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ABSTRACT

Models for managing surge capacity in the face of an influenza

epidemic

Ana Cecilia Zenteno Langle

Influenza pandemics pose an imminent risk to society. Yearly outbreaks already represent heavy social

and economic burdens to society. A pandemic could severely affect infrastructure and commerce

through high absenteeism, supply chain disruptions, and other effects over an extended and uncertain

period of time. Governmental institutions such as the Center for Disease Prevention and Control

(CDC) and the U.S. Department of Health and Human Services (HHS) have issued guidelines on

how to prepare for a potential pandemic, however much work still needs to be done in order to meet

them. from a planner’s perspective, the complexity of outlining plans to manage future resources

during an epidemic stems from the uncertainty of how severe the epidemic will be. Uncertainty in

parameters such as the contagion rate (how fast the disease spreads) makes the course and severity

of the epidemic unforeseeable, exposing any planning strategy to a potentially wasteful allocation of

resources.

In this thesis we consider robust models of surge capacity planning. We focus on surge staff deployment

strategies that aim to mitigate the impact of an influenza epidemic on an organization’s operations.



Our approach involves the use of additional resources in response to a robust model of the evolution

of the epidemic as to hedge against the uncertainty in its evolution and intensity. Under existing plans,

large cities would make use of networks of volunteers, students, and recent retirees, or “borrow” staff

from neighboring communities. Taking into account that such additional resources are likely to be

significantly constrained (e.g. in quantity and duration), we seek to produce robust emergency staff

commitment levels that work well under different trajectories and degrees of severity of the pandemic.

Our methodology combines Robust Optimization techniques with Epidemiology (SEIR models) and

system performance modeling. We describe cutting-plane algorithms analogous to generalized Ben-

ders’ decomposition that prove fast and numerically accurate. Our results yield insights on the struc-

ture of optimal robust strategies and on practical rules-of-thumb that can be deployed during the

epidemic. To assess the efficacy of our solutions, we study their performance under different scenarios

and compare them against other seemingly good strategies through numerical experiments.

This work would be particularly valuable for institutions that provide public services, whose operations

continuity is critical for a community, especially in view of an event of this caliber. As far as we know,

this is the first time this problem is addressed in a rigorous way; particularly we are not aware of any

other robust optimization applications in epidemiology.
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Introduction

In this paper we consider robust models for emergency staff deployment in the event of a flu pandemic.

We focus on managing critical staff levels at organizations that must remain operational during such

an event, and develop methodologies for managing emergency resources with the goal of minimizing

the impact of the pandemic. We present numerical experiments using realistic data to study the

effectiveness of our approach.

A serious flu epidemic or pandemic, particularly one characterized by high contagion rate, would have

extremely damaging impact on a large, dense population center. The 1918 influenza pandemic is

often seen as a worst-case scenario as it arguably represents the most devastating pandemic in recent

history, having killed more than 20 million people worldwide [20, 53, 71]. However, even a much

milder epidemic would have vast social impact as services such as health care, police and utilities

became severely hampered by staff shortages. Workplace absenteeism might also become a serious
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concern [72]. In the United States, the Implementation Plan for the National Strategy for Pandemic

Influenza foresee absenteeism levels as high as 40% at the height of the pandemic wave ([40]). In the

health care setting, there are mixed views: While some preparedness plans project high absenteeism

due to illness or need to care for family members ([57]), the opposite may also take place: health care

workers may reportedly avoid calling in sick during an emergency as observed during the last H1N1

outbreak [27, 16].

In this study we focus on managing the inevitable staff shortfall that will take place in the case

of a severe epidemic. We take the viewpoint of an organization that seeks to diminish decreased

performance in its operations as the epidemic unfolds, by appropriately deploying available resources,

but which is not directly attempting to control the number of people that become infected. Some

examples of infrastructure of critical social value we are interested in are hospitals, police departments,

power plants and supply chains; these are entities that must remain operative even as staff levels

become low. In cases such as police departments, staff would likely be more exposed to the epidemic

than the general public and (particularly if vaccines are in short supply, or apply to the wrong virus

mutation) shortfalls may take place just when there is greatest demand for services. Power plants and

waste water treatment plants are examples of facilities whose operation will be degraded as staff falls

short and which probably require minimum staff levels to operate at all [39]. Supply chains would very

likely be significantly slowed down as their staff is depleted, resulting, for example, in food shortages

[66]. In all these cases, organizations cannot implement “work from home” strategies as urged for

private businesses by the Centers of Disease Control and Prevention (CDC) and the United States

Department of Labor [63].

In contrast to our focus, much valuable research has been directed at addressing the epidemic itself.
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Such work studies public health measures that would reduce the epidemic’s severity and its direct

impact, for example by managing the supply of vaccines and antivirals (see [50, 38, 51]). While we

do not address this topic, it seems plausible that robust optimization techniques could be applied in

these settings, as well. To the best of our knowledge this is the first time that these methodologies

are introduced into this research area.

A pandemic contingency plan for a large organization (such as a city government) would include

resorting to emergency (or “surge”) sources for additional staff: for example by temporarily relying on

personnel from outlying, less dense, communities. Such additional resources are likely to be significantly

constrained in quantity, duration and rate, among other factors. Such emergency staff deployment

plans would entail some complexity in design, calibration and implementation, but as a result of other

disasters such, as Hurricane Katrina in 2005 and the anthrax attacks in 2001, it is now agreed that

there is a compelling need for emergency planning [30].

From a planner’s perspective, the task of managing future resource levels during an epidemic is com-

plex, partly because of uncertainties regarding the behavior of the epidemic, in particular, uncertainty

in the contagion rate. The evolution of the contagion rate is a function of poorly understood dynamics

in the mutations of the different strains of the flu virus and environmental agents such as weather

[20, 52]. Additionally, non-pharmaceutical public health interventions such as quarantine and social

distancing could impose significant changes in social contact patterns that would in turn affect the

contagion rate. In addition to uncertainty, a decision-maker will also likely be constrained by logistics.

In particular, it may prove impossible to carry out large changes to staff deployment plans on short

notice, particularly if such staff is also in demand by other organizations (as might be the case during

a severe epidemic). We will return to these issues in Sections 5.2.2 and 8. As a consequence of
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the two factors (uncertainty, and logistical constraints) a decision-maker may commit too few or too

many resources - in this case emergency staff- or perhaps at the wrong time, if there turns out to

be a mismatch between the anticipated level of staff shortage and what actually transpires (after the

resources have been committed).

We present models and methodology for developing emergency staff deployment levels which opti-

mally hedge against the uncertainty in the evolution an the epidemic while accounting for operational

constraints. Our approach overlays adversarial models on the classical SEIR model for describing

epidemics to characterize the potentially wide variability of the contagion rate. The resulting robust

optimization models are non-convex and large-scale; we present convex approximations and algorithms

that empirically prove numerically accurate and efficient, and we study their behavior and the policies

they produce under a range of scenarios.

This thesis is organized as follows. Chapter 2 contains preliminaries to the main topics addressed in

this work. Issues related to surge capacity planning are described in Chapter 3; Chapter 4 describes

the classical SEIR model and makes the case for robustness. Chapter 5 contains the description of our

robust model and Chapter 6 presents the results of our numerical experiments; details of the robust

algorithm are presented in Chapter 7. We discuss extensions and give final remarks in Chapters 8 and

9, respectively.
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Preliminaries

2.1 Operations Research and Public Health

Operations Research is the science of better decision making. It provides a structured framework

to analyze complex systems by capturing their main uncertainties and interactions. While the field

originally had military applications, it is now prevalent in supply chain management, transportation,

services and, more recently, homeland security and health care management.

Public Health studies how to protect and improve the health of communities through education, pro-

motion of healthy lifestyles, and research for disease and injury prevention [81]. Typical Public Health

programs include disease screening and surveillance (such as HIV and influenza), vaccination, outbreak

investigation (SARS), inspection and standard enforcement at public establishments, environmental

monitoring, and vector control (mosquitoes, ticks that transmit diseases) [41].
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Like any other services, Public Health programs require adequate design and effective implementation

to have the desired impact. Herein lie many opportunities to apply Operations Research principles and

techniques: the delineation, evaluation and operation of these services may benefit significantly from

interweaving theoretical insight with practical experience which no health worker can afford to overlook

[1]. Operations Research has proved to be successful in all steps of this process; it is significantly

helpful in decision making with limited resources under uncertainty and in gauging the potential impact

of various programs. These are all common elements of Public Health policy design.

