], [βi, βi+1] (1 ≤ i < n) and [βn, +∞),

we have that maxd̃∈D̃ cost(σ, d̃) is the maximum of a set of convex functions,

CHAPTER 3. THE BASESTOCK PROBLEM 47

and hence convex (in fact: piecewise linear). Let σI ∈ I be the minimizer of

maxd̃∈D̃ cost(σ, d̃) in I.

(iii) Let Ĩ = argminI maxd̃∈D̃ cost(σI , d̃). We set σ̃ = σĨ .

In order to carry out Step (ii), in our implementation we used binary search. There

exist other algorithms that in theory, are more efficient [NW99], but empirically

our implementation proves adequate. Note that in order to carry out the binary

search in some interval I, we do not explicitly need to construct the representation

of maxd̃∈D̃ cost(σ, d̃), restricted to I. Rather, when evaluating some σ̂ ∈ I we simply

compute its functional value as the maximum, over d̃ ∈ D̃, of cost(σ̂, d̃); and this can

done using the representation of each cost(σ̂, d̃) function.

Further, in the context of our generic algorithm 1.2.1, Step (i) can be performed

incrementally. That is to say, when adding a new demand d̄ to D̃, we compute the

breakpoints of cost(σ, d̄) and merge these into the existing sorted list, which can be

done in linear time.

In summary, all the key steps of our algorithm for the decision maker’s problem

run linearly in T and D̃.

We stress that the above algorithm is independent of the underlying uncertainty

set D. In what follows, we will describe our algorithms for the adversarial problem,

under the risk budgets and bursty demand uncertainty models.

CHAPTER 3. THE BASESTOCK PROBLEM 48

3.3 The adversarial problem under the risk bud-

gets model

In this section we consider the adversarial model under the demand uncertainty set

D given by (2.3)-(2.5), assuming that a fixed basestock σ has been given. We let

(d∗, z∗) denote the optimal demand (and risks) vector chosen by the adversary. We

first want to characterize structural properties of (d∗, z∗). In what follows, we write

t∗ for t∗σ,d∗ . First we have the following easy result:

Lemma 3.3.1 Suppose t∗ ≥ T . Then d∗ is obtained by solving the following linear

programs, and choosing the solution with higher value:

Max
T
∑

t=1

ht



x1 −
t
∑

j=1

dj



 (3.6)

s.t. d ∈ D

x1 −
T−1
∑

t=1

dt ≥ σ.

Max
T−1
∑

t=1

ht



x1 −
t
∑

j=1

dt



+ bT

(

T
∑

t=1

dt − x1

)

(3.7)

s.t. d ∈ D

x1 −
T−1
∑

t=1

dt ≥ σ.

CHAPTER 3. THE BASESTOCK PROBLEM 49

Lemma 3.3.1 provides one case for our adversarial algorithm. In what follows we

will assume that t∗ < T and describe algorithms for this case. We will describe two

algorithms: an exact algorithm, which solves the problem to proved optimality, and a

much faster approximate algorithm which does not prove optimality but nevertheless

produces a “strong” demand pattern d̄ which, in the language of our generic algorithm

(1.2.1), quickly improves on the working set D̃. The exact algorithm requires (in a

conservative worst-case estimate) the solution of up to O(T 4 ΓT) warm-started linear

programs with fewer than 4T variables; as we show in Section 3.5 it nevertheless can

be implemented to run quite efficiently. The approximate algorithm, on the other

hand, is significantly faster.

Some additional remarks on the exact algorithm:

(a) When the Γt are integral, the step count reduces to O(T 2 ΓT). In addition, if

Γt = t for each t (i.e. the uncertainty set reduces to the intervals [µt−δt, µt+δt])

the complexity reduces to O(T 2), with no linear programs solved. See Section

3.3.6 for details.

(b) The case of integral Γt is of interest because if we use the uncertainty set with

risk budgets Γf
t = bΓtc we obtain a lower bound on the min-max problem,

whereas if we use then risk budgets Γc
t = dΓte we obtain an upper bound. In

fact, the superposition of the two uncertainty sets should provide a good ap-

proximation to the min-max problem (see Section 3.6.4). Further,we present a

CHAPTER 3. THE BASESTOCK PROBLEM 50

bounding procedure based on this idea, which proves excellent bounds, signifi-

cantly faster than the algorithm for fractional Γt.

We begin with the exact algorithm. Lemmas 3.3.2 and 3.3.3 and Remark 3.3.4,

all given below, provide some structural properties of an optimal solution to the

adversarial problem. Sections 3.3.1, 3.3.2 and 3.3.3 describe the technical details of

our approach. The overall algorithm is put together in Section 3.3.4. The approximate

algorithm is described in Section 3.3.5, the case with the integral budgets is considered

in Section 3.3.6 and the bounding procedure based on integral budgets is given in

Section 3.3.7.

Lemma 3.3.2 Either (a) there is a period te ≥ t∗ such that
∑te

j=1 |z
∗
j | = Γt, or (b)

without loss of generality |z∗
t | = 1 for every t ≥ t∗.

Proof. Assume no period te as in (a) exists, and suppose that |z∗
t | < 1 for some t ≥ t∗.

Since
∑k

j=1 |z
∗
j | < Γk for all k ≥ t, it follows we can increase |zt|, i.e. |dt − µt|, and

remain feasible Using Remark 3.1.4, (c) and (d), the cost paid as a function dt equals

ct+1dt +Wt(σ− dt) (where cT+1 = 0), which is a convex function of dt. Hence we can

increase |zt| without decreasing the cost, which proves the claim.

Note that, given for a given t∗, case (b) of Lemma 3.3.2 is simple: we simply need to

set, for each t ≥ t∗, either dt = µt + δt or dt = µt− δt, so as to maximize Wt(σ− dt)+

ct+1dt. For case (b) to hold, we must have that
∑t∗−1

t=1 |z
∗
t∗−1| ≤ ΓT − (T − t∗ + 1). So,

CHAPTER 3. THE BASESTOCK PROBLEM 51

for a given t∗, case (b) amounts to solving the linear program:

Max
t∗−1
∑

t=1

ht



x1 −
t
∑

j=1

dt



+ ct∗

(

σ − (x1 −
t∗−1
∑

t=1

dt)

)

(3.8)

s.t. dt = µt + δtzt, 1 ≤ t ≤ t∗ − 1,

zt ∈ [−1, 1], 1 ≤ t ≤ t∗ − 1,

t
∑

j=1

|zj| ≤ Γt, 1 ≤ t ≤ t∗ − 2,

t∗−1
∑

j=1

|zt∗−1| ≤ ΓT − (T − t∗ + 1),

x1 −
t∗−2
∑

t=1

dt ≥ σ,

x1 −
t∗−1
∑

t=1

dt ≤ σ.

In total, case (b) amounts to T linear programs of type (3.8). In what follows, we

assume that case (a) holds, and that furthermore the period te is chosen as small as

possible.

Lemma 3.3.3 Without loss of generality, there is at most one period tf with t∗ ≤

tf ≤ te, such that 0 < |z∗tf | < 1.

Proof. If we have t∗ = te the result is clear, and if t∗ < te the result follows because

the cost incurred in periods t∗, . . . , te is a convex function of the demands in those

periods.

CHAPTER 3. THE BASESTOCK PROBLEM 52

Given t∗, tf and te, we partition the time periods into three sets:

B =
{

1, 2, . . . , t∗ − 1, tf
}

, (3.9)

M =
{

t∗ + 1, t∗ + 2, . . . , tf − 1, tf + 1, . . . te
}

, (3.10)

F = {te + 1, te + 2, . . . , T} . (3.11)

Let d∗(B), d∗(M) and d∗(F) (z∗(M), z∗(M) and z∗(F), respectively) be the subvectors

of d∗ (resp., z∗) restricted to B, M and F . Below we will show that each of B, M and F

gives rise to an optimization problem, for which (d∗(B), z∗(B)), (d∗(M), z∗(M)) and

(d∗(F), z∗(F)) are respectively optimal. Thus, essentially, the adversarial problem is

partitioned into three problems that can be solved (almost) independently. To ensure

that the solutions to the three problems can be joined into a feasible solution to the

adversarial problem, we will need to enumerate a polynomial number of boundary

cases.

In what follows, we write γ∗ =
∑t∗−1

t=1 |z
∗
t |, and for any period t and 0 ≤ γ, write

l(γ, t) =







































Γt − bΓtc − (γ − bγc), if Γt − bΓtc ≥ γ − bγc

1 + Γt − bΓtc − (γ − bγc), otherwise.

(3.12)

In other words, l(γ, t) equals the smallest nonnegative value that must be added to

γ in order to obtain a quantity with fractional part equal to Γt − bΓtc. Note that

0 ≤ l(γ, t) ≤ 1, and that our interpretation of l(γ, t) is correct even if one or both of

CHAPTER 3. THE BASESTOCK PROBLEM 53

Γt and γ are integral.

Remark 3.3.4 |z∗tf | = l(γ∗, te).

In the following sections 3.3.1, 3.3.2, 3.3.3 we we describe optimization problems

arising from M , B and F that are solved by (d∗(M), z∗(M)), (d∗(B), z∗(B)), and

(d∗(F), z∗(F)), respectively, assuming that there is a period tf as in Lemma 3.3.3.

3.3.1 Handling M.

We consider first

PM(γ, t∗, tf , te) :

max
d,z

∑

i∈M

(Wi(σ − di) + ci+1di)

s.t.

di = µi + δizi ∀i ∈M (3.13)

i
∑

j=t∗
|zi| ≤ bΓi − γc t∗ ≤ i ≤ tf − 1 (3.14)

tf−1
∑

j=t∗
|zi| ≤ bΓtf − (γ + l(γ, te))c (3.15)

tf−1
∑

j=t∗
|zi| +

i
∑

j=tf+1

|zi| ≤ bΓi − (γ + l(γ, te))c, tf + 1 ≤ i ≤ te, (3.16)

−1 ≤ zi ≤ 1 ∀i ∈M,

Lemma 3.3.5 (d∗(M), z∗(M)) is an optimal solution to PM(γ∗, t∗, tf , te).

CHAPTER 3. THE BASESTOCK PROBLEM 54

Proof. First, (d∗(M), z∗(M)) is feasible for this problem. This follows by Remark

3.3.4 because in periods i ∈ M we have
∑i

j=t∗ |z
∗
i | ≤ Γi − γ∗, and furthermore the

|z∗i | are integral (0 or 1) by definition of M . Conversely, if (d̂(M), ẑ(M)) is optimal

solution to PM(γ∗, t∗, tf , te), then (d∗(B), d̂(M), d∗(F)) is a feasible solution to the

adversarial problem, and the result follows.

Note that PM(γ, t∗, tf , te) can be formulated as a mixed-integer program, much

like (2.38). A subject for research would be to study under what conditions the linear

programming relaxation of the formulation has an integral solution.

Later we will show how to solve PM(γ, t∗, tf , te) in polynomial time. First, note

that the right-hand sides of constraints (3.15) and (3.16) depend on bγc, and not γ.

Further, suppose we write ft = Γt−bΓtc for t ∈ {t∗, t∗ + 1, . . . , tf − 1}∪ {te}, and let

f(1), f(2), . . . , f(tf−t∗+1) be the sorted values ft. Also write f(0) = 0 and f(tt−t∗+2) = 1.

Thus, if we fix bγc, and fix some i, 0 ≤ i ≤ tf − t∗, then any two values γ with

f(i) < γ − bγc ≤ f(i+1) will produce the same right-hand sides for constraints (3.14)-

(3.16). Thus, for fixed bγc, t∗, tf , and te there are only O(tf − t∗) distinct problems

PM(γ, t∗, tf , te).

3.3.2 Handling B.

Next we turn to set B (c.f. (3.9)). Consider the optimization problem, for 0 ≤ k ≤

Γt∗−1 and 0 ≤ j ≤ tf − t∗ + 1:

CHAPTER 3. THE BASESTOCK PROBLEM 55

PB(t∗, tf , te, k, j) :

max
d,z,y,γ

t∗−2
∑

i=1

hi

(

x0 −
i
∑

h=1

dh

)

+Wt∗−1

(

x1 −
t∗−1
∑

h=1

dh

)

+

+ct∗

(

σ −

(

x0 −
t∗−1
∑

h=1

dh

))

+Wtf (σ − dtf) + ctf+1dtf

s.t. x0 −
i
∑

h=1

dh ≥ σ ∀i ∈ {1, 2, ..., t∗ − 1}

x0 −
t∗−1
∑

h=1

dh ≤ σ

di = µi + δizi ∀i ∈ {1, 2, ..., t∗ − 1, tf}

|zi| ≤ yi ≤ 1 ∀i ∈ {1, 2, ..., t∗ − 1, tf}

i
∑

h=1

yh ≤ Γi ∀i ∈ {1, 2, ..., t∗ − 1}

t∗−1
∑

h=1

yh − γ = 0

k + f(j) ≤ γ ≤ k + f(j+1) (3.17)

ytf = l(γ, te) (3.18)

This problem models the behavior of the adversary during those periods in B. Here,

γ is the total uncertainty consumed in periods 1 ≤ t ≤ t∗ − 1. The first term in

the objective is the inventory holding cost incurred in periods 1 ≤ i ≤ t∗ − 2, the

second term is the inventory cost in period t∗ − 1; while the last two terms describe

the inventory cost during period tf and the ordering cost in period tf +1. Constraint

(3.18) controls how much risk the adversary can expend during period tf . Also note

that at optimality yt = |zt| for each t ∈ B. The following result is clear, with a slight

abuse of notation:

CHAPTER 3. THE BASESTOCK PROBLEM 56

Lemma 3.3.6 Suppose that k + f(j) ≤ γ∗ ≤ k + f(j+1) for integers 0 ≤ k ≤ bΓt∗−1c

and 1 ≤ j ≤ tf − t∗ + 2. Then, (d∗(B), z∗(B), γ∗) solves PB(t∗, tf , te, k, j).

Next, we show how to replace PB(t∗, tf , te, k, j) with at most four linear programs.

First, since the objective of PB(t∗, tf , te, k, j) contains just two functions Wt, we can

reduce the problem to at most four problems, each with a linear objective function

and with the same constraints as PB(t∗, tf , te, k, j). There remains the expression

l(γ, te) in the right-hand side of (3.18). We handle this as follows:

(i) Suppose f(j) 6= fte , and f(j+1) < 1. Then, for every γ̂ ∈ [k + f(j), k + f(j+1)], we

have that in the definition of l(γ̂, te) (see eq. (3.12)) the same case will always

apply; and furthermore γ̂ − bγ̂c = γ̂ − k. We conclude that l(γ, te) is linear in

γ.

(ii) Suppose now that j is such that f(j) = fte and f(j+1) < 1. Then we replace

(3.18) with the constraint

ytf = 1 + fte − (γ − k). (3.19)

The right-hand side of (3.19) differs from l(γ, te) only at γ = k + fte where

it equals 1, whereas l(k + fte , t
e) = 0. Denote the new optimization problem

LB(t∗, tf , te, k, j). We claim that (d∗(B), z∗(B), γ∗) solves LB(t∗, tf , te, k, j).

If not, in every optimal solution we must have k + f(j) = γ and k + f(j) < γ∗.

Consequently, since the right-hand side of (3.19) is linear, then for ε > 0 small

CHAPTER 3. THE BASESTOCK PROBLEM 57

enough we can find a feasible solution to LB(t∗, tf , te, k, j) with γ = k + f(j) + ε

and with optimality error O(ε). Such a solution would be strictly better than

(d∗(B), z∗(B), γ∗) if ε is small enough; furthermore such a solution would be

feasible for PB(t∗, tf , te, k, j), contradicting Lemma 3.3.6.

As a final note for this case, suppose k+fte < γ∗, and that we solve LB(t∗, tf , te, k, j)

and obtain an optimal solution (d̂, ẑ, γ̂) with γ̂ = k + fte . This is a solution to

one of the (up to) four linear programs corresponding to LB(t∗, tf , te, k, j); thus,

without loss of generality, the entire segment between (d̂, ẑ, γ̂) and (d∗(B), z∗(B), γ∗)

is made up of optimal solutions to LB(t∗, tf , te, k, j). Hence, by performing a

parametric simplex pivot we can obtain, from (d̂, ẑ, γ̂), an optimal solution that

has a value of γ strictly larger than k + fte .

(iii) Finally, assume now that f(j+1) = 1. Note that fte < 1, so fte ≤ f(j). In this

case we again replace (3.18) with (3.19). In this case, the substitution is correct

except when γ = k + 1 (where l(k + 1, te) = fte , whereas the right-hand side

of (3.19) equals 1 + fte) and, if fte = f(j) at γ = k + f(j). Note that γ∗ < k + 1

(since otherwise z∗tf would be integral). An argument similar to that in case (ii)

shows, again, that (d∗(B), z∗(B)) solves LB(t∗, tf , te, k, j).

The above observations are summarized as follows:

Lemma 3.3.7 Problem PB(t∗, tf , te, k, j) is solved by (d∗(B), z∗(B), γ∗) and it re-

duces to at most four linear programs.

CHAPTER 3. THE BASESTOCK PROBLEM 58

3.3.3 Handling F

Finally, we consider the set F of time periods. For t < T , define

PF (t) :

max
T
∑

i=t

Wi(σ − di) +
T+1
∑

i=t+1

cidi−1 (3.20)

s.t. di = µi + δizi t ≤ i ≤ T

i
∑

j=t+1

|zi| ≤ Γi − Γt−1 t ≤ i ≤ T

−1 ≤ zi ≤ 1 t ≤ i ≤ T

The following is clear:

Lemma 3.3.8 If te < T , (d∗(F), z∗(F)) solves PF (te + 1).

3.3.4 The algorithm

Assuming first that there is a time period tf as in Lemma 3.3.3, our algorithm ex-

amines every 5-tuple (t̄∗, t̄f , t̄e, k, j), where 1 ≤ t̄∗ ≤ t̄f ≤ t̄e ≤ T , 0 ≤ k ≤ Γt̄∗−1

and 0 ≤ j ≤ t̄f − t̄∗ + 1. For each such 5-tuple, we solve the three problems

PB(t̄∗, t̄f , t̄e, k, j), PM(γ, t̄∗, t̄f , t̄e) (where we pick any γ with k +f(j) < γ < k +f(j+1))

and PF (t̄e + 1). By Lemmas 3.3.7, 3.3.6 and 3.3.8 (also see the remarks preceding

Lemma 3.3.7), the solutions to at least one such triple of problems can be assembled

into an optimal solution to the adversarial problem.

The case where there is no time period tf as in Lemma 3.3.3 is handled in a similar

CHAPTER 3. THE BASESTOCK PROBLEM 59

way: here we amend problem PB by removing the last two terms in the objective,

and we amend problem PM by removing constraints (3.15) and suitably modifying

constraint (3.16).

In order to complete the description of the algorithm, we need to explain how to

solve each problem PM and PF (we have already shown that the PB reduce to linear

programs).

A problem PM(γ, t̄∗, t̄f , t̄e) can be solved using dynamic programming, with a stage

for each time period t between t̄∗ and t̄e, and a state corresponding to the risk budget

consumed by period t. Rather than solving each problem separately, we can embed

them into a smaller number of families. For example, given γ and t̄f then the stages

and states corresponding to periods between t̄f and t̄e are independent of t̄∗, and the

value of a state depends only on t̄e. Further improvements are possible (see Appendix

A). The procedure as described requires O(T 4 ΓT) steps.

Next, consider a problem of type PF (t). Clearly, this is just the adversarial prob-

lem restricted to periods t ≤ i ≤ T , using the risk budgets Γi−Γt−1, and with starting

inventory σ. Notice that this last condition implies that t̄∗ = t. Consequently, PF (t)

reduces to a set of trivial (one period) problems PB, and problems of type PM . Hence,

the up-front solution of all problems PM as described in the previous paragraph can

be used to quickly solve each problem PF (t).

Finally, a comment on the problems LB(t̄∗, t̄f , t̄e, k, j). There is a total of O(T 4 ΓT)

such problems, and as discussed above, each such problem reduces to up to four

CHAPTER 3. THE BASESTOCK PROBLEM 60

linear programs. These linear programs should be warm-started, i.e. not solved

from scratch. For example, parameter j only affects constraint (3.17); re-optimizing

starting from the solution to the problem corresponding to j + 1 (and all other pa-

rameters identical) will typically require a tiny number of pivots. Similarly with

t̄∗, t̄f , t̄e, and k. This detail, together with other implementations tricks, is impor-

tant.

3.3.5 The approximate adversarial algorithm

In the discussion above we focused on solving the adversarial problem in Algorithm

1.2.1 exactly. Even though our algorithm runs in polynomial time, it is very conser-

vative: it examines demand patterns that are unlikely to prove optimal except under

extreme data conditions.

Thus, it is appealing to use a possibly suboptimal algorithm. The benefit of

this would be that we would have much faster iterations, while, if the suboptimal

algorithm were “smart” enough, we would still reap the benefit of updating the set

D̃ in Algorithm 1.2.1 with demand patterns that fairly accurately approximate what

the adversary can do. Of course, if we follow this approach, the quantity U computed

in Step 2 of Algorithm 1.2.1 no longer qualifies as an upper bound to the min-max

problem, though L certainly is a lower bound.

Hence, we can use the following approach: run Algorithm 1.2.1 as stated in its

CHAPTER 3. THE BASESTOCK PROBLEM 61

description, but using a suboptimal algorithm to handle the adversarial problem.

Whenever U − L is small, we run the exact adversarial algorithm, at which point

the value of the adversarial problem does become a valid upper bound. This might

allow us to terminate immediately if the gap is small. If not, we continue with the

generic algorithm, once again using the suboptimal procedure to solve the adversarial

problem. In theory, the exact algorithm should be run, for example, every k iterations

for some k, but in our experience this was not needed.

The particular suboptimal algorithm we used was based on a simple idea. Our ap-

proach for the exact algorithm solved problems PM(γ, t̄∗, t̄f , t̄e) and PB(t̄∗, t̄f , t̄e, k, j)

for all appropriate 5-tuples (t̄∗, t̄f , t̄e, k, j). In the suboptimal algorithm, instead, given

t̄∗ and t̄e we compute a particular period to serve as t̄f . Recall (Remark 3.3.4) that

the risk consumption at t̄f should equal l(γ, t̄e). Further, at period t̄f inventory is

already at or below basestock, and so the inventory cost at t̄f will equalWt̄f (σ−dt̄f);

by applying this formula with

dt̄f = µt̄f ± l(γ, t̄e) δt̄f (3.21)

we compute the inventory cost at t̄f , assuming tf = t̄f . On the other hand, if tf 6= t̄f ,

the maximum inventory cost at t̄f will be attained by

dt̄f = µt̄f ± δt̄f . (3.22)

Our method picks that period t̄f for which the decrease from (3.22) to (3.21) is

minimum. Notice that by doing so we ignore the relation between the period t̄f and

CHAPTER 3. THE BASESTOCK PROBLEM 62

problem PB(t̄∗, t̄f , t̄e, k, j). However, the impact on optimality should be small. As

we will see, this approximation dramatically speeds up the algorithm.

3.3.6 Integral budgets case

When we have integral budgets the problem becomes easier. We can eliminate some

of the components in the 5-tuple (t̄∗, t̄f , t̄e, k, j) that we examine in our original algo-

rithm. First of all, we do not need last component, since it is only used to keep track

of the fractional parts of the budgets. Moreover, the following Lemma shows that we

can also eliminate te.

Lemma 3.3.9 z∗t is integral for all te ≤ t ≤ T .

Proof. Suppose that the Lemma is not true and there exist a time period after te that

has fractional risk consumption. Let t̄1 be the smallest of such periods. Then, there

exists another time period t̄2 > t̄1 whose risk consumption is fractional: otherwise,

we can reduce the risk consumption at t̄1 to zero, without decreasing cost; or we can

increase it (without exceeding budgets) and increase cost. However due to convexity

of the cost we can either increase the risk in t̄1 and decrease the risk in t̄2 by the same

amount or do the reverse and get a new demand pattern that has a cost which is a

least as large as the former demand pattern.

Using Lemma 3.3.9, we can extend the dynamic program for computing the cost for

period t∗ ≤ t ≤ te to compute the cost for the periods te < t ≤ T and we can eliminate

CHAPTER 3. THE BASESTOCK PROBLEM 63

te. Therefore, instead of solving PB, PM and PF for each possible value of the 5-tuple

(t̄∗, t̄f , t̄e, k, j), we solve PB for each possible value of triple (t̄∗, t̄f , k) (we change r.h.s.

of 3.18 with 1− (γ−bγc)) and we use the extended dynamic program to compute the

cost for periods t∗, t∗ +1, . . . , T for each value of (t̄∗, t̄f , k). Consequently, the number

of steps is reduced to O(T 2ΓT) for the integral budgets case.

When Γt = t for each t, we can further decrease the complexity of the algorithm.

In this case, since the risk budgets have no impact, we can eliminate the fourth

component of our 5-tuples (the integral part of the risk budget that is consumed up

to time period t∗). Therefore, the step count further reduces to O(T 2).

3.3.7 A bounding procedure for the risk budgets model

A simple observation is that the exact algorithm described above runs much faster

when the Γt are integral. In the language of the previous sections, this follows from

the fact that if the Γt are integral, then we must have tf = te. This observation

motivates the following approach:

1. Run the algorithm using risk budgets dΓte. The value of this problem is an

upper bound on the min-max problem with the original Γt (e.g., the adversary

is more powerful).

2. Run the algorithm using risk budgets bΓtc. The value of this problem is a lower

bound on the min-max problem with the original Γt, and the demand patterns

CHAPTER 3. THE BASESTOCK PROBLEM 64

produced by the adversary are valid.

In our testing, this scheme proved extremely effective, producing very tight bounds

quite quickly. Clearly, we might obtain poor quality bounds in cases where T is small

– but then the exact algorithm will be fast enough.

We integrate this procedure into the overall algorithm as follows. Consider the

first instance where we would run the exact algorithm as indicated in Section 3.3.5

(e.g. when the lower bound L and the quantity U are close). Then, we run the

bounding procedure instead of the exact algorithm. Optionally, if the upper bound

proved by the procedure is close to the current lower bound, we can terminate.

3.4 The adversarial problem under the bursty de-

mand model

For the reader’s convenience, we restate the bursty demand model. Here, period t is

either normal, meaning dt ∈ [µt−δt, µt+δt] (where 0 ≤ δt ≤ µt are given parameters),

or it is exceptional, meaning dt = Pt, where Pt is a given parameter. Further, in any

set of W consecutive periods there is at most one exceptional period.

From a purely theoretical standpoint, we have the following result:

Theorem 3.4.1 The adversarial problem in the bursty demand model is NP-hard.

Proof. See Section B.1.

CHAPTER 3. THE BASESTOCK PROBLEM 65

This result is possibly of theoretical interest only, because it is not clear just how

large T would be in a practical application. Nevertheless, the result does highlight

that, most likely, a polynomial-time algorithm for the adversarial problem does not

exist.

Our approach is as follows. For any demand pattern d, define the time period t∗ as

in Section 3.1: t∗ is the earliest period such that the starting inventory is at most σ.

Then the maximum cost attainable by the adversary during periods 1 through t∗− 1,

plus the order cost at period t∗, assuming that the last exceptional period is t∗ − k

(k = 1, . . . , min{t∗, W}) is obtained by solving the following optimization problem:

IP (t∗, k) :

max
t∗−2
∑

i=1

hi



x1 −
i
∑

j=1

dj



+Wt∗−1



x1 −
t∗−1
∑

j=1

dj



+ ct∗(σ − (x1 −
t∗−1
∑

j=1

dj))

s.t. x1 −
t
∑

j=1

dj ≥ σ 1 ≤ t ≤ t∗ − 2 (3.23)

x1 −
t∗−1
∑

j=1

dj ≤ σ (3.24)

dt = st + ItPt, It ∈ {0, 1} 1 ≤ t ≤ t∗ − 1 (3.25)

(1− It)(µt − δt) ≤ st ≤ (1− It)(µt + δt) 1 ≤ t ≤ t∗ − 1 (3.26)

t+W−1
∑

i=t

It ≤ 1 1 ≤ t ≤ t∗ −W (3.27)

It∗−k = 1 (3.28)

In this formulation, the 0−1 variable It is used to indicate exceptional periods. If

we set k = 0, and replace (3.28) with the constraints It = 0 for t = 1, . . . , min{t∗, W},

CHAPTER 3. THE BASESTOCK PROBLEM 66

then we obtain the maximum cost attainable by the adversary assuming that there

is no exceptional period among the last W periods.