In the case of epidemiology, public health concerns are focused on disease surveillance, prevention

services, on the design and delivery of health programs and on the evaluation of such interventions.

Questions of interest include how to reduce the final size of an outbreak of an infectious disease; what

is the best combination of prevention strategies - vaccination, quarantine, social-distancing - and how

to implement such measures. On the health economics side, an important matter is how to reduce the

monetary and societal costs of these events due to the loss of productivity and the related business

and community disruptions [41].

2.2 Influenza virus and pandemics

Influenza is an acute, highly contagious respiratory disease caused by a number of different virus

strains. According to the CDC, annual outbreaks cause an average of 23,600 deaths and more than

200,000 hospitalizations in the U.S. [77]. These outbreaks are considerably costly as well: based

on 2003 US population data, Molinari et al. estimate the total economic burden of annual influenza

epidemics to be $87.1 billion [54]. It is most often a mild viral infection from which people usually

recover within one or two weeks without requiring medical treatment; however, it may evolve into
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lethal complications like pneumonia due to secondary bacterial infections, imposing a heavy medical

burden. For certain virus strains this is especially pronounced in the case of susceptible groups such

as young children, the elderly or people with certain medical preconditions.

In nature, the influenza virus can be found in wild aquatic birds, who are typically not harmed by it.

However, it can jump from wild to domesticated ducks and then to chickens, from where it can infect

pigs. Pigs can be infected by avian flu and the types that infect humans. In rural settings where

humans, chickens, and pigs are all in close contact, pigs act as an influenza virus mixing bowl. Such

virus can sometimes make a further jump from swine to people [64].

There are three types of influenza viruses based upon their protein composition: A, B, and C [64].

Type A viruses are found in humans and in many kinds of animals including ducks, chickens, pigs, and

whales. Type B mainly circulates in humans. Type C has been found in humans and animals like pigs

and dogs, but it does not spread as fast as to cause an epidemic. Type A influenza subtypes have been

catalogued according to two different protein components, also known as antigens, that are found on

the virus surface: haemagglutinin (H) and neuraminidase (N). There are no type B or C subtypes.

Viral genomes are constantly mutating, producing new forms of these antigens. Whenever the mu-

tation is significantly different, the human immune system can no longer recognize the virus, making

people who have had influenza in the past lose their immunity to the new strain. Needless to say,

vaccines against the original virus will also become less effective.

Two processes drive the antigens to change: antigenic drift and antigenic shift[77, 18]. Antigenic drift

involves small, gradual, unpredictable changes in the genetic content of the same virus strain, and thus

in the antigens H and N. This leads to loss of immunity and vaccine mismatch. On the other hand,

antigenic shift refers to the process by which a new subtype of the virus is created by the combination
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of two or more different strains of a virus, or strains of two or more different viruses. While antigenic

drift occurs in all types of influenza, antigenic shift occurs only in influenza virus A because it is capable

of infecting other animals asides from humans, creating the opportunity to reassort its genetic content

dramatically. Depending on the reassortment of bird-type flu proteins, if it makes it to the human

population, the flue may be more or less severe.

A pandemic has been defined by the World Health Organization as the worldwide spread of a new

disease [82]. There were three flu pandemics in the twentieth century, the worst of which occurred in

1918; known as the “Spanish flu”, it killed 20-40 million people worldwide. Milder pandemics occurred

in 1957 (Asian Flu) and 1968 (Hong Kong Flu). Researchers think type A influenza is responsible for

all of them [64]. In 1977, it was found that the avian flu was transmitted to humans directly for the

first time [64]. The virus did not pass easily between humans, and a pandemic did not take place.

The most recent pandemic occurred in 2009 - 2010 with the surge of the H1N1 virus (also known as

swine flu). Although we learned after the epidemic was over that it was the least lethal of the modern

pandemics (it appeared to kill one of every 2,000 people who get it), health authorities around the

world took extraordinary measures to combat its spread [73]. The outbreak caused concern because

officials had never seen this particular strain of flu passing among humans before.

Currently, fears are that an antigenic shift between avian influenza and human influenza will result

in a new highly virulent strain for which humans have little or no immunity resulting in a pandemic:

the disease would rapidly spread worldwide, possibly with high mortality rates. These worries are well

founded: bird flu has killed 60% of the 570 known cases since 2003 [2]. So far, the virus lacks of

sustained human-human transmission; however, a single mutation could make this transmission not

only possible, but efficient [10].
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To anticipate nature, in late 2011 researchers tweaked the virus’s genes to produce a strain that could

be passed from person to person through air. A debate about whether the results of this investigation

should be published or not (due to fears that sensitive information could fall into the wrong hands)

ensued. After months of deliberation involving world’s experts on many fields, on April 20th of 2012,

American officials decided that the benefits of publishing such results outweighed the risks. Quoting

The Economist [2]: “The reason is that, as bioterrorists go, humans pale in comparison with nature.

[...] From the Black Death via Spanish flu to AIDS, bacteria and viruses have killed on a scale that

terrorists and dictators can only dream of.” The main take-away we draw from these studies is that

experts still don’t know how to predict the virus’ mutations. Indeed, they don’t know how likely it is

that H5N1 (avian flu) will follow the mutations presented in the papers or a different one [74].

2.2.1 Pandemic Preparedness

While new, better vaccines are being studied, there is great interest in evaluating possible emergency

management strategies (the focus of this thesis) due to the social and economic costs that would

arise with a big influenza outbreak. During an epidemic, particularly a long one, public services such

as health care facilities, police, fire fighting services and refuse collection would, in all probability,

experience staff reduction due to illness or fear of infection. Public utilities such as power and water

plants may require a minimum level of staff below which they must shut down [39].

It is worth mentioning that preparing for an epidemic is quite different from planning for “regular”

catastrophes. While they are both “emergency” settings, catastrophes such as earthquakes, hurri-

canes or nuclear plant failures are sharp, extant events that have materialized. During these events

municipalities would need to resort to large numbers of first responders. These would be members
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of possibly distant communities that would be brought in to the emergency site. An important soci-

ology question concerns whether these people would actually participate in the relief effort, not only

abandoning their roles in their communities, but potentially risking their own lives. Research shows

that this indeed happens. First-responder corps with as many as three or fourfold additional staff are

normally prescreened and trained in emergency protocols [76].

Epidemics pose a different challenge in that they evolve in multiple locations (vs a single site) and

over a potentially protracted time frame, with extensive uncertainty. The main difficulty lies not in

the proclivity of staff participation, but in the scarcity of staff and its effective management during a

potentially extended period of time, under significant incertitude (a point indirectly alluded to in [76]).

In the process of designing contingency plans organizations must design frameworks to make the best

use of the available resources and look to extend their capacity in case of an emergency, including

surge staff. This will require the local planners to solve major logistical problems. We note that federal

agencies such as the CDC and the United States Department of Labor have recommended businesses

to implement flexible human resources strategies - such as “work from home” - in the event of an

epidemic. However, organizations that provide public services like the ones described above cannot

afford such plans and are encouraged to build sources of additional staff, a strategy that could require

careful preplanning. Credentialing and legal preparations should be made in case personnel needs to be

brought in from other states or recalled from retirement, especially in the case of health care workers

[10, 11].

Thus, a virulent influenza epidemic that would develop over time and geography, characterized by

uncertainty and noise, will have deep social impact. Given the immediacy of events once the epidemic

starts, a significant amount of preplanning is needed to build an adequate response, from a staffing
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and resource perspective, that will allocate resources as effectively and efficiently as possible. While

we focus on influenza mainly motivated by the amount of attention it has received in recent years, we

expect our models to be useful for other diseases that could represent public health concerns that could

meet this characteristics. In this thesis we focus on building contingency plans that maintain critical

staff levels required for the operations continuity of organizations of interest. We follow algorithmic

and data-driven forecasts that hedge against the inherent uncertainty of the epidemic.