We will return to problem IP (t∗, k) below, but first we consider the periods after

t∗. This part can be handled with a simple dynamic programming recursion. For

t = t∗, . . . , T and k = 0, 1, . . . , min{t − t∗, W}, let Vt(k) denote the maximum cost

attainable by the adversary in periods t, . . . , T (not counting the ordering cost at t)

assuming that the last exceptional period prior to t is period t − k (with the same

interpretation as before for k = 0). The recursion goes as follows:

For t = t∗, ..., T − 1, we have

Vt(0) = max
d∈{µt−δt,µt+δt,Pt}

{ Wt(σ − d) + ct+1d + Vt+1 (I) } , (3.29)

where we set I = 1 when we choose d = Pt, and otherwise we set I = 0. For

k = 1, . . . , W − 1 and t < T ,

Vt(k) = max
d∈{µt−δt,µt+δt}

{Wt(σ − d) + ct+1d + Vt+1(k + 1 (mod W))}. (3.30)

For t = T , we set

VT (0) = max
d∈{µT −δT ,µT +δT ,Pt}

WT (σ − d), (3.31)

and for k = 1, ..., W − 1

VT (k) = max
d∈{µT −δT ,µT +δT }

WT (σ − d). (3.32)

Clearly this recursion runs in polynomial time. Further, for each t and k we can

put together a solution to IP (t, k), and the optimizer for Vt(k), to obtain a feasible

CHAPTER 3. THE BASESTOCK PROBLEM 67

solution to the adversarial problem, and the best such solution will clearly be the

optimal solution. It is clear that the Vt(k) can computed efficiently; now we return

to the mixed-integer program IP (t, k).

Consider the system made up of those constraints involving the 0− 1 variables It,

namely (3.25), (3.26) and (3.27) (we do not include (3.28) since it just fixes a variable)

plus the bounds 0 ≤ It ≤ 1 for all t. It can be shown that this system defines an

integral polyhedron (that is to say, a polyhedron each of whose extreme points has

0 − 1 values on the It variables). This essentially is a known fact; in particular

constraints (3.27) describe a vertex-packing polyhedron on an interval graph (see

[NW88] for background).

The consequence of this is that problem IP (t∗, k), or, rather, each of the two linear

objective problems obtained by considering the two cases forWt∗−1, is a mixed-integer

programming problem over an integer polyhedron plus two side constraints (which do

not involve the 0− 1 variables). We would thus expect IP (t∗, k) to be easily solvable

as a general mixed-integer program. And this proves to be exactly the case: using

commercial software, instances with T even in the hundreds, are solved in hundredths

of a second.

CHAPTER 3. THE BASESTOCK PROBLEM 68

3.5 Experiments with the basestock model

Our computational experiments are of two kinds. First, we want to study the con-

vergence properties of the algorithms. Second, we want to investigate qualitative

properties of the models studied in this paper.

3.5.1 The risk budgets model

In Table 3.1 we study the behavior of the exact algorithm and that of the bounding

procedure described in Section 3.3.7. The column headed “Cost Gap” indicates the

percentage error between the available upper and lower bounds when the early ter-

mination condition provided by the bounding procedure was tested. To produce the

statistics in the table, for each data type we ran 150 randomly generated instances

each with T = 100 time periods. Running times are in seconds. We see that, on aver-

age, the bounding procedure proves bounds with approximately a 1.7% gap. Another

point to be stressed is that in both the exact algorithm and in the early termination

version, the running time is dominated by the adversarial problem computations.

Table 3.1 may overstate the difference between the early termination solution and the

optimal solution: in Table 3.2 we compare the early termination basestock with the

optimal basestock level (same data as Table 3.1). We see that in most cases the early

termination basestock indeed provides an excellent approximation to the optimum.

Table 3.3 presents the running time of the algorithm for instances with integral

CHAPTER 3. THE BASESTOCK PROBLEM 69

Exact Algorithm Early Termination

Running Time (sec.) Running Time (sec.) Cost Gap (%)

Avg. Max Min Avg. Max Min Avg. Max Min

Random 187.8 1362.6 1.35 13.91 58.89 2.02 1.52 12.22 0.09

Periodic 186.98 1659.1 2.83 11.41 56.25 1.56 1.42 8.71 0.00

Disc. 61.22 272.3 1.39 8.18 34.60 1.97 1.75 4.97 0.03

Table 3.1: Performance of algorithm for risk budgets (T = 100).

% Error in Basestock

Average Max Min

Random 0.43 5.14 0.00

Periodic 0.42 8.44 0.00

Discounted 0.03 1.06 0.00

Table 3.2: Error in the basestock produced by using early termination.

CHAPTER 3. THE BASESTOCK PROBLEM 70

Running Time (sec.) Number of Iterations

periods Average Max Min Average Max Min

Random
75 5.56 35.20 0.16 4.79 16.00 2.00

150 37.70 244.40 1.54 4.38 8.00 2.00

Periodic
75 3.85 25.93 0.16 4.04 14.00 2.00

150 34.65 282.65 1.80 3.51 7.00 2.00

Discounted
75 2.71 80.14 0.11 2.96 6.00 2.00

150 32.90 465.75 1.37 3.11 6.00 2.00

Table 3.3: Performance statistics – integral budgets

budgets – this restriction is justified by the data above. For each data class we

generated 100 examples. Note that even with 150 periods, our algorithm solves the

problem very quickly. One fact that is worth noting is that in the discounted data

case, on average, our algorithm converges to the optimum in fewer iterations than in

the other cases.

In Table 3.4 we compare the time spent solving adversarial problems to the total

running time of our algorithm. Each problem category shows an average over 100

sample runs. This table clearly reinforces the idea that an adequate method for ap-

proximating the adversarial problem (perhaps by appropriately “sampling” demands)

would yield a much faster overall algorithm; though of course the resulting algorithm

might simply amount to a heuristic.

CHAPTER 3. THE BASESTOCK PROBLEM 71

periods average

Random

75 99.9737

150 99.9934

Periodic

75 99.9711

150 99.9977

Discounted

75 99.9765

150 99.9999

Table 3.4: Ratio of adversarial time to total running time for the budgets model

In Table 3.5 we compare an optimal static policy, computed as in Chapter 2, with

an optimal basestock policy (with constant basestock). To conduct these tests, given

the optimal static policy, we computed its corresponding worst-case demand pattern

and corresponding cost, which is reported in the column headed ’Static Policy’. The

column headed ’Basestock policy’ was computed in a similar way.

We see that for the first three examples the static policy performs better than

the basestock policy. This is understandable: in these examples the uncertainty sets

are either a single point or are very restricted. For such uncertainty sets, basestock

policies impose an additional constraint on orders. However, for the last three exam-

ples, the basestock policy provides a significant gain which savings of up to 4396% in

Example 6.

In the next set of experiments we compare the optimal basestock policy, run in

CHAPTER 3. THE BASESTOCK PROBLEM 72

Example Static Policy Basestock Policy Error (%)

1 10,115.00 12,242.17 -17.38

2 9,097.50 9,255.44 -1.71

3 172.94 175.83 -1.64

4 615,000.00 132,000.00 365.91

5 354,000.00 48,900.00 623.93

6 3,440,000.00 76,500.00 4396.73

Table 3.5: Static vs Basestock Policies

a rolling horizon fashion, to the optimal static policy (Chapter 2), also run with a

rolling horizon. We will refer to the latter approach as the dynamic policy.

In terms of the basestock model, a formal description is as follows. Let µt, δt, Γt,

t = 1, . . . , T be given. Then, for t = 1, . . . , T ,

1. Let σ(t) be the optimum basestock computed by restricting the problem to

periods t, . . . , T . Then we order ut = max{0, σ(t) − xt} at period t.

2. Compute the demand dt by sampling from a normal distribution with mean µt

and standard deviation δt/2. If dt < 0 we reset dt = 0.

3. Set xt+1 = xt + ut − dt.

4. Let d̄t = dt. If d̄t < µt− δt, reset d̄t ← µt− δt. If d̄t > µt + δt, reset d̄t ← µt + δt.

Let rt be the largest multiple of 0.25 that is less than or equal to |d̄t − µt|/δt.

CHAPTER 3. THE BASESTOCK PROBLEM 73

Dynamic policy Static policy

avg. stddev min max avg. stddev min max

Random -22.07 14.84 -49.03 17.91 831.99 249.64 388.37 1,744.73

Periodic -8.22 54.92 -84.16 194.84 731.19 515.96 25.80 2,648.07

Disc. -17.34 30.89 -72.31 82.09 606.18 274.49 87.35 1,220.91

Table 3.6: % increase in average cost of dynamic and static policies over the rolling

horizon basestock policy

Then we reset Γk ← Γk − rt, for k = t + 1, . . . , T .

The algorithm for the dynamic model is similar. In our experiments, we again

consider the three different data types described in Section 2.6. For each type we

ran 100 randomly generated examples with 50 time periods, and for each example we

generated 200 sample paths (demand sets). In Table 3.6 we report the percentage

increase in the average cost resulting from using the dynamic policy over using the

basestock policy with rolling horizon. In the table, standard deviations are taken

over the average cost of the 200 samples for each example. For completeness, we also

report on the “pure” static policy, i.e. not run with a rolling horizon.

Notice that, on average, the dynamic policy outperforms the basestock policy with

rolling horizon, though the standard deviation is quite high.

Another issue of interest is to quantify the impact of an incorrect basestock choice.

CHAPTER 3. THE BASESTOCK PROBLEM 74

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Error in Basestock Level (%)

E
rr

or
 in

 C
os

t (
%

)

% Error in Basestock Level vs. % Error in Cost

Figure 3.1: % error in basestock vs. % error in cost

Figure 3.1 shows the percentage error in cost as a function of the percentage error in

basestock value for a particular example. For small values of error in the basestock

level, the cost curve is flat indicating that we can use near optimal basestock levels

without sacrificing too much optimality. This implies, for example, that even if

numerical precision in an implementation of our algorithm were low, we would not be

far from optimal. At the same time, Figure 3.1 shows that for large enough basestock

error, the cost error grows linearly.

3.5.2 The bursty demand model

For each category shown in Table 3.7, 200 tests were performed. Data was generated

using the same procedure as in Section 2.6. In addition, in most of these instances

CHAPTER 3. THE BASESTOCK PROBLEM 75

Running Time (sec.) Number of Iterations

periods average max min average max min

Random

75 4.15 19 0.01 4.17 21 3

150 35.96 228 0.01 6.52 31 4

300 196.28 866 0.05 8.13 25 4

Periodic

75 4.48 26.5 0.05 4.22 22 3

150 27.4 188 0.05 5.65 22 3

300 240.28 1290.00 0.05 7.52 19 4

Discounted

75 3.8 13.3 0.09 2.66 20 3

150 30.33 146 0.05 4.86 20 3

300 166.0 869.00 0.05 6.7 21 4

Table 3.7: Behavior of algorithm for bursty demand model under a constant basestock

the window size was 15.

Table 3.8 describes experiments where we change the window size while keeping

all other data constant, for a 300-period model in the periodic data case. We see that

the number of iterations appears to grow quite slowly.

In Table 3.9, we investigate the impact of changing the initial inventory amount.

Here we use the formula x1 = step×Φ/15 , where step = 0, 1, 2, . . . and Φ is a crude

estimate of the total demand we would altogether see in the T periods – this assumes

normal demands are at their mean values, and prorates the peaks. Note that there is

CHAPTER 3. THE BASESTOCK PROBLEM 76

Window 5 10 15 20 25 30 35 40 45 50

Time 17.1 30.2 43.1 53.7 64.3 73.4 83.2 181.0 192.6 210.05

Iterations 7 7 7 7 7 7 7 11 11 11

Table 3.8: Impact of window size on a 300-period model

no need to test cases with x1 < 0 since they will behave in the same way as those with

x1 = 0. The examples in Table 3.9 all correspond to the same data set (other than

x1) with T = 300. When x1 > 14000 the optimal basestock is always zero (and the

algorithm takes 4 iterations). The results shown in this Table are quite interesting

and are worth explanations. Essentially, what we see are two separate, but related,

effects: the complexity of the problem, and the magnitude of the optimal basestock.

First, the larger x1 is, the later that inventory will first fall below basestock (this

is the parameter t∗ discussed above). The higher this value is, the more uncertain the

problem becomes, and thus, the more difficult. Consider, for example, the case with

x1 = 12000. This amounts to, very roughly, approximately 4/5ths of all the demand.

So it will take, very roughly, on the order of 200 time periods for the inventory to

fall below basestock. This makes the decision maker’s problem much more complex,

than, say if we had t∗ on the order of 10. For x1 ≥ 14000 we have a much easier

problem because inventory never goes below basestock. The other effect we see in

the table is that the optimal basestock is essentially constant (approximately equal

to two or three periods’ worth of demand, in a very crude sense), then grows rapidly,

CHAPTER 3. THE BASESTOCK PROBLEM 77

x1 Time Iterations Optimal

Basestock

0 1.00e-02 7 89.39

1000 1.40e-01 8 88.91

2000 1.05e+00 8 89.22

3000 3.58e+00 8 89.06

4000 1.00e+01 8 88.91

5000 1.86e+01 7 89.56

6000 2.93e+01 8 88.91

7000 4.66e+01 7 89.42

8000 6.80e+01 7 88.66

9000 1.04e+02 7 89.05

10000 1.44e+02 7 89.15

11000 1.99e+02 7 88.47

12000 5.03e+02 8 90.78

13000 6.34e+02 12 339.33

14000 3.66e+02 4 0

Table 3.9: Impact of initial inventory

CHAPTER 3. THE BASESTOCK PROBLEM 78

and then drops to zero – when the initial inventory is large enough no “safety” is

needed. The sudden growth of the basestock at, or just before, the “critical” level

of x1 can be explained as follows: if x1 is large enough the risk that inventory will

go below basestock is low, until near the end of the planning horizon – so setting a

larger basestock value is unlikely to have a negative effect (i.e., ordering costs) until

near the end. However, for t near T the inventory could actually go negative, and a

larger basestock will protect against that.

Another important issue is how the optimal robust basestock behaves as a function

of the input data, and, in particular, as a function of how “large” the uncertainty

sets are. Table 3.10 demonstrates an interesting phenomenon that is also observed in

stochastic inventory theory (see [GKR05]). Here we have an example of the bursty

demand model. Our experiment consisted in scaling the window size parameter and

the magnitudes of the peaks by the same constant. Notice that by doing so we increase

the variability in the system. To understand the intuition behind this suppose that

Pt = P for all t. Then, on average, the peak demand at any period in window of size

w will be P/w, but the variance will be of the order of P 2/w. Hence, the “expected”

demand per period will not change if we scale the window and peak size by the same

constant, but demand variance will increase. Table 3.10 shows that as the variance

of the demand increases, the optimal basestock level initially increases, but then it

decreases and appears to converge to a constant.

We performed some additional tests to measure the sensitivity of the optimal

CHAPTER 3. THE BASESTOCK PROBLEM 79

Scale 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.6

Opt. Bs. 74.92 78.10 75.30 119.98 125.63 131.54 74.29 74.29 74.21

Table 3.10: Variance vs Optimal Basestock

0 0.2 0.4 0.6 0.8 1 1.2
230

240

250

260

270

280

290

300

310
Scale Factor vs Optimal Basestock Level

Scale

B
as

es
to

ck
 L

ev
el

Figure 3.2: Effect of scaling peaks on optimum basestock

basestock to problem data, in particular to the magnitude of the peaks Pt. In these

tests we varied the problem data by scaling all peaks by the same scale constant, and

keeping all other data constant. Figure 3.2 displays the result of such a test on a

problem with T = 75, and window parameter W = 5.

Note that as the scale factor goes to zero the optimum basestock converges to a

constant. This is easy to understand, since when the peaks are small the adversary

does not gain much from using or not using the peaks. When the scale factor is

CHAPTER 3. THE BASESTOCK PROBLEM 80

large enough, the optimum basestock also converges to a constant. At first glance

this might appear incorrect: perhaps the optimum basestock should also increase, to

offset potential large backlogging costs? However, this view is incorrect, because if

we set the basestock large, then we have to carry large inventory in all periods.

3.6 Extensions

There are many possible extensions of the work described above which could prove

fruitful. We will describe some problem areas for which we have theoretical results.

3.6.1 Polyhedral uncertainty sets

In this paper we considered two models of demand uncertainty. Both models are

polyhedral (in the bursty demand case, we need additional variables). Certainly

one could consider generalizing our Benders’ decomposition approach to a general

polyhedral set D. In order to do so, we would need to develop a generic adversarial

problem solver.

From a practical standpoint, what seems to make most sense to us would be to

formulate the adversarial problem as a mixed-integer program, much like that in

Section 2.4.2 but adapted to the basestock or safety stock case. Of course, we would

also need to develop an algorithm (e.g. a branch-and-cut algorithm) for solving such

a problem – this will be an area for future work.

CHAPTER 3. THE BASESTOCK PROBLEM 81

From a purely theoretical standpoint, we can provide a negative result. We are

somewhat uncomfortable with this result, primarily because “in practice” the number

T would not be large. Nevertheless, the result is:

Theorem 3.6.1 Let G be a graph with n vertices and clique number κ(G). Then

there is a robust basestock problem with n + 1 periods and polyhedral uncertainty set

D, with value equal to κ(G).

Proof. See Section B.2.

There is a practical consequence to this theorem. Namely, it is known that unless

P = NP , there no polynomial-time algorithm that computes an approximation to

clique number guaranteed to have constant multiplicative error. Hence, unless P =

NP , there can not exist any polynomial-time algorithm that approximates the robust

basestock problem within any constant factor.

3.6.2 Robust safety stocks

In the standard probabilistic setting, if the demand at period t has mean µ̄t and

standard deviation δ̄t, a safety stock policy is a basestock policy with basestock σt =

µ̄t + λ δ̄t. We will refer to the quantity λ as the margin. In this section we consider

the problem of optimally choosing λ in a robust setting. In principle, the demand

uncertainty models we have considered allow us to compute adequate stand-ins for

µ̄t and δ̄; however, for greater generality, we will assume that we are given quantities

CHAPTER 3. THE BASESTOCK PROBLEM 82

µ̂t and δ̂t for each t, and we want to optimally set a policy with basestock µ̂t + λ δ̂t.

Further, the problem could generalized by asking that λ = λt, but here we will restrict

ourselves to the constant case (though, of course, in practice we would consider the

rolling horizon implementation).

Formally, given parameters λl and λu, and an uncertainty set D, we want to solve the

problem:

min
λl≤λ≤λu

F (λ) (3.33)

where, given λ,

F (λ) = max
d,x,u

T
∑

t=1

(ctut + Wt(xt+1)) (3.34)

s.t.

ut = max{µ̂t + λδ̂t − xt , 0}, 1 ≤ t ≤ T, (3.35)

xt+1 = xt + ut − dt, 1 ≤ t ≤ T, (3.36)

(d1, d2, . . . , dT) ∈ D. (3.37)

To this end we propose the use of Algorithm 1.2.1. In this context, the decision

maker’s problem is that of choosing λ so as to minimize the maximum cost arising

from the use of margin λ when the demand vector is one of a finite set of possible

vectors. For a vector d of demands, let cost(λ, d) be the cost that ensues when we

use margin λ and the demands are d.

CHAPTER 3. THE BASESTOCK PROBLEM 83

Theorem 3.6.2 Let d be a fixed demand vector. Then cost(λ, d) is piecewise convex

with O(T 2) pieces, each of which is piecewise-linear.

Proof. First, let us add a “dummy” period, T +1, with hT+1 = bT+1 = cT+1 = 0, and

with µ̂T+1 and δ̂T+1 chosen so that µ̂T+1 + λδ̂T+1 ≥ x1 and µ̂T+1 + λδ̂T+1 ≥ µ̂t + λδ̂t

for every t ≤ T and every λ ∈ [λl, λu]. [remark: it is clear that it is always possible

to find such parameters µ̂T+1, δ̂T+1; the choice guarantees guarantees that xT+1 ≤

µ̂t+1 + λδ̂T+1].

Let 1 ≤ t1 < t2 ≤ T + 1 be given. Consider the following system of equations:

µ̂t1 + λδ̂t1 −
i
∑

j = t1

dj ≥ µ̂i+1 + λδ̂i+1, t1 ≤ i ≤ t2 − 2, (3.38)

µ̂t1 + λδ̂t1 −
t2−1
∑

j = t1

dj ≤ µ̂t2 + λδ̂t2 . (3.39)

The interpretation of this system is as follows. Suppose that at time t1 the starting

inventory is at or below basestock. Then if λ satisfies (3.38) and (3.39), in periods

t1 +1, t1 +2, . . . , t2− 1 inventory will be above or equal basestock, but in period t2 it

will once again below or equal basestock. Note that there are constants α1
L(t1, t2) and

α1
U(t1, t2) such that λ satisfies (3.38) and (3.39) if and only if λ ∈ [α1

L(t1, t2), α1
U(t1, t2)]

(possibly, the α are infinite).

Similarly, for 1 ≤ t < T + 1, consider the system:

µ̂t + λδ̂t − dt ≤ µ̂t+1 + λδ̂t+1, (3.40)

with a similar interpretation, and defining an interval [α2
L(t), α2

U(t)]. Finally, for each

CHAPTER 3. THE BASESTOCK PROBLEM 84

2 ≤ t ≤ T + 1, consider the system

x1 ≥ µ̂1 + λδ̂1 (3.41)

x1 −
i
∑

j =1

dj ≥ µ̂i + λδ̂i 1 ≤ i ≤ t− 2, (3.42)

x1 −
t−1
∑

j =1

dj ≤ µ̂t + λδ̂t, (3.43)

again with a similar interpretation, and corresponding to some interval [α3
L(t), α3

U(t)].

Let N be the total number of (finite) distinct values α, and let β1 < β2 < . . . < βN

denote the sorted list of such values. Write β0 = −∞, βN+1 = +∞. Then, it is clear

that in each open interval (βj, βj+1) the behavior of the system is fixed. More precisely,

if we take two distinct margin values λ1, λ2, both in (βj, βj+1), then inventory will be

over (resp., under) basestock in exactly the same periods under policy λ1 as under

policy λ2.

It follows that total cost (including ordering cost), as a function of λ, is convex

piecewise-linear for λ ∈ (βj, βj+1). Since N = O(T 2) the result is proved.

Corollary 3.6.3 Given a finite set of demand patterns D̃, the decision maker’s prob-

lem can be solved in polynomial time, by minimizing a piecewise convex function with

O(T 2D̃) pieces.

Now we turn to the adversarial problem, which we cast in the following context:

we are given basestock levels σ1, σ2, . . . , σT . We want to find a demand vector d ∈ D

that maximizes the cost that would ensue from using the basestock policy {σt}t. We

CHAPTER 3. THE BASESTOCK PROBLEM 85

expect that both the risk budgets model and the bursty demands model will prove

computationally tractable in this general setting, even though they are likely NP-

hard (we already know this for the bursty demands model). We will return to this

point below. We do have a positive theoretical result for an uncertainty model that

amounts to a discrete version of the risk budgets model.

The model is described as follows:

(a) We are given a quantity 0 ≤ µt for 1 ≤ t ≤ T . This is the nominal demand at

time t.

(b) We are given quantities αi ≥ 0, for 1 ≤ i ≤ C (some C).

(c) Each time period t belongs to a category i, 1 ≤ i ≤ C. If period t is in category

i, then the demand at t will be of the form

dt = µt + kt αi, (3.44)

where kt is an integer, possibly negative. We have bounds lt ≤ kt ≤ ut for given

lt, ut.

(d) For each t we have a constraint of the form
∑t

j=1 |kj| ≤ Γt, where 0 ≤ Γt is a

given integer. (We assume that ΓT is polynomial in T).

Comments. We may view each category as describing a variance “class” or “type”.

The weakness of (3.44) is, of course, that ideally we would have instead a mechanism

CHAPTER 3. THE BASESTOCK PROBLEM 86

of the form dt = µt + kt αi,t. But, for example, in a setting with seasonal demands,

the above model should prove functional. We will refer to the model as the discrete

budgets model. One can prove the following result, which is primarily of theoretical

relevance.

Theorem 3.6.4 Given a basestock policy with levels {σt}t, the adversarial problem

under a discrete budgets model can be solved in polynomial time, for each fixed C.

Proof. See Section C.1.

We say that this result is only of theoretical importance, because the adversarial

problem appears to be “knapsack-like”, and hence an algorithm such as the one we

described for the bursty demands model in Section 3.4 would prove far more practical

(though nominally of exponential complexity since it solves mixed-integer programs).

If anything, the fact that Theorem 3.6.4 can be proved would justify such an approach.

Next we list generalizations of the discrete budgets model that are also likely to be

numerically tractable:

• A discrete model with demands of the form dt = µt + kt αi,t, where kt is

integral, and we have budgets of the form
∑t

j=1 |kj| ≤ Γt (as discussed above).

• A model where, for every t, we are given µt, and quantities 0 < α0
t < α1

t <

. . . < α
U(t)
t , and quantities 0 < β0

t < β1
t < . . . < β

L(t)
t , for some U(t) and

L(t). At time t, the adversary chooses an integer kt, with either 0 < kt ≤

CHAPTER 3. THE BASESTOCK PROBLEM 87

U(t), or 0 < −kt ≤ L(t), or kt = 0. If kt > 0, then demand will be in

the interval (µt + αkt−1
t , µt + αkt

t]. If kt < 0, then demand will be in the

interval [µt − β−kt
t , µt − β−kt−1

t). If the adversary chooses 0, then demand lies

in [µt − β0
t , µt + α0

t]. Once more we have budgets
∑t

j=1 kj ≤ Γt.

In all the above models we were using budget constraints motivated by the original

risk budgets model in [BT04]. But there is a generalization, which we call the intervals

model, which still proves tractable. We explain this generalization in the context of

the discrete budgets model, but it is easily extended to the original (continuous) risk

budgets setting. First, we are given quantities αi ≥ 0, for 1 ≤ i ≤ C (some C), and

demand at time t is of the form dt = µt + kt αi as for the discrete budgets model. In

addition, we are given

• A family I of closed intervals of {1, 2, . . . , T}, and a nonnegative integer ΓI for

each I ∈ I.

• We must satisfy
∑

t∈I |kt| ≤ ΓI , for each I ∈ I.

We will say that an interval model with family I is of width≤ ω, if there exist intervals

[i1, j1], . . . , [im, jm], of {1, 2, . . . , T} such that:

(i) I is the set of all intervals of the form [ik, h] for some 1 ≤ k ≤ m and ik ≤ h ≤ jk,

and

(ii) For every 1 ≤ t ≤ T there are at most ω intervals [ik, jk] with ik ≤ t ≤ jk.

CHAPTER 3. THE BASESTOCK PROBLEM 88

We call the intervals [i1, j1], . . . , [im, jm] basis for set I. We say that the model has

width ω if the condition in (ii) holds with equality for some t. Note that a model

of width ω = 2 can be made substantially more restrictive on the adversary than

one with ω = 1. The following result can be proved, again primarily of theoretical

relevance:

Theorem 3.6.5 Suppose we have a basestock policy with levels {σt}t. Suppose we

have an interval model of width ≤ ω, and with C variance types. Then, for each fixed

ω and C, the adversarial problem can be solved in polynomial time

Proof. See Section C.2 .

3.6.3 Ambiguous uncertainty sets

In the ambiguous setting demands are known to follow some probabilistic distribution,

but the decision maker only has limited information regarding the distribution. For

example, we might know that the distribution (at any time t) is log-normal, and we

might know its mean value, but might only know an upper bound on the variance.

Conceptually, we may think of the adversary as choosing a probability distribution on

the demands that is consistent with the available information. This yields a problem

of the form:

min
π∈Π

max
P∈P

E cost(π|P).

CHAPTER 3. THE BASESTOCK PROBLEM 89

Here, Π is the set of available policies, P is the set of possible probability distribu-

tions, and E cost(π|P) is the expected cost, under policy π when the demands follow

distribution P . To solve this problem, we can again resort to a generic Benders’

decomposition method obtained by suitably modifying Algorithm 1.2.1.

Here we focus on basestock policies.

Lemma 3.6.6 Let σ be a given basestock and let P be a probability distribution. (a) If

x1 ≤ 0, then E cost(σ|P) is a convex function of σ. (b) If P is a discrete distribution,

then E cost(σ|P) is piecewise convex.

Proof. To prove part (a) notice that for a fixed demand pattern d, cost of using

basestock level σ is equal to

c1(σ − x1) +
T
∑

i=1

(ci+1di + max{hi(σ − di), bi(di − σ)})

which is a convex function of σ. Therefore, E cost(σ|P) will be a convex function of

σ.

For part (b), consider Lemma 3.2.3. This Lemma states that for a fixed demand

pattern d, cost is a piecewise convex function of σ with two pieces. Therefore if P

has a discrete distribution, E cost(σ|P) is a piecewise convex function of σ. (If the

distribution has a finite support, then the number of convex pieces will also be finite.)

In part (b) of the above Lemma, and in the results we describe next, we focus on

CHAPTER 3. THE BASESTOCK PROBLEM 90

a particular model of ambiguous uncertainty, namely the discrete distribution model.

Here

• we are given fixed values v1, v2, . . . , vK,

• The adversary will choose probabilities pk, 1 ≤ k ≤ K, such that in any time

period demand equals vk with probability pk.

• It is assumed that the adversary is constrained in that the vector (p1, . . . , pk)

must belong to some set P (for example, polyhedral).

Lemma 3.6.7 Let P 1, P 2, . . . , P J be given discrete probability distributions. Suppose

that x1 ≤ 0. Then we can compute, in polynomial time, a basestock σ that minimizes

max1≤j≤J E cost(σ|P j).