2.3 Robust Optimization and Benders’ Decomposition

A generic mathematical programming problem is of the form

min
x0∈R,x∈Rn

{x0 : f0(x , ζ)− x0 ≤ 0, fi(x , ζ) ≤ 0, i = 1, ...,m} (2.1)

where x is the decision variable, f0, the objective function, and fi , the constraints, are structural

elements of the problem; ζ stands for the data specifying a particular problem instance.

Optimization problems posed to solve real-world problems are usually presented with the following

challenges [12]:

1. The data are uncertain/unexact;

2. The optimal solution may be difficult to implement;

3. The constraints must remain feasible for all meaningful realizations of the data;

4. Problems are large-scale (the number of constraints and/or variables is large);
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5. It’s common to have solutions which, deemed to be optimal, behave badly in the face of small

changes to the input data1.

Robust Optimization is a modeling methodology, combined with a suite of computational tools, which

is aimed at accomplishing the above requirements. Thus, the robust counterpart of (2.1) is

min
x0∈R,x∈Rn

{x0 : f0(x , ζ)− x0 ≤ 0, fi(x , ζ) ≤ 0, i = 1, ...,m,∀(ζ ∈ U)}. (2.2)

It’s important to stress that any candidate solution to this problem must satisfy a large system of

constraints dictated by all ζ ∈ U , where U , known as uncertainty set, represents the collection of

possible values that the data could attain. Many simple instances (U being an interval in R) already

make (2.2) into a semi-infinite mathematical program.

Formulating a problem like (2.2) faces two major difficulties: determining its computational tractability

(even if just approximately), and specifying U . Once solved, the optimal solution to a robust problem

will have the desirable property of being insensitive to perturbations of the data within set U . At the

same time, the robust solution is a worst-case solution, and thus, be deemed too conservative. It is

up to the modeler to evaluate this trade-off.

Methodologies to tackle robust problems vary according to the characteristics of the objective f0,

the constraints fi , and the structure of uncertainty set U (see [12] for a survey). In this work we

focus on Robust Linear Programs and, in particular, in a cutting plane method known as Benders’

Decomposition to solve them.

Benders’ Decomposition follows the concept of delayed constraint generation. In a problem with an
1Used as the solution of the same problem but with small changes of the input data yields a very distant value from

the optimal one.
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excessive number of constraints, the idea is to add them iteratively to a relaxed version of the original

problem known as the master problem. A constraint is explicitly considered only when it is violated

by an optimal solution to the master problem. To “discover” it, instead of individually checking all of

the constraints, auxiliary subproblems need to be solved efficiently. A detailed description of how we

construct the master problem and the corresponding subproblems is given in Chapter 7.

It is worth pointing out that for our purposes, the utility of Benders’ Decomposition becomes clear

from the “constraint-wise” formulation of robust problems as described above [12]. Our uncertainty

set will be characterized by the different intensity levels that an epidemic can take; our goal will be

to design a contingency plan that is as insensitive as possible to these (potentially many) scenarios.

This methodology is also used in solving multi-stage decision problems and in Stochastic Programming

problems, among other applications[24].
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33
Contingency Planning

3.1 Planning for workforce shortfall

An influenza pandemic could severely stress the operational continuity of social and business structures

through staff shortages. Altogether, public health and utility professionals predict [39, 40] that the

direct and indirect staff shortfall caused by an epidemic, in a worst-case scenario, could result in 20 to

40% of the workforce absenteeism for an extended period of time. Even though the outlook is dire,

organizations that provide critical infrastructure services such as health care, utilities, transportation,

and telecommunications, should clearly continue operations and are required to plan accordingly [77].

(See [55] for additional background on emergency staff planning.)

Staff shortfall directly resulting from individuals becoming sick could be intensified by policy or absen-

teeism. For example, during the last H1N1 influenza outbreak, CDC recommended that people with
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influenza-like symptoms remain at home until at least 24 hours after they are or appear to be free of

fever. In the particular case of health care workers it is advised that they refrain from work for at least

7 days after symptoms first appear (see [18] for additional details). Moreover, staff shortages may

occur not only due to actual illness, but also from illness among family members, quarantines, school

closures (combined with lack of child care), public transportation disruptions, low morale, or because

workers could be summoned to comply with public service obligations [72, 31]. Indeed, employees

who have been exposed to the disease (especially those coming into contact with an ill person at

home) may also be asked to stay at home and monitor their own symptoms.

U.S. authorities, acknowledging these facts, have released documentations such as the Implementation

Plan for the National Strategy for Pandemic Influenza [40] at the federal level and the Pandemic

Influenza Response Standard Operating Guide in the state of Georgia [29], promoting guidelines to

coordinate careful planning. The latter, for example, promotes county planning committee kits with

three objectives:

1. Educate community members on the pandemic threat: how to prepare for it and what to expect

from authorities.

2. Planning for continuity of services in the face of high absenteeism and possible closures.

3. Understand how members can contribute to their community’s response.

It considers a special planning kit for urgent care facilities and health clinics to project for possible

demand increases and the need for surge capacity. Planning is considered at Federal, State, and District

levels. The first have the responsibility to appropriately disseminate and coordinate regulation plans

with state authorities; the second should gather this information and disseminate it to the Districts,
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as well as sharing any additional information with their federal partners. Public health districts are

responsible for “local” level activities; they develop and execute plans upon request or as required.

At the federal level, the Department of Health and Human Services (HHS) and the CDC have also

provided directions to help organizations and their employees in such planning. In addition to recom-

mendations addressing the spread of disease and antiviral drug stockpiling, there is a focus on staff

planning, which is the subject of our study [77, 18]. Additionally, there are federal and state programs

such as the New York Medical Reserve Corps whose mission is to organize volunteer networks prepare

for and respond to public health emergencies, among other duties [62].

Multiple federal agencies have done some work directed to this end. HHS and CDC urge organizations

to identify critical staff requirements needed to maintain operations during a pandemic and develop

detailed emergency staff deployment plans to maintain operations [78]. In particular, organizations

should develop detailed criteria to determine when to trigger the implementation of an emergency

staffing plan. Most significantly, organizations should identify the minimum number of staff needed

to perform vital operations. For example, in the case of water treatment plants, approximately 90%

of the personnel is critical for keeping the utility running; for refineries, losing 30% of their staff would

force a shutdown [39].

In the particular case of hospitals, an effective contingency staffing plan should incorporate information

from health departments and emergency management authorities at all levels, and would build a data

base for alternative staffing sources (e.g., medical students). For additional details, see [77, 37].

To help with these tasks, the CDC has also developed the software package FluSurge [17] aimed to

help hospital administrators and public health officials to estimate the surge in demand for hospital-

based services (such as number of hospitalizations and persons require ICU care) during an influenza
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epidemic. The software is meant to provide a starting point in planning activities since the estimates

presented are based on a given scenario. The Department of Transportation has also developed a

preparedness strategy calling for development of surge staffing and response capabilities under general

emergencies [65].

In New York City, for example, after the events of 9/11, Columbia University created a database

of volunteers to be recruited and trained both in basic emergency preparedness and their disaster

functional roles [55]. At the city level the NYC Medical Reserve Corps ensures that a group of health

professionals ranging from physicians to social workers is ready to respond to health emergencies. The

group is pre-identified, pre-credentialed, and pre-trained to be better prepared in the wake of a crisis.

Similar emergency staff backup plans could be implemented in all other cases of utilities and social

infrastructure [62]. Moreover, for specific infrastructure needs, commercial sector providers of fully

trained and certified surge staff are available to operate in vital command, operations, and emergency

response centers at a cost [8].

In spite of all these efforts, it seems clear that much remains to be done and that a severe epidemic

would place extreme strain on infrastructure. A good example is provided by the 2009 Swine Flu

epidemic. Even though the virus mutation caused few fatalities, and a successful vaccine became

available, New York hospitals were severely stressed [73]: “The outbreak highlighted many national

weaknesses: old, slow vaccine technology; too much reliance on foreign vaccine factories; some major

hospitals pushed to their limits by a relatively mild epidemic” (our emphasis).