Proof. Consider a fixed distribution P j. Note that since x1 ≤ 0, the expected

inventory cost paid in every period is the same. Also, the expected ordering cost paid

in any period, other than period 1, is the same (and in period 1 it equals σ − x1).

Further, if demand equals vk ≥ σ then we incur a backlogging cost, otherwise we

incur an inventory holding cost. Hence, we can write a closed form expression on

E cost(σ|P j), which will be piecewise linear in σ (and is convex because of Lemma

3.6.6). The result follows.

Comment. The assumption x1 ≤ 0 is significant. Without the assumption we can

prove a result similar to Lemma 3.6.7, except that the resulting algorithm will be

exponential in K.

CHAPTER 3. THE BASESTOCK PROBLEM 91

Lemma 3.6.8 Let σ be given, and assume x1 ≤ 0. Then the adversarial problem

reduces to maximizing a linear function of (p1, . . . , pk) over (p1, . . . , pk) ∈ P.

Proof. Notice that the adversarial problem reduces to maximizing the following func-

tion.

E

[

T
∑

i=1

(ci+1di + max{hi(σ − di), bi(di − σ)})

]

=
T
∑

i=1

E [ci+1di + max{hi(σ − di), bi(di − σ)}]

Since each of the terms inside the second sum is a linear function of (p1, . . . , pk), the

result follows.

A variation worth noting is the rolling horizon model. But here we can expect that

the decision maker learns from the past behavior of the adversary; i.e. the knowledge

of the set P is sharpened. To be fair, one should then consider a gaming setting where

the adversary can respond in kind.

3.6.4 Model superposition

Suppose we have a number of demand uncertainty sets D1, D2, . . . ,DK, and for each

k = 1, . . . , K, cost vectors hk, bk, ck (e.g. hk = (hk
1, h

k
2, . . . , h

k
T and similarly with bk

and ck). Let Π be a set of available policies. We are interested in a problem of the

form:

min
π∈Π

max
k

max
d∈Dk

costk(π, d), (3.45)

CHAPTER 3. THE BASESTOCK PROBLEM 92

(where costk is the cost under the kth cost function), or

min
π∈Π

∑

k

max
d∈Dk

costk(π, d). (3.46)

As a generalization, we could have that some of the Dk are ambiguous problems, or

even stochastic programs. In all these cases our generalized Benders’ methodology

applies. We are motivated to study these problems for a number of reasons:

• Consider a case where D1 ⊆ D2 ⊆ . . . ⊆ DK and there are vectors h, b, c and

nonnegative constants α1 ≥ α2 ≥ . . . ≥ αK , such that (hk, bk, ck) = αk (h, b, c).

In other words, each uncertainty set Dk is more conservative than Dk−1, but its

cost “counts less”. Problems (3.45) and (3.46) are an attempt to protect against

potentially very poorly behaved data (demands) without becoming excessively

conservative. A special example of this case is that where the Dk all have the

same structural properties (for example, they are all box-constrained in each

time period).

• On the other hand, if the sets Dk are extremely different and/or so are the cost

functions, then we are simply trying to protect against multiple forms of data

uncertainty, again while trying to avoid becoming too conservative.

• Finally, we conjecture that using relatively simple sets Dk, and not very large

K, one should be able to approximate arbitrarily complex uncertainty sets D,

so that e.g. solving (3.45) becomes more tractable than solving (1.1).

CHAPTER 3. THE BASESTOCK PROBLEM 93

3.6.5 More comprehensive supply-chain models

The algorithms described in this paper addressed single-buffer, zero-leadtime prob-

lems. In a more realistic setting we should consider positive leadtime systems (e.g.

an order placed at time t does not arrive until time t + k). Multiple buffers arise,

for example, in assembly systems, where a product is obtained by assembling several

components, each of which is itself made of (sub)components, and so on. Here each

component has its own buffer and material flows from buffer to buffer on a network in

a prescribed sequence. Problems of this type with certain data can be solved under

appropriate assumptions (for example, involving coordination); in a robust setting

the problem is bound to be more complex, but it should be possible to adapt our

techniques so as to (at least) efficiently compute local optima.

3.7 Summary of the results

In this chapter we presented algorithms for solving the optimal robust basestock

problem (3.1) using two different models for the demand uncertainty set D. The

algorithms are based on our generic Bender’s decomposition procedure in Chapter 1.

Our results can be summarized as follows:

(i) Our algorithms compute optimal basestock levels, a problem of concrete prac-

tical importance due to widespread use. We solve the problems to proved opti-

mality, up to roundoff error. Further, we demonstrate, empirically, that using

CHAPTER 3. THE BASESTOCK PROBLEM 94

incorrect basestock settings can lead to a substantial cost increase.

(ii) In our numerical experiments we consider two models of demand uncertainty,

and in each case we solve the actual min-max optimization problem, and not

a conservative approximation. Despite the fact that we solve non-convex opti-

mization problems, extensive experimentation shows that our algorithms scale

well with problem size, typically solving problems with several hundred periods

in a few minutes of CPU time, in the worst case, and significantly faster in

many cases. Further, in the case of the hardest problems we consider, we also

describe an approximation scheme that produces solutions which are proved

near-optimal significantly faster.

(iii) All of our algorithms can be viewed as variations on Benders’ decomposition –

this approach should extend well to many demand uncertainty models.

(iv) We present theoretical results concerning robust safety-stock selection, and ex-

tensions to other models, such as ambigious uncertainty models (models where

the demand distribution is stochastic but only partially known to the decision

maker).

CHAPTER 4. THE DYNAMIC PROBLEM 95

Chapter 4

The Dynamic Problem

In this chapter we will consider the robust inventory management problem in the

dynamic setting. We allow our policy space to contain all policies, and thus in each

period the inventory controller will have the freedom to determine the orders as an

arbitrary function of the information that he has at that period. In other words,

for each period, a policy amounts to a function that gives the order amount for

any possible realization of the demands from previous periods. We assume that

the inventory controller wants to minimize the cost over all such ordering functions.

Instead of the generic algorithm that we introduced in Chapter 1, we use dynamic

programming to solve this problem.

Let (d1, d2, . . . , dt−1) be the vector of demands up to period t. We denote the

vector that contains information that one has at the beginning of period t prior to

placing the order by It = (xt, d1, d2, . . . , dt−1) and the set of all possible information

CHAPTER 4. THE DYNAMIC PROBLEM 96

vectors in period t is denoted by It. Further, we denote our decision rule in period t

for determining order quantities with πt(xt, d1, d2, . . . , dt−1). πt(xt, d1, d2, . . . , dt−1) is

a function from It to real numbers and in every period t, it specifies the amount of the

stock to be ordered in that period. We define the stock ordering policy, π to be the

sequence of decision rules, i.e. π = (πt(.) : t = 1, . . . , T). Moreover, we denote the set

of all possible policies by Π. Notice that we can also think of the static policies and

dynamic problems in this context. The Static policies in Chapter 2 correspond to the

case in which the decision rule in each period t is defined by a constant function that is

πt(xt, d1, d2, . . . , dt−1) = ut for a real number ut ≥ 0 for every (xt, d1, d2, . . . , dt−1) ∈ It

whereas constant basestock policies in Chapter 3 correspond to the case where the

decision rule in each period t is of the form πt(xt, d1, d2, . . . , dt−1) = σ − xt.

The robust inventory problem in the dynamic setting can be described as follows:

min
π∈Π

V (π) (4.1)

where for π ∈ Π,

V (π) = max
d,x,u

T
∑

t=1

(ctut + max{ htxt+1 , −btxt+1}) (4.2)

s.t.

u1 ≥ 0

ut = πt(d1, d2, ..., dt−1), 2 ≤ t ≤ T, (4.3)

xt+1 = xt + ut − dt, 1 ≤ t ≤ T, (4.4)

(d1, d2, . . . , dT) ∈ D. (4.5)

CHAPTER 4. THE DYNAMIC PROBLEM 97

Here, x1 is given and πt(.) is the ordering function specified by the policy π. We

dropped xt from the arguments of πt(.) since it is also a function of (d1, d2, . . . , dt−1)

and the given x1. Notice that (4.1) is of the same form as (3.1). The only difference

lies in the policy space: instead of time-independent basestock policies, we minimize

the cost over all policies.

In Section 4.2 we will give a characterization of the optimal policy. The optimal

policy turns out to be a state dependent basestock policy where the state space in

each period t is defined by It. (In each period t, the optimal policy will be a basestock

policy and the optimal basestock level will depend on the demand in prior periods).

From a practical standpoint, such policies are very hard to compute and implement

since the number of possible realizations of demand can be extremely large. However,

this problem is of interest, because it provides a justification for the use of time and

state independent basestock policy either by itself or in a rolling horizon fashion as

an approximation for the pure dynamic policies which is the ideal thing to do.

This chapter is organized as follows: We first prove that problem 4.1 can be solved

by dynamic programming in Section 4.1. In Section 4.2 we characterize the optimal

policies. We show how to compute optimal policies for the two demand uncertainty

sets in Sections 4.3 and 4.4.

CHAPTER 4. THE DYNAMIC PROBLEM 98

4.1 Preliminaries

In this section we use dynamic programming to solve (4.1). We show the optimality

of the robust version of the classical DP algorithm. Our result is in the same spirit

as the results in [I05].

We start with introducing some new notation. We define the sequence of sets

Pi = {p ∈ Ri | ∃ d ∈ RT−i : (p, d) ∈ D} for i = 1, 2, ..., T and PT = D where

D is the uncertainty set we have and for p ∈ Ri and d ∈ RT−i. (p, d) denotes the T

dimensional vector whose first i components are the components of p and the last T−i

components are d. Notice that Pi defines the set of all possible demand patterns up to

time i. For each p ∈ Pi−1, we define the set Di(p) = {d ∈ RT−i+1 | (p, d) ∈ D} for

i = 2, ..., T , that is Di(p) is the projection of D onto d0 = p0, d1 = p1, ..., di = pi plane.

For each p ∈ Pi−1, we also define Di(p) = {di ∈ R| ∃ d ∈ RT−i : (di, d) ∈ Di(p)}

for i = 2, ..., T and D1 = {d1 ∈ R| ∃ d ∈ RT−1 : (dt, d) ∈ D}. Moreover, let Πt

denote the set of policies restricted to the periods t, t + 1, . . . T .

For i = 2, 3, ..., T , x ∈ R and p ∈ Pi−1, we define the following cost-to-go function.

Ji(x, p) = min
π∈Πi

Ṽi(π, x, p) (4.6)

where for π ∈ Πi

Ṽi(π, x, p) = max
d,x,u

T
∑

t=i

(ctut + max{ htxt+1 , −btxt+1}) (4.7)

s.t.

CHAPTER 4. THE DYNAMIC PROBLEM 99

ui ≥ 0

ut = πt(p, di, ..., dt), i + 1 ≤ t ≤ T,

xi = x

xt+1 = xt + ut − dt, i ≤ t ≤ T,

(di, di+1, . . . , dT) ∈ Di(p).

Moreover,

J1(x) = min
π∈Π

Ṽ1(π, x) (4.8)

where for every π ∈ Π, Ṽ1(π, x) is defined similar to (4.7).

Jt(x, p) gives the minimum cost that one can attain in periods t, t+1, . . . T assuming

that the starting inventory at the beginning of period t is x and the demand in periods

up to t− 1 is given by p. Theorem 4.1.1 below shows that the problem of computing

Jt(x, p) and finding the optimal policy can be solved using dynamic programming.

Theorem 4.1.1 The set of functions {Jt t = 1, ..., T} satisfies the following robust

Bellman equations.

J1(x) = min
u1≥0

max
d1∈D1

{c1u1 + W1(x + u1 − d1) + J2(x + u1 − d1, d1)} (4.9)

and for 2 ≤ t ≤ T and p ∈ Pt−1

Jt(x, p) = min
ut≥0

max
dt∈Dt(p)

{ctut + Wt(x + ut − dt) + Jt+1(x + ut − dt, (p, dt))}(4.10)

CHAPTER 4. THE DYNAMIC PROBLEM 100

and for p ∈ D

JT+1(x, p) = 0. (4.11)

Proof. Fix t > 1. Let π∗ ∈ Πt be the order vector minimizing Ṽt(x, π, p) for p ∈ Pt−1.

We define π∗
t+1 be the sub-policy of π∗ restricted to periods t + 1, ..., T . Note that

Jt(x, p) = max
d∈Dt(p)

{ctu
∗
t + Wt(xt + u∗

t − dt)

+
T
∑

i=t+1

ciπ
∗
i (p, dt, ..., di−1) + Wi(xi + π∗

i (p, dt, ..., di−1)− di)}

= max
di∈Dt(p)

{ctu
∗
t + Wt(xt + u∗

t − dt)

+ max
d̂∈Dt+1(p,dt)







T
∑

i=t+1

ciπ
∗
i (p, dt, ..., di−1) + Wi(xi + π∗

i (p, dt, ..., di−1)− d̂i)}







}

≥ max
dt∈Dt(p)

{ctu
∗
t + Wt(xt + u∗

t − dt)

+ min
π∈Πt+1

max
d̂∈Dt+1(p,dt)







T
∑

i=t+1

ciπi(p, d̂t, ..., d̂i−1) + Wi(xi + πi(p, d̂t, ..., d̂i−1)− d̂i)







}

= max
d∈Dt(p)

{ctu
∗
t + Wt(xt + u∗

t − dt) + Jt+1(xt + u∗
t − dt, (p, dt))}

≥ min
ut≥0

max
d∈Dt(p)

{ctut + Wt(xt + ut − dt) + Jt+1(xt + ut − dt, (p, dt))} (4.12)

where for i = t + 1, ..., T , π∗
t (.) is the ordering function that is defined by π∗ and

u∗
t = π∗

t (p).

Let π∗ be the policy that minimizes Ṽt(π, x, p) and π∗
t+1 be the sub-policy of π∗

restricted to periods t+1, . . . , T . Moreover, let π̄ be the optimal policy for Ṽt+1(π, x, p)

with πt+1(.) defined for all values of (x, p). Then we have

CHAPTER 4. THE DYNAMIC PROBLEM 101

Jt(x, p) = max
dt∈Dt(p)

{ciu
∗
t + W (x + u∗

t − dt) + Ṽt+1(x + u∗
t − dt, π

∗
t+1, (p, dt))}

≤ min
ut≥0

max
d∈Dt(p)

{ciut + W (x + ut − dt) + Ṽt+1(x + ut − dt, π̄t+1, (p, dt))}

= min
ut≥0

max
d∈Dt(p)

{ciut + W (x + ut − dt) + Jt+1(x + ut − dt, (p, dt))} (4.13)

Notice that (4.12) with (4.13) proves the result for t > 1. Proof for t = 1 follows

similarly.