It is important to mention that other organizations besides those devoted to public service could be

affected in this sense. A supermarket chain, due to decreased staff, may experience increased spoilage,

requiring more frequent restocking. A manufacturer managing a supply chain may see its production



Chapter 3. Contingency Planning 18

yield decrease due to low staff, causing a change to alternate manufacturing methods which require,

in turn, additional resource allocation. Such disruptions could manifest themselves in events similar

to the so-called “Bullwhip effect” [48].

From our perspective, the uncertainty concerning the time line and severity of the pandemic brings

substantial complexity to the problem of deploying replacement staff. This problem, which will be the

core issue that we address, is relevant because significant preplanning must take place and it is unlikely

that major quantities of additional workforce can be summoned on a day-by-day basis.

3.2 Declaring an epidemic

A technical point that we will return to below concerns when, precisely, an epidemic is “declared”. In

the case of an infectious disease such as influenza, an initially slow accumulation of cases followed by

a more rapid increase in incidence [34] is viewed by epidemiologists as an epidemic. However, this

definition is too general for planning purposes. This is a significant issue since emergency action plans

would be activated when the epidemic is declared.

In the United States, the CDC declares an influenza epidemic when death rates from pneumonia and

influenza exceed a certain threshold [26]. Each week, vital statistics of 122 cities report the total

number of death certificates received and the proportion of which are listed to be due to pneumonia

or influenza. This percentage is compared against a seasonal baseline, which in turn was computed

using a regression model based on historic data. There is a different baseline for each week of the year

to capture the different seasonal patterns of influenza-like illnesses (ILI) (the epidemic threshold sits

1.645 standard deviations above the seasonal baseline). This type of measure is not specific for the

United States. In [49], the authors’ base case assumed that the duration of an influenza pandemic



Chapter 3. Contingency Planning 19

in Singapore was defined as the period during which incident symptomatic cases exceeded 10% of

baseline ILI cases.

Motivated by this discussion, we will use the convention that an epidemic is known to be present as

soon as the number of (new) infected individuals on a given time period exceeds a small percentage

of the overall population, e.g. 0.93%, which corresponds to the national epidemic threshold of 6.5%

for week 40[26].

From the point of view of an organization, of course, action need not wait until an “official” epidemic

declaration and would instead rely on its own guidelines to possibly implement a preparedness plan at

an earlier point. However, we expect that the mechanism underlying declaration will be the similar.
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44
Modeling Influenza

In this chapter we describe a classic compartmental model that follows the spread of influenza in big

populations. We discuss the benefits and pitfalls of using such models as underlying elements of policy

design tools and make the case for their use incorporating robustness.

4.1 Modeling literature

The mechanism of transmission of most communicable diseases such as influenza or tuberculosis is

now known. As in most other fields, the degree of complexity of the mathematical modeling of

disease transmission varies with the desired accuracy of short-term specific calculations and the ability

to derive broad, general principles that are good to establish theoretical principles.

During late 1920’s and early 1930’s, public health physicians McKendrick and Kermack laid the foun-

dations of the study of epidemiology based on compartmental models in a sequence of three papers
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[45, 43, 44]. Their model divides large populations into classes or compartments that reflect different

states of the disease and describes rates of deterministic flow between them under relatively simple as-

sumptions. Individuals in a large population are classified into compartments depending on their status

with regard to the infection under study. The disease is tracked at a population level, not individual.

Because of their relative simplicity, they have become widely used in Mathematical Epidemiology and

have increasingly incorporated complexity into their structure1.

In recent years, agent-based modeling has emerged as an alternative to model disease spreading [3].

These models simulate the actions and interactions of autonomous agents at the individual level. As

such, they are very effective at incorporating population heterogeneity. At the same time, they are

very computation-intensive.

Compartmental models have proved to be effective at fitting epidemic curves (see, for example [75])

and are still the most common modeling tool. Thus, we have opted for the use of these models for

our algorithms.

The most basic model (and maybe most common) of an influenza epidemic is the Susceptible-Infected-

Removed (SIR) model. However, as more information about the disease has been gathered, additional

compartments have been added. In particular, influenza is characterized by an incubation period be-

tween infection and the appearance of symptoms, accounted for by the Susceptible-Exposed-Infected-

Removed (SEIR) model. Secondly, a significant fraction of people who are infected never develop

symptoms, but go through an asymptomatic period, during which they are still infectious at a lesser

degree, and then recover. The model Susceptible-Exposed-Infective-Asymptomatic-Removed takes

these assumptions into account [15].
1For a general reference on Mathematical Epidemiology see, for example, [15, 7].
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The critical difficulty in modeling the impact of a future influenza pandemic is our inability to accurately

predict the spread of disease on a given population. Specifically, knowledge of the rates at which

individuals flow between compartments becomes problematic when looking to forecast the behavior

of a new virus strain. In the following section we provide a description of the SEIR model which we

will modify in order to follow the evolution of the disease and its spread among members of a given

population and within a workforce group of interest. We will later discuss its weaknesses and discuss

the importance of incorporating robustness.

4.2 SEIR model

The SEIR model describes, in a deterministic fashion, the spread of the disease in a given population.

It divides the host population into a small number of groups (or compartments) that correspond to

different stages of the disease in question. In the SEIR model there are 4 compartments:

• Susceptible: holds individuals who have no immunity to the infectious agent and so, can become

infected if exposed.

• Exposed : also known as Latent compartment, contains individuals who are incubating the dis-

ease. Individuals are infected, but they are not yet infectious.

• Infectious: describes infected individuals who can transmit the disease to those susceptibles with

whom they have contact.

• Removed : has individuals that are immune to the disease. They don’t affect the transmission

dynamics in any way.
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The number of individuals in each compartment is traditionally denoted as S ,E , I , and R, respectively.

The total host population size is given by the sum of these totals, and it is denoted by N. SEIR

models thus describe the size the compartments at each time period via a set of equations that model

the transition between them. Before giving them out, we state the following standard assumptions

[15]:

1. There is a small number I0 of initial infectives relative to the size of the total population, which

we denote by N.

2. The rate at which individuals become infected is given by the product of the probability that

at time t a contact is made with an infectious person, βt , the average constant social contact

rate λ, and the likelihood of infection, p, given that a social contact with an infectious person

has taken place. The probability βt changes with time because we assume it depends on the

number of infectious agents in the population.

3. We assume exposed individuals proceed to the I compartment with rate µE .

4. Infectives leave the infectious compartment at rate µRR .

5. We assume there is only one epidemic wave. Thus, people who recover are conferred immunity.

6. The fraction of members that do not die from the disease, when removed from the infectious

class, is given by 0 ≤ f < 1.

7. We do not include births and natural deaths because influenza epidemics usually last few months.

We also omit any migration. In other words, excluding deaths by disease, the total population

remains constant.
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Motivation Robust Optimization Model Results

1. A model for influenza

SEIR model

Deterministic
Spread of the disease in big populations

Individuals → compartments

S Susceptible

E Exposed or latent

I Infectious

R Removed

λ avg contacts
β P{contact I} = I/N
p P{contagion}
µE Incubation rate
µRR Removal rate

?>=<89:;S

λβp
** ?>=<89:;E

µE
))?>=<89:;I

µRR
** ?>=<89:;R

Figure 4.1: Basic SEIR model.

SEIR models are usually described as a system of nonlinear ordinary differential equations (see for

example [15, 60]). For our purposes, we use a discrete-time Markov chain type approximation along

the lines of [47] and similar to those found in [4, 5, 6]:

St+1 = St(e
−λβtp)

Et+1 = Et(e
−µE ) + St(1− e−λβtp) (4.1)

It+1 = It f (e−µRR ) + Et(1− e−µE )

Rt+1 = Rt + It(1− e−µRR ).

At each time, a fraction of the susceptible population becomes infected and transitions to the exposed

compartment. Such fraction depends, among other factors, on the number of infectious individuals in

the population at that time, which is captured by betat , described above. Exposed members of the

population may remain in the compartment or progress to the infectious group, where they similarly

either stay (if they survive) or move on to the Removed compartment.

Compartmental models incorporate a number of assumptions to describe social contact dynamics.

First, the number of social contacts with infectious people for an arbitrary person is thought of as

a Poisson random variable with rate λβt ; we use one day as time unit. Second, the models assume

homogeneous mixing, that is, all individuals have a fixed average number of contact rates per unit of

time and are all equally likely to meet each other. Thus, the probability that a contact is made with
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an infectious person, βt is given by It/N. The daily infectious contact rate λp is usually written as λ

[15, 5] and taken as a constant throughout the epidemic. We will remove this assumption later when

we make the transmissibility parameter p explicit.

If the number of initial infectives is relatively very small compared to the whole population (S0 ∼ N),

then a newly introduced contagious individual is expected to infect people at the rate λp during the

expected infectious period 1/µRR . Thus, each initial infective individual is expected to transmit the

disease to an average of

R0 =
λ p

µRR
(4.2)

individuals. R0 is called the basic reproduction number (also known as basic reproduction ratio or

basic reproductive rate.) It is without doubt the most important quantity epidemiologists consider

when analyzing the behavior of infectious diseases [15]. Its relevance derives mainly from its threshold

property: when R0 < 1, the disease does not spread fast enough and there is no epidemic; when

an epidemic does take place - i.e. R0 > 1 - the magnitude of R0 is a parameter of great interest.

Considering that we assume a priori that an epidemic will take place, R0 is not of particular interest

to us; however, it is presented here for completeness.

Keeping track of staff availability

We are interested in tracking workforce availability at a particular organization during the epidemic;

following previous work [9, 28] we divide the population into two groups: (1) the general population

and (2) the workforce under consideration. Individuals from the latter group could have a very different

exposure to the epidemic. For example, people working at a water plant could have lower contact
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rates than average (by virtue of having contact with few individuals during the workday) while the

staff at a health clinic may not only have higher contact rates, but may also have easier access to

antiviral medicines that reduce their infectiousness and the length of the infectious period.

Workers

Keep track of absenteeism → separate accounting of workers.

GFED@ABCS1

λ1βp
++ GFED@ABCE 1

µE1
++GFED@ABCI 1

µRR1
++ GFED@ABCR1 → General population

GFED@ABCS2

λ2βp
++ GFED@ABCE 2

µE2
++GFED@ABCI 2

µRR2
++ GFED@ABCR2 → Workers

β =
λ1I

1 + λ2I
2

λ1N1 + λ2N2

Figure 4.2: Keeping track of staff availability: Two parallel SEIR models.

For ease of notation, we use superscript 1 to refer to the general population and 2 to refer to the

group of workers of interest. For j = 1, 2, define compartments S j ,E j , I j ,R j corresponding to group

j . Following the discussion above, we allow the groups to have different contact, incubation, and

recovery rates. The probability that a random contact is one with an infected person at time t, βt , is

now defined as

βt =
λ′It
λ′Nt

, (4.3)

where It = [I 1t , I 2t ] is the vector of infectious individuals at time t, λ′ = [λ1,λ2] is the vector of contact

rates, and Nt = [N1t ,N2t ] denotes the size of each group at time t. We note that βt is constant across

groups. We now have two parallel thinned Poisson process approximations, each with rate (λjβtp).
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The set of equations that correspond to group j (= 1, 2) is

S jt+1 = S jte
−λjβtp

E jt+1 = E jte
−µEj + S jt(1− e−λjβtp) (4.4)

I jt+1 = I jt fe
−µRRj + E jt (1− e−µEj )

R jt+1 = R jt + I jt (1− e−µRRj ).

We now give an expression for R0 for the case in which µRR1 = µRR2 [15, 23]. First we note that the

average contact rate for subgroup j at time 0 is given by

λjN
j

λ1N1 + λ2N2
.

Thus, the average number of new infections caused by a newly infective person introduced into an

otherwise susceptible population is given by

R0 =

[
λ1

λ1N
1

λ1N1 + λ2N2
+ λ2

λ2N
2

λ1N1 + λ2N2

]
p

µRR

=
λ21N

1 + λ22N
2

λ1N1 + λ2N2
·
p

µRR
. (4.5)

We note that when λ1 = λ2 (4.5) reduces to (4.2).

Nonhomogeneous mixing and social distancing

We initially assumed that the population mixed homogeneously, that is the contact rates λ1 and

λ2 remained constant throughout. However, the homogeneous mixing and mass action incidence
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assumptions have clear pitfalls; individuals from each compartment are hardly indistinguishable in

terms of their social patterns and likeliness of infection. It has been suggested that people reactively

reduced their contact rates in response to high levels of mortality during the 1918 pandemic [14].

Following [5], we make the assumption that this could also be the case for number of infectious

members of the population. This makes the contact rates to be reexpressed as

λjt = Λj
S jt + E jt + R jt

N jt
, j = 1, 2, (4.6)

where Λj are fixed constants, j = 1, 2. Using this definition, λjt decreases whenever there is a high

number of infectious agents in the population. As mentioned in [5], other functional forms are possible;

we rely on (4.6) because it provides a simple way to capture changes in contact rates as a function

of severity of the epidemic.

Additionally, we also consider a scenario in which authorities impose social distancing measures as

soon as the epidemic is declared. This kind of public health intervention was used in some cities of the

United States during the 1918 epidemic with different degrees of success. San Francisco, St. Louis,

Milwaukee, and Kansas had the most effective social distancing bans, reducing transmission rates by

up to 30 - 50% [14]. A similar situation took place in Mexico during the last 2009 H1N1 epidemic,

where venues such as schools, movie theaters, and restaurants were forced to close temporarily. It is

estimated that the transmission of the disease was diminished by 29% to 37% [19]. We incorporate

this element by multiplying the contact rates by an additional dampening factor when the epidemic is

considered declared and until the rate of growth of daily infectives is below some threshold (we refer the

reader to section 3.2). Effectively, the contact rate for group j at time t becomes λjt = θΛj

(
S jt+E

j
t+R

j
t

N jt

)
(0 < θ < 1) when the epidemic is officially ongoing; otherwise, it remains as per equation (4.6).
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4.3 Robustness in planning

In planning the response to a future or impending epidemic, one would need to rely at least partly on

an epidemiological model, and such a model would have to undergo careful calibration in order to be

put to practical use. This is especially the case for the SEIR model presented above, which is rich in

parameters that need to be estimated to fully define the trajectory of the epidemic. In the case of

a flu pandemic caused by an unknown virus strain, new parameter values would need to be promptly

estimated as the epidemic emerges. Ideally, robust statistical inference would provide information on

all parameters, though data paucity would present a challenge.

On the positive side, the infectious and incubation periods can usually be independently estimated via

clinical monitoring of infected agents, either by observation of transmission events or by the use of

more detailed techniques [42].

On the other hand, it is not clear how to accurately estimate the transmission rate λjp. One approach

is to approximate the basic reproductive ratio R0 and the mean infectious period, and then use equation

(4.2). There are multiple ways of estimating R0; see, for example, [20]. Given that the definition

of R0 is based on the early stages of the epidemic, one should examine its early behavior. However,

the progression of the epidemic in its initial stages could fluctuate widely because of the very small

number of initial cases, making the fitting process more difficult [42].

Direct estimation of the transmission rate gives rise to a number of challenges [79, 83]. First,

pandemic influenza (along with smallpox and pneumonic plague) has not been present in modern

times frequently enough so as to gather sufficient data for accurate estimation. Second, for existing

age-specific transmission models, there are more parameters than observations on risk of infection for
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each age class. The infectivity of the disease can be approximated using serologic data and contact

rates are usually estimated from census and transportation data after making assumptions about the

contact processes that reduce the number of unknowns to the number of age classes. However, both

contact or infection rates estimates can serve only as a baseline; a population could change its behavior

significantly during a severe epidemic (due to school closures, for example); further, environmental

changes (e.g. weather changes) could also have a significant impact on the virus transmissibility [52].