4.2 Characterization of optimal policies

In this section we will give a characterization of the optimal dynamic policies using

the recursive equations (4.9)-(4.11). Notice that the cost-to-go functions defined in

Theorem 4.1.1 can equivalently expressed as follows.

Jt(x, p) = −ctx + min
y≥x

max
dt∈Dt(p)

{cty + W (y − dt) + Jt+1(y − dt, (p, dt))} (4.14)

for t > 1, p ∈ Pt−1 and x ∈ R. In addition, for t = 1,

J1(x) = −c1x + min
y≥x

max
d1∈D1

{c1y + W (y − d1) + J2(y − d1, (p, d1))} . (4.15)

For 1 < t ≤ T we define

Gt(y, p, d) = cty + Wt(y − d) + Jt+1(y − d, (p, d))

and

Ht(y, p) = max
d∈Dt(p)

{Gt(y, p, d)} .

CHAPTER 4. THE DYNAMIC PROBLEM 102

For t = 1 we define G1(y, d) and Ht(y) in a similar way. We have the following

theorem.

Theorem 4.2.1

(a) For fixed t and p ∈ Pt−1, Ht(y, p) is a convex function of y.

(b) For the first period the optimal policy is a basestock policy. For each period t > 1

and each p ∈ Pt−1 there exists a basestock level, St,p such that it is optimal to order

St − xt if St > xt and it optimal not to order when St ≤ xt where xt is the inventory

at the beginning of period t.

(c) For t > 1 Jt(x, p) is a convex function of x for fixed p and J1(x) is a convex

function of x.

Proof. We prove the theorem by induction. For t = T and fixed p ∈ PT−1,

GT (y, p, d) = cT y + W (y − d)

is a convex function of y. Since HT (y, p) is the maximum of a set of convex functions

it is also convex. Let ST (p) be the smaller minimizer of HT (y, p) for fixed p. Note

that y = x, and y = ST (p), minimize Ht(y, p) over the set {y : y ≥ x} when x > ST

and x ≤ ST (p), respectively, and this proves part (b). Convexity of JT (x, p) with

respect to x follows from the fact that JT (x) = −cx + HT (max(ST , x), p), which is

the sum of a linear function and the composition of a convex function with another

convex function.

CHAPTER 4. THE DYNAMIC PROBLEM 103

Now assume that theorem is true for t + 1. Consider Gt(y, p, d) for fixed p and

d. Note that first two terms are a constant and a piecewise linear, convex function.

Moreover, from the induction hypothesis Jt+1(x, (p, dt)) is a convex function of x, so

it is also a convex function of y. Consequently, Ht(y, p) is a convex function of y for

fixed p.

Part (b) and (c) follows from part (a) and as in the base case. Proof for t = 1 also

follows similarly.

Theorem 4.2.1 states that in each period t, for every realization of the past de-

mands we have a different basestock level. The reason for this is that our uncertainty

set in each period t, Dt(p) depends on the vector of past demands, p. For different

p ∈ Pt−1, the available demand patterns for the adversary may be different. There-

fore, for each policy, the future demand that maximizes cost may be different for

different realizations of the past demand which clearly means that optimal policy will

be dependent on past demand.

For each period t the demand vector p takes values from Pt−1 which may have

infinitely many elements. In order to solve the problem, we may have to compute

an infinite number of basestock levels for every possible value of p. However, notice

that the optimal policy depends on p only through Dt(p) in each period t. Therefore

for any vectors p1 6= p2, the optimal policies for these two vectors are the same if

Dt(p1) = Dt(p2). We will use this fact in order to decrease the number of optimal

basestocks we have to compute.

CHAPTER 4. THE DYNAMIC PROBLEM 104

To solve the dynamic program in Theorem 4.1.1, we have compute the cost-to-go

function in for all values of the state variable which, for each period t, consists of

(x,p) such that x ∈ R and p ∈ Pt−1. Although we may be able to diminish the size

of our state space by using some properties of our uncertainty set, it may still be

very large in most cases and directly applying the dynamic programming algorithm

will be impractical due to its computational burden. However, the optimality of

state dependent basestock policies gives a justification for the use of time and state

independent basestock policies as an approximation.

One advantage of using the dynamic approach is that we can incorporate a fixed

ordering cost into our model without too much a large increase the computational

complexity. In fact, using the dynamic programming approach one can prove that in

the fixed cost case, the optimal policy is a two parameter basestock policy (an (S,s)

policy) where the basestock parameters again depend on the state variables.

4.3 Risk budgets model

In this section we will show how to solve the dynamic problem for the demand model

(2.3)-(2.5).

Let d and d̄ two demand patterns in our demand uncertainty sets, and z and z̄

the corresponding vectors defined according to the equation (2.3). Let dt, d̄t, zt and

CHAPTER 4. THE DYNAMIC PROBLEM 105

z̄t be the subvectors restricted to periods 1, . . . , t for some t < T . If

t
∑

i=1

zt
i =

t
∑

i=1

z̄t
i

we have Dt+1(d
t) = Dt+1(d̄

t), so Jt+1(x, dt) = Jt+1(x, d̄t) for any x. Therefore we can

replace the second argument which is the past demand in the cost-to-go function with

the total risk consumed up to that period (which is equal to the sum of z’s). As a

result the dynamic programming recursion turns into the following form.

J1(x) = min
u1≥0

max
d1∈D1

{

c1u1 + W (x + u1 − d1) + J1(x + u1 − d1,

∣

∣

∣

∣

∣

d1 − µ1

δ1

∣

∣

∣

∣

∣

)

}

and for 2 ≤ t ≤ T and 0 ≤ k ≤ Γt−1

Jt(x, k) = min
ut≥0

max
dt∈D̃t(k)

{ctut + W (x + ut − dt) + Jt+1(x + ut − dt, k +

∣

∣

∣

∣

∣

dt − µt

δt

∣

∣

∣

∣

∣

)}

and for 0 ≤ k ≤ ΓT

JT+1(x, k) = 0.

where D̃t(k) is defined similarly to Dt(p) which is defined in Section 4.1. Here Jt(x, k)

for t > 1 gives the optimal total cost for periods t, . . . , T assuming that the risk used

up until period t− 1 is k and the starting inventory in period t is x.

Although our state space has two dimensions now, we still have to compute com-

pute the cost-to-go function for any value of risk usage which is in [0, Γt] which means

that we can only approximate the true cost-to-go by discretization. But once we

discretize k, it is possible to show that for a fixed risk consumption the cost-to-go

CHAPTER 4. THE DYNAMIC PROBLEM 106

function is piecewise linear in x, and therefore as in the algorithm for the adversarial

problem in Chapter 2, we can compute the function by evaluating each of its pieces.

4.3.1 A special case

The dynamic programming algorithm proves to be efficient when uncertainty set is

described by the condition dt ∈ [µt − δt, µt + δt] (which means Γt = t in our risk

budgets context). This model is the box model that we considered in Section 2.4.1.

Notice that we can get rid of the second argument in the cost-to-go function, since

no matter what the past demand is, we always have the same uncertainty set for the

future periods and Dt(p) = [µt−δt, µt +δt] for every p and t. In fact, due to convexity

of the cost function, it is easy to see that in the optimal solution, the adversary sets

either dt = µt− δt or dt = µt + δt for each t. Therefore, the cost-to-go functions turns

out to be as follows. For 1 ≤ t ≤ T

Jt(x) = min
ut≥0

max
dt∈{µt−δt,µt+δt}

{ctut + W (x + ut − dt) + Jt+1(x + ut − dt)}

and JT+1(x) = 0.

Using Lemma 2.4.4, we have the following result:

Lemma 4.3.1

(a) For every t, Jt(x) is a piecewise linear convex function with T − t + 2 pieces.

(b) The dynamic program for the box model can solved in O(T 2) time.

CHAPTER 4. THE DYNAMIC PROBLEM 107

We want to emphasize the fact that the optimal policy in the dynamic setting is

a state dependent basestock policy. The reason for the dependence on state space is

due to the dependence of future demands that is picked by the adversary on the past

demands. In the box uncertainty case, however, the adversary’s behavior behavior

is independent from the demand history. Thus, basestock levels will only depend on

time, not the state of the system.

4.4 Bursty demand model

In this section we consider the adversarial problem for the bursty demand model given

in Section 2.2. We can adapt the dynamic programming recursion used for the risk

budgets model as follows.

For each period t, and each integer 1 ≤ k < min{W, t}, let Πt(x, k), denote the

minimum cost attainable in periods t, . . . , T assuming that the initial inventory at

the start of period t is x, and that the last peak occurred in period t− k. Similarly,

denote by Πt(x, 0) the minimum cost attainable in periods t, . . . , T assuming that the

initial inventory at the start of period t is x, and that no peak occurred in periods

t− 1, t− 2, . . . , max{1, t−W + 1}. Writing ΠT+1(x, k) = 0, we have, for 1 ≤ t ≤ T :

Πt(x, k) = min
ut≥0

max
d∈{µt−δt,µt+δt}

{ctut +Wt(x + ut − d) + Πt+1(x + ut − d, k + 1)} ,

CHAPTER 4. THE DYNAMIC PROBLEM 108

for 1 ≤ k < min{W − 1, t}

Πt(x, W − 1) = min
ut≥0

max
d∈{µt−δt,µt+δt}

{ctut +Wt(x + ut − d) + Πt+1(x + ut − d, 0)} ,

for W − 1 < t,

Πt(x, 0) = min
ut≥0

max
{

Π1
t (x), Π0

t (x)
}

, where

Π1
t (x) = min

ut≥0
max

d∈{µt−δt,µt+δt}
{ctut +Wt(x + ut − d) + Πt+1(x + ut − d, 0)} ,

Π0
t (x) = ctut +Wt(x + ut − Pt) + Πt+1(x + ut − Pt, 1).

To solve the recursions above one can use the same approach with the budgets model.

For each k we compute and store the piecewise linear representation of Πt(x, k).

Moreover, from Theorem 4.2.1, the optimal policy is a basestock policy that in each

period t, depends on the last peak that occurred before t.

Appendix A

An alternative approach for solving

PM

In this section we present an alternative method to solve problem PM(γ, t∗, tf , te),

iteratively for different values of γ and te. Originally, in Section 3.3.4 we described a

dynamic programming method to solve the problem. Note that in the formulation in

section 3.3.1 the right hand side values of (3.14)-(3.16) are integral. For simplicity, we

re-index the problem and set Γ̂i−t∗+1(γ) = bΓi−γc for i ∈ {t∗, ..., tf − 2}, Γ̂tf−t∗(γ) =

min{bΓtf − (γ + l(γ, te))c, bΓtf−1 − γc}), and Γ̂i−t∗(γ) = bΓi − (γ + l(γ, te))c for

i ∈ {tf + 1, ..., te}. If (d∗, z∗) is an optimal solution, then d∗
t = µt − ztδt if and only if

ht(σ − (µt − ztδt)) + ct+1(µt − ztδt) ≥ bt(µt + ztδt − σ) + ct+1(µt + ztδt)

109

APPENDIX A. AN ALTERNATIVE APPROACH FOR SOLVING PM 110

for t ∈ M ∪ F . We use this to eliminate the d variables and write the cost corre-

sponding to each demand variable as

ˆcostt(σ, zt) = max{ht(σ−(µt−ztδt))+ct+1(µt−ztδt), bt(µt +ztδt−σ)+ct+1(µt +ztδt)}

Then the problem turns into the following form.

P̂M(γ, t∗, tf , te) = Max
te−t∗
∑

i=1

ˆcostt(σ, zt)

s.t.
i
∑

j=t∗
zi ≤ Γ̂i(γ) 1 ≤ i ≤ te − t∗

0 ≤ zi ≤ 1 1 ≤ i ≤ te − t∗

Lemma A.0.1 For any γ ∈ R, t∗, tf , and te, there exists an integral optimal solu-

tion, z1, ..., zte−t∗ , to P̂M(γ, t∗, tf , te).

Proof. Note that the objective function is a convex function. Since we are maximizing

an objective function over a polyhedron, there exist an optimal solution that is an

extreme point. Suppose that z is the optimal extreme point and suppose that it is

not integral. Let t1 be the smallest time period for which zt1 is fractional. There are

two cases to consider. If there is no other time period for which the risk is fractional,

z1 + z2 + ... + zt < Γ̂t(γ) for all t ∈ {t1, ..., T}. We form two solutions, by setting

zt1 = 1 and zt1 = 0. z can be written as a convex combination of these to solutions

which is a contradiction. If there is more than one fractional variable, we consider the

second smallest index, t2, for which zt2 is fractional. Note that z1 +z2 + ...+zt < Γ̂t(γ)

APPENDIX A. AN ALTERNATIVE APPROACH FOR SOLVING PM 111

for all t ∈ {t1, ..., t2 − 1}. Therefore we can form two solutions by perturbing zt1 and

zt2 and write z as a linear combination of these two solutions.

The discussion of our algorithm in Section 3.3.4 implies that we can solve P̂M(k +

f(j), t
∗, tf , te) for every possible value of k + f(j) to solve the adversarial problem.

Our purpose in this section is to show a method to derive the solution to PM(.) for

k + f(j+1) from the solution for k + f(j) so that we will not have to solve PM(.) each

time from scratch. Notice that as we increase j to j + 1 two things may happen:

1. Γ̂m(k + f(j+1)) = Γ̂m(k + f(j)) − 1 for some m ∈ {1, 2, ..., tf − t∗} and Γ̂t(k +

f(j+1)) = Γ̂t(k + f(j)) ∀t ∈ {1, 2, ..., t
e − t∗}\{m}.

2. Γ̂t(k + f(j+1)) = Γ̂m(k + f(j))− 1 ∀t ∈ {tf − t∗, ..., te − t∗} and Γ̂t(k + f(j+1)) =

Γ̂t(k + f(j)) ∀t ∈ {1, 2, ..., t
f − t∗ − 1}

The following Lemma suggests a method to derive the solution for P̂M(k+f(j+1), t
∗, tf , te)

from the solution for P̂M(k + f(j), t
∗, tf , te).

Lemma A.0.2 Let γ1 ≤ γ2. Suppose that Γ̂t(γ1) = Γ̂t(γ2)+1 for some 1 ≤ t ≤ te−t∗

and Γ̂i(γ1) = Γ̂i(γ2) ∀i ∈ {1, 2, ..., t
e − t∗}\{t}. Let z1 be the optimal solution to

P̂M(γ1, t
∗, tf , te). Then, there exist an optimal solution z2 to P̂M(γ2, t

∗, tf , te) and

such that there exist two periods t1 ≤ t ≤ t2 for which z2
t1 ≤ z1

t1 , z2
t2 ≥ z1

t2 and z2
i = z1

i

for the rest of the indices.