The infectivity parameter p is particularly hard to estimate because (at least partly) it reflects the

characteristics of the virus; it is usually estimated after the epidemic has taken place. It is very difficult

to predict the evolution of new virus strains. In fact, as far as we know [67, 56] research that relates

mutations of influenza virus to infectivity is inconclusive. Previous work has proposed different upper

and lower bound values for p, depending, among other factors, on the geographical location of the

study and the pandemic wave of interest. For example, Walling et al. use the interval [0.025, 0.5] in

one work [79] and [0.02, 0.16] in another [80]. Both studies use these intervals to conduct sensitivity

analysis. In another study, Larson [47] classifies the population into three groups according to social

activity levels; the three groups have p value 0.07, 0.09 and 0.12 and corresponding λ values 50, 10

and 2, respectively. In summary, the precise estimation of p values appears quite challenging, especially

prior to or even during an epidemic.

Given this uncertainty, it is likely that basing the response to an epidemic on a fixed estimate for p is

incorrect. To illustrate the impact of such a decision we refer the reader to Figure 4.3. It shows the

availability of staff as a function of time, for different two values of p, from two different perspectives.

Figure 4.3a shows how the workforce becomes ill at the actual time it happens. In contrast, 4.3b

presents these curves all starting from the time the epidemic is declared. Indeed, a planner deploying



Chapter 4. Modeling Influenza 31

80%

85%

90%

95%

100%

%
 A

va
il
ab

le
 W

o
rk

fo
rc

e

75%

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

2
3
1

2
4
1

2
5
1

2
6
1

2
7
1

2
8
1

2
9
1

Time
p = 0.01 p = 0.015 Starting day of epidemic

(a) An absolute perspective in time: Curves start from the moment infectives
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(b) A planner’s perspective: Curves for both epidemics start from the moment
an epidemic is declared.

Figure 4.3: Availability of workforce as epidemic progresses for different values of p.

a contingency plan at the moment an epidemic is declared would be interested in the preparing for

different scenarios according to what is shown in 4.3b, rather than 4.3a. This point will be discussed

again in Section 5.2.2.

Consider a baseline threshold of 90%, i.e. the system is considered to be performing poorly if fewer

than 90% of the staff is available. For p = 0.015 this period spans days 18 through 37 (from the
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declaration of the epidemic), whereas for p = 0.01 the baseline is not reached. As expected, the

epidemic is more severe for higher values of p; however, somewhat lower values of p result in longer-

lasting epidemics. In particular, p = 0.01 results in an extended period of time (days 13 through 69)

where even though staff availability is above the baseline, it is still significantly below 100%. If, in

the above example, p were unknown, a planner would have to carefully ration scarce resources over a

nearly month-long period. If the planner were to assume a fixed value for p throughout the epidemic,

then the example suggests allocating comparatively higher levels of surge staff to earlier periods of

time, to overcome the higher shortfalls to be expected in the case of higher values for p. Of course,

this higher level of initial allocation needs to be carefully chosen to obtain maximum reward.

Consider now Figure 4.4, which shows the impact of a change in p in the midst of an epidemic. Here,

p changes from 0.012 to 0.03 on day 130, 28 days after the epidemic has been declared. Thus,

for more than half of the epidemic, the disease spreads slowly and even though the 90% baseline is

approached, it is not reached. However, after the change in p the epidemic becomes severe and a

significant shortfall arises. This type of variability would be especially problematic when resources are

limited. The epidemic, on the basis of observations of its initial progression, would likely be classified

as relatively mild, and, perhaps, action might be taken to at least partially abandon the surge staff

buildup. However, if the a change in p as shown in Figure 4.4 were plausible, then a careful planner

would have to hedge by holding back staff so as to handle the potentially critical situation in later

periods. Should the change in p not take place, the chart indicates that any held back staff would

essentially be wasted. And should the change take place somewhat earlier, then the opportunity cost is

significantly higher. The critical question, of course, is whether this type of virus behavior is possible.

As far as we can tell, current knowledge of the influenza virus cannot categorically reject a change in
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p as shown, although planning for such a change might be construed as an overly conservative action.

Thus, it remains to be seen if a robust strategy that can protect against a change in p entails higher

cost or other compromises.
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Figure 4.4: Availability of workforce as epidemic progresses when probability of contagion p is allowed to change during
the epidemic.

In this paper we model the variability of the product λjp using techniques derived from robust opti-

mization. For ease of exposition, we assume that the infectivity probability p is uncertain, and that
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the values for the contact rates λj are fixed (and known); thus the contact probabilities βt are also

fixed. Our algorithm’s flexibility would allow us to easily incorporate uncertainty in other parameters;

however, as explained above, we advocate that the biggest source of uncertainty relies on the con-

tagion rate. Our goal is to produce surge staff deployment strategies that are robust with respect

to variability of p in a number of models of uncertainty. Robust optimization provides an agnostic

methodology for assessing competing allocation plans and for computing good plans according to

various criteria. Above, we described two such criteria. Our optimization procedures make it possible

to efficiently evaluate multiple plans and different levels of conservatism.
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55
Robust Models

5.1 Performance Measures

Personnel shortage during an epidemic may jeopardize the continuity of operations of critical infras-

tructure organizations. To gauge the impact of this shortfall, we consider cost functions that model

two scenarios. In the first one the organization requires at least certain percentage of personnel present

to operate. This could be the case of water and energy plants, as mentioned in [39]. The second

scenario uses classic queueing theory to measure the simultaneous impact of the decrease in number

of available workers and the change in demand for the service that the organization provides. Health

care institutions would be clear examples in this context.
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5.1.1 Threshold functions

Here we model an organization that requires a minimum number of staff in order to operate under

normal conditions. We further assume that this “minimum” is a soft constraint in the sense that if

the available staff should fall below the threshold, the organization will still manage to operate, but at

very large cost. This could be the case, for example, if the organization is able to purchase output or

hire staff from another source (such as a competitor) or if it is able to reduce its level of service or

output, at cost.

To model this behavior, we assume that operating costs at each point in time are given by a convex

piecewise linear function. This function is represented as the maximum of L linear functions, with

slopes σL < σL−1 < ... < ...σ1 = 0 and intercepts kL > kL−1 > ... > k1 = 0. Thus, denoting by ωt

the work force level at time t and zt the cost associated with time period t, we have

zt = max
1≤i≤L

{σi ωt + ki} . (5.1)

5.1.2 Queueing models

We are interested in modeling basic queueing systems where both the service rate and the incoming

demand rate are affected by the evolution of the epidemic. For each time period t, denote the average

incoming demand rate by ζt and let st denote the number of available servers (staff). The system

utilization at time t, using an M/M/st queueing model, is given by

ρt =
ζt
stµ

. (5.2)
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As it is well known, ρt and related quantities are good indicators of system performance. In our simu-

lations of severe epidemics, ρt can grow larger than 1, a situation that depicts a system that is catas-

trophically saturated (a situation observed during 2010’s H1N1 pandemic [73, 27]) and consequently

system performance will drastically suffer. Accordingly, we choose as a reasonable representative of

“cost” incurred at time t an exponentially increasing function of ρt . In particular we consider eρt−δ (for

small δ > 0) which we approximate with a piecewise-linear function, much as in Section 5.1.1. Other

alternatives are possible. For example, one could use a traditional measure of system performance,

such as average queue length for an M/M/st system, computed using a shifted ρt , i.e. a quantity

ρ̂t = ρt − δ for appropriate δ.

In a regime where ρt is close to (but smaller than) 1, one could use one of the popular measures of

queueing system performance as “cost” – or use ρt itself as the cost.

5.1.3 Other cost functions

Other situations of practical relevance besides the two considered above are likely to arise. Our

robust planning methodology, described below, is flexible and rapid enough that many alternate models

could be accommodated. Moreover, we would argue that in the context of the cost associated with

staff shortfall, any reasonable cost function would be, broadly speaking, increasing as a function of

the shortfall. The approach described above approximates cost, in the two cases we listed, using

piecewise-linear convex functions, and we postulate that many cost functions of practical relevance

can be successfully approximated this way.
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5.2 Robust Models

We now describe our methodology for the robust surge staffing problem. We will first describe our

uncertainty model, then the deployment policies we consider, and finally the robust optimization model

itself. In what follows, we make the assumption that the total quantity of surge staff is small enough

that their deployment does not affect the evolution of the epidemic in the SEIR model, in particular

the values βt .

5.2.1 Uncertainty models

Let pt denote the probability of contagion at time t (time measured relative to the declaration of the

epidemic). The model for uncertainty in p that we consider embodies the notion of increasing uncer-

tainty in later stages of the epidemic. We will first describe the model and then justify its structure.

We assume that there are four given parameters pL, pU , p̂L, and p̂U . The model behaves as follows:

There is a time period t̆, unknown to the planner, such that for 1 ≤ t ≤ t̆, pt assumes a constant (but

unknown to the planner) value in [pL, pU ], and for t̆ < t, pt assumes a constant (and also unknown

to the planner) value in [p̂L, p̂U ].

We stress that t̆ is not known to the planner. We are interested in cases where p̂L ≤ pL and pU ≤ p̂U ,

that is to say, the period following day t̂ exhibits more uncertainty than the initial period. We can justify

our model as follows. In the event of an epidemic, a planner would be able to obtain some information

on the spread of the epidemic in the period leading to the actual declaration of the epidemic, resulting
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in a (perhaps tight) range of values [pL, pU ]. As we will discuss below (Section 5.2.2) we are interested

in surge staff deployment strategies with limited flexibility, i.e. requiring staff commitment levels that

are prearranged.

In this setting, at the point when the epidemic is declared, the planner would deploy a staff deployment

strategy. A prudent planner, however, would not simply accept the range [pL, pU ] as fixed. In particular,

if at first the epidemic is mild (small pU) the planner might worry that a change, such as sudden drop

in temperature, could effectively increase p beyond pU . Note that a change in weather would not

simply change the contact rates, λ; it might produce other environmental changes (such as decreased

ventilation); further, it is known that the influenza virus has higher transmissibility in colder and drier

conditions [67, 52]. we model such changes, collectively, through changes in p. Should the change

take place, a staff surge strategy that consumed most available staff in the earlier part of the epidemic

would be ineffective.

As a means to avoid this overcommitment of resources to early phases of the epidemic, we can

assume that a second and more virulent regime of the epidemic could be manifested at an unknown

later time. We can parameterize this later regime by assuming a range [p̂L, p̂U ] with, for example,

p̂L = pL and p̂U > pU . The exact relationship between the two values p̂U and pU is a measure of the

conservativeness or risk-aversion of the decision-maker. We will touch upon this issue later.

Of course, exactly the reverse could happen: the epidemic could become milder in the second stage.

This could take place as a function of changes in public behavior due to non-pharmaceutical interven-

tions (see [16, 32]) resulting in a (difficult to accurately predict) decrease in infectivity. In that case,

a surge strategy that defers most staff deployment to the second stage of the epidemic could also

be ineffective. The challenge is how to properly hedge in view of these extreme situations, and other
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intermediate situations that could also arise.

5.2.2 Deployment strategies

We make several assumptions that constrain the feasible deployment patterns. First, we assume that

a surge staff member, when deployed, will be available for up to τ time periods, provided that he or

she does not get infected first - if that happens, this person will be removed from the system and

will not available for deployment in the future. We also assume that the pool of available surge staff

over the planning horizon is finite. Finally, there is a maximum quantity of surge staff that can be

summoned on any given time period. More detailed models are possible and easy to incorporate in

our optimization framework.

In this paper we will focus on off-line, or fixed strategies. More precisely, we assume that a deployment

vector is computed immediately after an epidemic is declared, on the basis of the available information.

From a formal perspective, the deployment vector is obtained as follows:

(1) First, the epidemic must be declared. As indicated in Section 3.2, this takes place as soon as

the percentage of infected individuals exceeds some (small) threshold.

(2) Based on data available at that point, estimates are constructed for the various SEIR parameters.

In particular, the ranges [pL, pU ] and [p̂L, p̂U ] for p (see Section 5.2.1) are constructed.

(3) Using as inputs the population statistics, the cost function, the nominal SEIR model parameters,

and the uncertainty model for p, we compute the deployment vector h = [h1, h2, ... , hT ], where

ht indicates the number of staff procured t time periods after the declaration of the epidemic.

The parameter T is chosen large enough to encompass one epidemic wave and will be discussed
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later.

We next address some points implicit in (1)-(3). First, recall that in the SEIR framework the formal

epidemic will have a starting point which precedes the time period when an epidemic is actually declared.

The exact magnitude of this run-up period is not known to a decision maker. In all our notation below

(as in (2) above), “time period 1” refers to the time period where the epidemic was declared, that is to

say, we always label time periods by the amount elapsed since the declaration of the epidemic. When

using the SEIR machinery to simulate an epidemic, of course, we always proceed as in the formal

model, and we merely relabel as “time = 1” that period where the declaration condition is first reached

(since that would be the start of the epidemic as far as a planner is concerned).

Also, we assume that the epidemic is correctly declared, that is to say, the first day in which the

criterion in Section 3.2 applies is correctly observed. In practice, this observation would include noise

(for example, due to individuals infected by a different strain) but we make the assumption that the

resulting decrease in strategy robustness is small.

Item (2), the estimation of the SEIR model and in particular the construction of the initial range

[pL, pU ], gives rise to a host of other issues that are outside the scope of this paper (but are nonetheless

important). We assume that at the time the epidemic is declared there is enough data (however

incomplete, and noisy) to enable the application of robust least squares methods (see e.g. [25]) to fit

an SEIR model, and that the model is sufficiently accurate to permit point estimates for all parameters

other than p. Having constructed the initial range [pL, pU ], the later range [p̂L, p̂U ] is constructed

on the basis of (a) risk aversion, and (b) environmental considerations. The role of (a) is clear -for

example, we could obtain p̂U by adding to pU a multiple (or fraction) of the standard deviation of p

in the observed data. As an example for (b), an epidemic that starts in late-Autumn might possibly
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become more infectious as colder weather develops.

Another point concerns the time horizon, T , for the SEIR model (see Section ??) which to remind

the reader is measured from the point that the epidemic is declared. It is assumed that T is large

enough to handle an epidemic of interest. If we assume a fixed (but unknown) p, then the milder

(i.e., less infective) epidemics will tend to run longer, but, significantly, will also be less disruptive.

Higher values of p give rise to sharper epidemics in the near term. From a technical standpoint, the

parameters pL and p̂L can be used to construct estimates for T . In order to be sure that we capture

as much of an epidemic as possible, in this study we will use values for T up to 150, which according

to our experiments seems more than adequate.

One could consider models of epidemics spanning, for example, a one-year period, with multiple epi-

demic “waves”. If some of these waves are very prolonged then they will necessarily be mild waves

for long periods of time. As a result, during such long, mild epidemic periods (1) the social cost will

be low, and (2) a significant pool of the population will become sick and as a result become immune

to the virus. Consequently, future epidemic waves will necessarily be milder and cause decreased so-

cial cost (so surge staff will be less critical). On the other hand, over a long period we could have

well-separated strong epidemic waves1. However, we would argue that from the perspective of surge

staff deployment, each such wave should be handled as a separate event, with its own surge staff

deployment strategy.

A significant element in our approach is that it produces a fixed deployment vector h1, ... , hT which,

from a formal standpoint, will be applied regardless of observed conditions. Of course, the strategy
1This was the case of H1N1: the first wave hit in the spring into the summer, followed by another outbreak in the

fall, both of 2009.
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should be interpreted as a template and a planner would apply small deviations from the planned surge

levels, as needed. In any case, we have focused on this assumption for practical reasons. Having

a pre-arranged schedule greatly simplifies the logistics of deploying possibly large numbers of staff,

especially if many of the staff originate from geographically distant sources.