Proof. Note that if
∑t

i=1 z1
i < Γ̂t(γ1) then z1 is also optimal for P̂M(γ2, t

∗, tf , te).

Therefore we assume that
∑t

i=1 z1
i = Γ̂t(γ1) Let z2 be an arbitrary optimal solution

APPENDIX A. AN ALTERNATIVE APPROACH FOR SOLVING PM 112

to P̂M(γ2, t
∗, tf , te). Since

∑t
i=1 z2

i ≤ Γ̂t(γ2) = Γ̂t(γ1) − 1, there exists 1 ≤ i ≤ t such

that z1
i > z2

i . Let

t1 = max{i ∈ {1, ..., t}|z1
i > z2

i }.

We consider the following two cases.

Case 1 : t = te − t∗

We form a new solution z1 to P̂M(γ1, t
∗, tf , te), by setting zt1 = z1

t1 = 1 and z1
i = z2

i

for i ∈ {1, ..., te − t∗ − 1}. To prove the feasibility of z1 note that for 1 ≤ k ≤ t1 − 1

k
∑

i=1

z1
i =

k
∑

i=1

z2
i ≤ Γ̂k(γ2) = Γ̂k(γ1).

For t1

t1
∑

i=1

z1
i =

t1−1
∑

i=1

z2
i + 1 ≤

t1−1
∑

i=1

z1
i + 1 ≤ Γ̂t1(γ1)

To see that the first inequality is true, suppose that
∑t1−1

i=1 z2
i >

∑t1−1
i=1 z1

i . Then from

the definition of t1 we have
∑t

t1 z2
i + 1 ≥

∑t
t1 z1

i . Therefore, we have

Γ̂t(γ1)− 1 = Γ̂t(γ2) ≥
t
∑

i=1

z2
i >

t
∑

i=1

z1
i − 1 = Γ̂t(γ1)− 1

which is a contradiction. For t1 + 1 ≤ k ≤ t

k
∑

i=1

z1
i =

t1−1
∑

i=1

z2
i + 1 +

t
∑

t1+1

z2
i ≤

t1−1
∑

i=1

z1
i + 1 +

t
∑

t1+1

z1
i ≤ Γ̂t1(γ1).

The first inequality above follows similarly to the previous case.

The cost of this solution is equal to

APPENDIX A. AN ALTERNATIVE APPROACH FOR SOLVING PM 113

te−t∗
∑

i=1

ˆcosti(σ, z1
i) =

∑

i∈{1,...te−t∗}\{t1}

ˆcosti(σ, z2
i) + ˆcostt1(σ, z1

t1
) ≤

∑

i∈{1,...te−t∗}

ˆcosti(σ, z1
i)

⇒
∑

i∈{1,...te−t∗}\{t1}

ˆcosti(σ, z2
i) ≤

∑

i∈{1,...te−t∗−1}

ˆcosti(σ, z1
i) (A.1)

Now consider the solution z2 to P̂M(γ2, t
∗, tf , te), formed by setting z2

t1 = z2
t1 = 0 and

z2
i = z1

i for {1, ..., te − t∗ − 1}. For 1 ≤ k ≤ t1 − 1

k
∑

i=1

z2
i =

k
∑

i=1

z1
i ≤ Γ̂k(γ1) = Γ̂k(γ2).

For k ≥ t1

k
∑

i=1

z2
i =

k
∑

i=1

z1
i − 1 ≤ Γ̂k(γ1)− 1 ≤ Γ̂t1(γ2).

The cost of this solution satisfies

te−t∗
∑

i=1

ˆcosti(σ, z2
i) =

∑

i∈{1,...te−t∗}\{t1}

ˆcosti(σ, z1
i) + ˆcostt1(σ, z2

t1
) ≥

∑

i∈{1,...,te−t∗}

ˆcosti(σ, z2
i)

Therefore, (d
2
, z2) is optimal.

Case 2 : t < te − t∗

We define

t2 = min{i ∈ {t + 1, ..., te − t∗}|z1
i < z2

i }

Such an index exists since otherwise

k
∑

i=1

z2
i < Γ̂t(γ1)− 1 +

k
∑

i=t+1

z2
i ≤ Γ̂t(γ1)− 1 +

k
∑

i=t+1

z1
i ≤ Γ̂k(γ1)− 1 < Γ̂k(γ2)

APPENDIX A. AN ALTERNATIVE APPROACH FOR SOLVING PM 114

for t + 1 ≤ k ≤ te − t∗ and this means that z2 is not optimal.

As in the previous case we form a new solution, z1 for P̂M(γ1, t
∗, tf , te). We set

z1
t1

= z1
t1

= 1, z1
t2

= z1
t2

= 0 and z1
i = z2

i for {1, ..., te− t∗−1}. For 1 ≤ k ≤ t the proof

for
∑k

i=1 z1
i ≤ Γ̂k(γ1) follows from the same argument used in the previous case. For

t < k < t2

k
∑

i=1

z1
i =

t
∑

i=1

z1
i +

k
∑

i=t+1

z2
i ≤ Γ̂t(γ1) +

k
∑

i=t+1

z1
i

=
t
∑

i=1

z1
i +

k
∑

i=t+1

z1
i ≤ Γ̂k(γ1)

and for k ≥ t2

k
∑

i=1

z1
i =

k
∑

i=1

z1
i =

k
∑

i=1

z2
i ≤ Γ̂k(γ2) = Γ̂k(γ1)

The cost corresponding to that solution is

∑

i∈{1,...te−t∗}\{t1 ,t2}

ˆcosti(σ, z2
i) + ˆcostt1(σ, z1

t1) + ˆcostt2(σ, z1
t2) ≤

∑

i∈{1,...te−t∗}

ˆcosti(σ, z1
i)

⇒
∑

i∈{1,...te−t∗}\{t1 ,t2}

ˆcosti(σ, z2
i) ≤

∑

i∈{1,...te−t∗}\{t1 ,t2}

ˆcosti(σ, z1
i)

Consider the solution, z2 to P̂M(γ2, t
∗, tf , te) such that z2

t1
= z2

t1
= 0, z2

t2
= z2

t2
= 1

and z2
i = z1

i for {1, ..., te − t∗ − 1}. The proof for feasibility of z2 is as follows. For

1 ≤ k ≤ t same argument in case 1 holds. For t < k < t2

k
∑

i=1

z2
i =

k
∑

i=1

z1
i − 1 ≤ Γ̂k(γ1)− 1 ≤ Γ̂t1(γ2)

and for k ≥ t2
k
∑

i=1

z2
i =

k
∑

i=1

z1
i ≤ Γ̂k(γ1) = Γ̂k(γ2).

APPENDIX A. AN ALTERNATIVE APPROACH FOR SOLVING PM 115

The cost of this solution satisfies

te−t∗
∑

i=1

ˆcosti(σ, z2
i) =

∑

i∈{1,...te−t∗}\{t1,t2}

ˆcosti(σ, z1
i) + ˆcostt1(σ, z2

t1
) + ˆcostt2(σ, z2

t2
)

≥
∑

i∈{1,...,te−t∗}

ˆcosti(σ, z2
i)

Therefore, z2 is optimal.

Lemma A.0.2 states that if right hand side of one of the budget constraints, say the

tth constraint, drops by one we can compute the new solution from the old solution

greedily. To construct the solution for P̂M(k + f(j+1), t
∗, tf , te), from the solution

P̂M(k + f(j), t
∗, tf , te) for the given k, j, t∗, tf and te, we consider the indices for which

Γ̂(k + f(j)) = Γ̂(k + f(j+1)) + 1. Starting from the smallest such index we apply our

greedy method.

Appendix B

NP-completeness proofs

B.1 Proof of Theorem 3.4.1

Theorem 3.4.1 states that the adversarial problem for the bursty demand model with

basestock policies is NP-hard. However, it also states that it is not strongly NP-hard

and for any given ε > 0, an ε-approximate solution can be computed in time that is

polynomial in T and 1/ε.

Part (a): We will use the following problem for to obtain the NP-hardness reduction.

Problem B.1.1 Suppose we have a set of n positive integers A = {a1, a2, ..., an} and

a positive integer K. Is there a subset of A whose sum is exactly K?

Given an instance of Problem B.1.1 we will transform it into an instance of our

116

APPENDIX B. NP-COMPLETENESS PROOFS 117

adversarial problem as follows:

We assume that w = 0, µt = 0 and δt = 0 for every t. The problem has n+4 periods.

In period i, 1 ≤ i ≤ n, pi = ai (so in such periods the demand will be ai if there is a

peak, or zero if there is no peak). Also, in these periods all costs are zero. Moreover,

• in period t = n + 1, pt = 0,

• in period t = n + 2, pt = 1,

• in period t = n + 3, pt = K − 1,

• in period t = n + 4, pt = 0.

Also, in period n+1, the inventory holding cost is 1. In period n+4, the production

cost is a large value M such that M >
∑

i ai. All other costs are equal to 0. The

initial inventory equals the sum of all ai. Finally, σ = K − 1.

Now, we have the following.

Lemma B.1.2 Suppose there is a subset S of 1, 2, ..., n such that
∑

i∈S ai = K. Then

there is a demand pattern whose cost equals K + M ∗ (K − 1).

Proof. For each i /∈ S, we set the demand to ai, and for all other 1 ≤ i ≤ n we set

the demand to zero. In period n + 1 we set the demand to zero, in period n + 2 we

set it to 1, in period n + 3 we set it to K − 1, and in period n + 4 we set it to zero.

By definition of the set S, we have that x1 −
∑n

i=1 di = K and x1 −
∑t

i=1 di ≥ K

for each 1 ≤ t ≤ n. So the inventory holding cost in period n + 1 equals K. So

APPENDIX B. NP-COMPLETENESS PROOFS 118

x1 −
∑n+1

i=1 di = K, and thus x1 −
∑n+2

i=1 di = K − 1(= σ). So x1 −
∑n+3

i=1 di = 0, and

in period n + 4 we incur a production cost of M ∗ (K − 1).

We also have,

Lemma B.1.3 Suppose we consider a demand pattern such that x1−
∑n

i=1 di ≤ K−1.

Then its cost is at most K − 1 + M ∗ (K − 1).

Proof. Since x1 −
∑n

i=1 di ≤ K − 1, the inventory holding cost in period n + 1 is less

than or equal to K−1. And, also, since σ = K−1, we have that x1−
∑n+2

i=1 di ≤ K−1,

and so x1 −
∑n+3

i=1 di ≥ 0, and so the production cost paid in period n + 4 is at most

M ∗ (K − 1).

Lemma B.1.4 Suppose we consider a demand pattern such that x1−
∑n

i=1 di ≥ K+1.

Then its cost is less than K + M ∗ (K − 1).

Proof. The inventory holding cost paid in period n + 1 is at most x1 −
∑n

i=1 di which

is at most
∑

i ai.

Since the demand in n + 1 is always zero, x1 −
∑n+1

i=1 di = x1 −
∑n

i=1 di ≥ K + 1,

and so x1−
∑n+2

i=1 di ≥ K(> σ). So x1−
∑n+3

i=1 di ≥ 1, and the production cost paid in

period n + 4 is at most M ∗ (K − 2).

In summary, the total cost is at most
∑

i ai + M ∗ (K − 2) which is strictly less

than K + M ∗ (K − 1) by definition of M .

Finally,

APPENDIX B. NP-COMPLETENESS PROOFS 119

Lemma B.1.5 Suppose we consider a demand pattern such that x1 −
∑n

i=1 di = K.

Then there is a subset of the ai with sum K.

Proof. Since σ = K−1, this follows easily. Use the subset defined by the time periods

(up to n) where the peaks are not used.

In summary, there is a subset S of the A with sum K if and only if there is a

demand pattern with cost K + M ∗ (K − 1).

B.2 Proof of Theorem 3.6.1

We will prove the theorem using the maximum stable set problem in the complement

of the graph G = (V, E). Let G′ denote the complement. For an arbitrary graph G

we construct the following robust basestock problem with |V |+ 1 periods:

• For periods t = 1, 2, ..., |V |, we set ht = 0, bt = 1, ct = 0 and 0 ≤ dt ≤ 2,

• for period t = |V |+ 1, we set ht = M , bt = M , ct = 0 and dt = 1,

• for each edge (i, j) in graph G′, we have (di + dj)/2 ≤ 1,

• we set x1 = 0.

Notice that for M large enough (M > |V |+ 1), σ = 1 gives the optimal solution. We

have the following Lemma that gives a characterization of the demand pattern that

gives the maximum cost for σ = 1.

APPENDIX B. NP-COMPLETENESS PROOFS 120

Lemma B.2.1 Let σ = 1. Then, there exist an optimal solution to the adversarial

problem such that dt ∈ {0, 2} for 1 ≤ t ≤ |V |.

Proof. Notice that in each period starting inventory is at least 1, since σ = 1. If

for 1 ≤ t ≤ |V |, dt ≤ 1, then we can set dt to 0 without changing the cost of the

solution, since ht = 0 for such periods. Therefore, we can assume w.l.o.g that dt > 1

or dt = 0 for 1 ≤ t ≤ |V |. Suppose that for some period 1 ≤ t ≤ |V |, dt > 1. Notice

that for every period t′ that is a neighbor of t in G′ the dt′ < 1, due to the constraint

(dt + dt′)/2 ≤ 1. Therefore we can assume that dt′ = 0 for such periods. Since at the

end of period t, we incur a backlogging cost of bt(dt− 1), we can increase the cost by

setting dt = 2 which contradicts with the optimality of d.

Let κ be the clique number of graph G (the cardinality of the maximum stable

set in G′). It follows from Lemma B.2.1 that when σ = 1 the value of the adversarial

problem is equal to κ. Furthermore, it is not hard to show that if M is large enough,

the optimal basestock is indeed σ∗ = 1

Remark B.2.2 Our proof shows that computing the optimal cost of the basestock

problem for general polyhedral case is strongly NP-hard. On the other hand, one

may consider approximating the optimal basestock without having to approximate the

cost. We want to stress the fact that this is impossible and using the idea in our

NP-completeness proof it can be shown that unless P = NP, we can not approximate

the optimal basestock value within a constant factor.

Appendix C

Algorithms for the discrete

budgets model

C.1 Proof of Theorem 3.6.4

We remind the reader that the discrete budgets case is described as follows.

(a) We are given a quantity 0 ≤ µt for 1 ≤ t ≤ T . This is the nominal demand at

time t.

(b) We are given quantities αi ≥ 0, for 1 ≤ i ≤ C (some C).

(c) Each time period t belongs to a category i, 1 ≤ i ≤ C. If period t is in category

i, then the demand at t will be of the form

dt = µt + kt αi,

121

APPENDIX C. ALGORITHMS FOR THE DISCRETE BUDGETS MODEL 122

where kt is an integer, possibly negative. We have bounds lt ≤ kt ≤ ut for given

lt, ut.

(d) For each t we have a constraint of the form
∑t

j=1 |kj| ≤ Γt, where 0 ≤ Γt is a

given integer. (We assume that ΓT is polynomial in T).

In this Section we will show that the basestock problem with time variant basestock

levels under discrete budgets model can be solved in polynomial time for constant C.

For notational simplicity we assume that C = 1 throughout this Section.

We model the problem as a longest path problem on a directed graph with

T
∑

t=1

Γt + T + 2

vertices and without any directed cycles. We highlight the fact that on such a graph

the longest path problem can be solved in polynomial. (For background on the longest

path problem see [ATO93] and [BH01]). We construct the graph as follows.

• We have a starting vertex, denoted by v0 and a terminal vertex, denoted by

vT+1.

• For each time period 1 ≤ t ≤ T and each possible level of budget consumption,

0 ≤ k ≤ Γt−1, we have a vertex denoted by vt,k. (We assume that Γ0 = 0).

• We have an edge from v0 to every other vertex and from every other vertex to

vT+1.

APPENDIX C. ALGORITHMS FOR THE DISCRETE BUDGETS MODEL 123

• Moreover, from each vertex vt1,k1
such that 1 ≤ t1 ≤ T and 0 ≤ k1 ≤ Γt1−1, we

have an edge into every vertex vt2 ,k2
such that t1 < t2 ≤ T and k1 ≤ k2 ≤ Γt2−1.

We use the edges to locate the time periods where the on-hand inventory drops below

the basestock level. The following is the interpretation of the edges that are defined

above.

1. For any 1 ≤ t ≤ T and 0 ≤ k ≤ Γt−1, the edge from v0 to vt,k represents the case

in which xj ≥ σj for 0 ≤ j < t and xt ≤ σt, and k units of budget is consumed

in periods 1, 2, ..., t− 1. The cost for such an edge is given by

max
t−1
∑

i=1

Wi(x1 −
i
∑

j=1

dj) + ct(σt − (x1 −
t−1
∑

j=1

dj))

s.t. x1 −
i−1
∑

j=1

dj ≥ σi 2 ≤ i ≤ t− 1

x1 −
t−1
∑

j=1

dj ≤ σt

di = µi + ki α 1 ≤ i ≤ t− 1

i
∑

j=1

|kj| ≤ Γi 1 ≤ i ≤ t− 1

li ≤ ki ≤ ui 1 ≤ i ≤ t− 1

t−1
∑

i=1

|ki| ≤ k and ki integral

2. For any 1 ≤ t ≤ T and 0 ≤ k ≤ Γt−1, the edge from vt,k to vT+1 represents the

case in which xt < σt and xj ≥ σj for t + 1 ≤ j ≤ T . The cost is given by

APPENDIX C. ALGORITHMS FOR THE DISCRETE BUDGETS MODEL 124

max
T
∑

i=t

Wi(σt −
i
∑

j=t

dj)

s.t. σt −
i−1
∑

j=t

dj ≥ σi t + 1 ≤ i ≤ T

di = µi + ki α

i
∑

j=t

|kj| ≤ Γi − k t ≤ i ≤ T

li ≤ ki ≤ ui and ki integral.

3. Any edge from vt1,k1
to vt2,k2

represents the case in which the inventory is below

the basestock level at the beginning of periods t1 and t2, and above basestock

level for periods t1 < t < t2. The cost for such edges is given by

max
t2−1
∑

i=t1

Wi(σt1 −
i
∑

j=t1

dj) + ct2(σt2 − (σt1 −
t2−1
∑

j=1

dj))

s.t. σt1 −
i−1
∑

j=t1

dj ≥ σi t1 + 1 ≤ i ≤ t2 − 1

σt1 −
t2−1
∑

j=t1

dj ≤ σt2

di = µi + ki α

i
∑

j=t1

|kj| ≤ Γi − k1 t1 ≤ i ≤ t2 − 1

li ≤ ki ≤ ui

t2−1
∑

j=t1

|kj| ≤ k2 − k1 and ki integral.

4. The edge (v0, vT+1) represents the the case in which inventory on hand is greater

than the basestock level for the entire horizon. The cost for this is computed

APPENDIX C. ALGORITHMS FOR THE DISCRETE BUDGETS MODEL 125

similar to previous cases.

Each vertex of the form vt,k represents the case such that the inventory is below

σt at the beginning of period t and the risk consumption up to period t is at most k.

Notice that each path from v0 to vt,k corresponds to a demand pattern that achieves

this and the length of the path is equal to the total cost in periods 1, 2, . . . , t − 1

plus the ordering cost in period t. Similarly any path from v0 to vT+1 corresponds to

a solution to the adversarial problem with the length of the path corresponding to

the cost of the solution. Therefore the longest path in our graph gives the optimal

solution to the adversarial problem.

To show the efficiency of our algorithm we have to show that we can compute the

cost of each edge in polynomial time. We will show how to do so in the case of the

edges for the third type above; the other cases will follow similarly.

We use the following forward dynamic program to compute the costs. For each

period t1 ≤ t ≤ t2 we have a set, denoted by Mt, that consists of the triples (x, k, c).

Here, the first two components of the triple give the inventory at the beginning

of period t and the risk consumption until period t. The third component gives

the maximum cost corresponding to x and k. We set Mt1 = {(σt1 , k1, 0)} and for

each t1 < t ≤ t2, we construct Mt as follows: For each triple (x, k, c) ∈ Mt−1 and

lt ≤ j ≤ ut, we add (x − (µt−1 + jα), k + |j|, c + Wt−1(x − (µt−1 + jα))) to Mt

if x − (µt−1 + jα) ≥ σt for t1 < t < t2, if x − (µt−1 + jα) ≤ σt for t = t2 and

APPENDIX C. ALGORITHMS FOR THE DISCRETE BUDGETS MODEL 126

k + |j| ≤ Γt−1. If there exist two triples (x, k, c1) and (x, k, c2) such that c1 ≤ c2, we

delete (x, k, c1). For each triple of the form (x, k2, c) ∈ Mt2 , we compute the cost of

the triple as c+ ct2(σt2−x). The cost of the triple with the maximum cost is assigned

to the edge.

Notice that the complexity of the algorithm depends on the sizes of the sets Mt

for each t which in turn depends on the number of attainable values of the first and

the second components of the triples. The second component is nonnegative and it is

at most ΓT which is assumed to be polynomial in T . Moreover, for each triple (x, k, c)

in Mt, x = σt1 − (
∑t

i=t1
µi + ρα) for some integer ρ. It is easy to see that ρ can only

take values from the interval [−Γt, Γt]. Therefore size of Mt is O(Γ2
T).

C.2 Proof of Theorem 3.6.5

In this Section we develop a polynomial time algorithm to solve the adversarial prob-

lem with the intervals model. The intervals model has the same assumptions with

the discrete budgets model except for the part (d) of the description given in previous

section. Instead, we have the following model for the budget constraints.

(i) I is the set of all intervals of the form [ik, h] for some 1 ≤ k ≤ m and ik ≤ h ≤ jk,

and

(ii) For every 1 ≤ t ≤ T there are at most ω intervals [ik, jk] with ik ≤ t ≤ jk.

APPENDIX C. ALGORITHMS FOR THE DISCRETE BUDGETS MODEL 127

In this proof we use the same approach as in the proof of Theorem 3.6.4. We

construct a similar directed graph and solve a longest path problem on it. The vertex

set of the graph is produced as follows:

• Similar to the previous Theorem, we have the starting and terminal vertices

denoted by v0 and vT+1.

• Let 1 ≤ t ≤ T and [ii1 , ji1], . . . , [iint
, jint

] be the intervals that are in the basis of

I and that cover t. For each nt +1-tuple (t, k1, k2, . . . , knt
) such that 1 ≤ t ≤ T

and k1 ≤ k2 . . . ≤ knt
, we add a vertex to our graph.

Here the last nt components of the (nt +1)-tuple represents the the risk consumption

between periods ii1 , . . . , iint
and t.

The edges of the graph and their costs are obtained using a technique similar to

that in Theorem 3.6.4. However, one has to be careful in calculating the costs of the

edges, since the intervals from the bases that covers t may be different for different

periods.

To calculate the costs on the edges we use dynamic programming and produce

sets similar to the Mt used above for each period t. In this case the sets consist

of (nt + 1)-tuples (x, k1, . . . , knt
, c) in which the first component corresponds to the

inventory at the beginning of period t, the next nt components correspond to the risk

consumptions in the intervals that includes t, and the last component is the maximum

cost in periods 1, . . . , t corresponding to x and k1, . . . , knt
. Since again the complexity

APPENDIX C. ALGORITHMS FOR THE DISCRETE BUDGETS MODEL 128

of the DP depends on the size of the sets that we construct, it is polynomial for fixed

w and C.

Bibliography

[ATO93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network Flows (1993),

Prentice-Hall Inc, New Jersey.

[AAFKLL96] M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton

and Z. Liu, Universal stability results for greedy contention-resolution protocols,

Proceedings of the 37th Annual Symposium on Foundations of Computer Science

(1996), Burlington, VT, 380 – 389.

[AHM51] K. Arrow, T. Harris and J. Marschak, Optimal inventory policy, Econo-

metrica 19 (1951), 250 – 272.

[AZ05] A. Atamtürk and M. Zhang, Two-Stage Robust Network Flow and Design

under Demand Uncertainty, Research Report BCOL.04.03, Dept. of IEOR, Uni-

versity of California at Berkeley (2004).

[BRW84] I. Barany, T.J. Van Roy and L. A. Wolsey, Uncapacitated lot sizing: The

convex hull of solutions, Mathematical Programming Study 22 (1984) 32-43.

129

BIBLIOGRAPHY 130

[B62] Benders, J.F., Partitioning procedures for solving mixed variables programming

problems, Numerische Mathematik 4 (1962) 238-252.

[BGNV05] A. Ben-Tal, B. Golany, A. Nemirovski and J.-P. Vial, Retailer-Supplier

Flexible Commitments Contracts: A Robust Optimization Approach. MSOM 7

(2005), 248-271.

[BGGN04] A Ben-Tal, A. Goryashko, E Guslitzer and A. Nemirovski, Adjusting ro-

bust solutions of uncertain linear programs, Mathematical Programming 99(2)

(2004), 351 – 376.

[BN98] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Mathematics of

Operations Research 23 (1998), 769 – 805.

[BN99] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs,

Operations Research Letters 25 (1999), 1-13.

[BN00] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming prob-

lems contaminated with uncertain data, Mathematical Programming Series A 88

(2000), 411 – 424.

[BS03] D. Bertsimas and M. Sim, Price of robustness, Operations Research 52 (2003),

35 – 53.

[BT04] D. Bertsimas and A. Thiele, A robust optimization approach to supply chain

management, Lecture Notes in Computer Science 3064 (2004), 86 – 100.

BIBLIOGRAPHY 131

[BH01] A. Bjrklund and T. Husfeldt. Finding long paths in directed graphs is hard.

Manuscript, 2001.

[BKRSW96] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan and D. P. Williamson,

Adversarial queueing theory, Proceedings of the 28th Annual ACM Symposium

on Theory of Computing (1996), 376 – 385.

[CS60] A. Clark and H. Scarf, Optimal policies for a multi-echelon inventory problem,

Management Science 6 (1960), 475 – 490.

[C91] R. L. Cruz, A calculus for network delay, Part I: Network elements in isolation,

IEEE Transactions on Information Theory, 37 (1991), 114 – 131.

[DKW52] A. Dvoretzky, J. Kiefer and J. Wolfowitz, The inventory problem, Econo-

metrica 20 (1952), 187 – 222.

[E84] R. Ehrhart, (s,S) policies for a dynamic inventory model with stochastic lead-

times, Operations Research 32 (1984), 121 – 132.

[GKR05] G. Gallego, K. Katircioglu and B. Ramachandran, A Note on The Inventory

Management of High Risk Items (2005). To appear, O. R. Letters.

[GM93] G. Gallego and I. Moon, The distribution free newsboy problem: Review and

extensions, Journal of Operations Research Society 44 (1993), 825 – 834.

BIBLIOGRAPHY 132

[GRS01] G. Gallego, J. Ryan and D. Simchi-Levi, Minimax analysis for finite horizon

inventory models, IIE Transactions 33 (2001), 861 – 874.

[GW74] S.J. Gartska and R.J.B. Wets, On decisions rules in stochastic programming.

Mathematical Programming 7 (1974) 117-143.

[GSc71] J. Glover and F. Schweppe. Control of linear dynamic systems with set con-

strained disturbances. IEEE Transactions on Automatic Control 16(6) (1971)

766-767.

[GLS93] M. Grötschel, L. Lovász and A. Schrijver. Geometric Algorithms and Com-

binatorial Optimization. Springer-Verlag. 1993.

[H13] F. Harris, How many parts to make at once, Factor, The Magazine of Man-

agement 10 (1913), 135 – 136, 152.

[I63a] D. Iglehart, Dynamic programming and stationary analysis in inventory prob-

lems, Multistage Inventory Models and Techniques (Chapter 1) (1963), Stanford

University, Stanford, CA.

[I63b] D. Iglehart, Optimality of (s,S) policies in infinite horizon dynamic inventory

problem, Management Science 9 (1963), 259 – 267.

[I05] G. Iyengar, Robust Dynamic Programming, Math. of OR 30 (2005), 257 – 280.

BIBLIOGRAPHY 133

[MG94] I. Moon and G. Gallego, Distribution free procedures for some inventory

models, Journal of Operations Research Society 45 (1994), 651 – 658.

[MT01] A. Muharremoglu and J. Tsitsiklis, A single unit decomposition approach to

multi-echelon inventory systems, Working paper (2001).

[NW88] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization,

Wiley, New York (1988).

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization, (1999) Springer Series

in Operations Research.

[S58] H. Scarf, A min-max solution of an inventory problem, Studies in the Mathe-

matical Theory of Inventory and Production (Chapter 12) (1958), Stanford Uni-

versity Press, Stanford, CA.

[T05] A.Thiele, Robust dynamic optimization: a distribution-free approach.

Manuscript (2005).

[V66] A. Veinott, On the optimality of (s,S) inventory policies: New conditions and

a new proof, SIAM Journal on Applied Mathematics 14 (1966), 1067 – 1083.

[WW58] H. M. Wagner and T. M. Whitin, Dynamic version of the economic lot size

model, Managemnet Science 5 (1958) 89-96.

BIBLIOGRAPHY 134

[Z00] P. Zipkin, Foundations of inventory management (2000), McGraw-Hill Higher

Education.