A broader class of models would allow for on-the-fly revision of a strategy in the midst of an epidemic,

which would allow a planner to dynamically react to changes in the epidemic.

However, a significant underlying issue concerns the actual flexibility that would be possible under

a virulent epidemic. We expect that large, sudden changes in deployment plans may be difficult to

implement. In particular, if a significant and unplanned increase in surge staff is needed, it may prove

impossible to rapidly attain this increase; and by the time the surge staff is available a severe peak

of the epidemic may already have taken place. See Section 6.1.3 for some experimental validation of

these views.

A different type of dynamic strategy would implement many, but small corrections as conditions change.

We will discuss examples of such strategies (and appropriate modifications to our methodology) in

Section 8; an issue in this context is the calibration of our statement “as conditions change” in an

environment that will be characterized by noisy, partial and late data.

Last, but not least, while implicitly assumed in our description of the SEIR model, we reiterate that

we consider that the deployment of surge staff does not alter the course of the epidemic. We assume

that the number of additional workers is too small to change significantly the social contact patterns

during the epidemic. Additionally, in the case of hospitals or clinics we take the position that surge

staff is brought in to preserve operations continuity as much as possible, but they do not have any

direct incidence on the outcome of patients infected with the flu. This is mainly because it is not
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clear whether existing medications would be effective with a new virus strain - proper vaccines are not

likely to be ready for a pandemic. If antiviral medications were available, they are usually expensive

and should be carefully administered for it to be the most effective. Recommendations point towards

focusing on the treatment of ill health care workers, and not the general population [21, 50, 61]. A

model for the potential impact of these medications - such as a decrease in the infectious or recovery

rates - would be needed and is considered as a possible refinement to this work.

5.2.3 Robust problem

We can now formally state the problem of computing an optimal robust pre-planned staff deployment

strategy. Let h denote a deployment vector and H, the set of allowable deployment vectors. Let

~p = (p1, p2, ... , pT ) be a vector indicating a value of p for each time period. Define

V (h |~p) := cost incurred by deployment vector h, if the infection probability equals pt at time t.

(5.3)

[Here we remind the reader that time is measured relative to the declaration of the epidemic.] Let P

indicate a set of vectors ~p of interest; our uncertainty set. Our robust problem can now be formally

stated, as follows:

Robust Optimization Problem

V ∗ := min
h∈H

max
~p∈P

V (h |~p). (5.4)

Problem (5.4) explicitly embodies the adversarial nature of our model. Given a choice of vector h,

a fictitious adversary chooses that realization of the problem data (the contagion probabilities) that

maximizes the ensuing cost; the task for a planner is to minimize this worst-case cost. The set H
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describes how staff deployment plans are constrained. In our implementations and testing, we assume

that any deployed staff person works for a given number τ of time periods, or until he or she gets sick;

following this period of service this person will not be available for re-deployment. We also assume that

whenever surge-staff is called up, there is a one-period lag before actual deployment (this assumption

is easily modified to handle other time lags).

Finally, we model the impact of the epidemic on surge staff using the SEIR model with parameters as

for the workforce group (λ2t and µE2), and we assume that the total quantity of available surge staff

is small enough so as to not modify the outcome of the epidemic.

In Chapter 7 we will present an efficient procedure, based on linear programming, for solving problem

(5.4) to very tight numerical tolerance.
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66
Numerical Experiments

In this chapter we investigate the structure of the optimal robust policies by numerical experiments.

First, it is worth raising a point concerning “approximate” vs “exact” solutions. Our algorithms construct

numerically optimal solutions to the formal problems they solve; nevertheless, as argued above, our

models approximate real problems. Again, we postulate that given the context (i.e. the behavior

of social entities) an approximation is the best we can hope for; moreover we expect that robust

strategies computed for the approximate models will translate into actual robustness in practice. This

last feature can at least be experimentally tested through simulation, as we present via examples in

this section.

In order to assign numerical values to the various parameters in our models, we followed the exist-

ing literature and consulted with various experts [67, 56]. The numbers in the literature may vary

significantly depending on various factors such as the location where the study took place, the under-
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lying model for which the parameters were calibrated, and the epidemic wave of study. For example,

published values for the influenza R0, the number of secondary transmissions caused by an infected

individual in a susceptible population, range from 1.68 to 20 [53]. Our main sources are listed in Table

6.1.

6.1 Examples in a health care setting

We now present examples modeling a hospital of the size of New York-Presbyterian Hospital in New

York City under slightly different scenarios. Staff at this hospital amounted to 19, 376 in 2010 (we

have rounded this up to 20, 000) and served a population of approximately 900, 000 people [59]. We

used these numbers as a baseline to obtain different scenarios with different initial conditions.

In the event of an epidemic, hospitals will be likely to experiment surge demand trailing the incidence

curve. We use the queueing-based cost function to capture both shifts in demand and workforce

availability while the epidemic ensues. This increase in demand for service is modeled by adding

a proportional factor of I 1t to the average arrival rate of patients when we compute the system’s

occupation rate, ρt :

ρt =
ζ̄ + δ I 1t
stµ

. (6.1)

6.1.1 Example 1

For this example we assume 3,000 surge staff members are available, each of which will be called up

for at most one period of service lasting one week. If the member becomes infectious while on call,

then service is terminated with no further future availability.
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Table 6.1: List of references for different parameter values.

Parameter Description Value(s) Reference

Epidemic related parameters
p Probability of contagion [0.02, 0.16]a [80]

{0.07, 0.09, 0.12}b [47]
λ Contact rate 47.48 (per day) [79]

35 (per day)c [47]
µ−1E Latent period 1 day [36]

1.9 daysd [50]
1.25 days [28]

1.48± 0.48 days [28] and within
µ−1R Infectious period 2 days [36]

4.1 days [50, 49]
4.1 dayse [49]

1− f Mortality rate 0.02 [50]
0.002 per dayf [28]

1.2%g [19]
0.05g [49]

R0 R0 1.68 to 20h [53] and within
1.73i [79]
2.5j [49]

Length of pandemic wave 8− 12 weeks [28]

Hospital related measures
ζ Patient arrival rate 2,800 ILI cases/dayk [49]
µ Service rate 24− 30min/patientl [33]
ρ Occupancy rate Average of 85%m [22]
δ Increase in demand for health care up to 50% [58]

Miscellaneous
Seasonal threshold [0.06, 0.076] weeklyn [26]
Epidemic threshold [0.064, 0.08] weeklyn [26]
ILI National Baseline 2.4% weeklyo [26]

θ Transmission reduction factor 29% to 37%p [19]
a 1957 wave in the Netherlands
b Values of p for different socially active groups
c Weighted average of different age groups presented in the paper
d 1957 pandemic wave
e Untreated symptomatic
f Treated symptomatic
g Overall ILI case-fatality ratio during 2009 H1N1 pandemic in Mexico
g Spanish Flu fatality rate
h From multiple studies
i 1957 wave
j Min 1.5, Max 6
k Data for Singapore, 2005. Population then was about 4.35 million people
l Emergency Department, New York Presbyterian Hospital
m Maintained beds capacity for New Jersey Hospitals, 2005
n The threshold is for percentage of deaths caused by pneumonia and influenza.
It is different for each week throughout the year.
o Percentage of influenza-like illness (ILI) patient visits reported through the U.S. Outpatient ILI Surveillance Network.
p Estimated effect of social distancing measures during H1N1 epidemic in Mexico, 2009
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We used the uncertainty model in Section 5.2.1 which allows pt to change once. The change is further

constrained to take place within a fixed range of time periods.

The social contact model assumed the nonhomogeneous-mixing rule described in section 4.2. Addi-

tionally, we assumed that social contact rates were dampened by a factor of 30% while the epidemic

is declared; that is, during the days in which the growth of infectives is higher than a given threshold.

Additionally, we assumed an epidemic is declared only once. In other words, once the rate of infectives

slow down below the epidemic threshold, the epidemic is considered to be terminated.

The parameter values for this example are summarized in Table 6.2; the range of days where p is

allowed to change are measured from the start of the epidemic (rather than the day the epidemic is

declared).

In what follows, the staff deployment plan computed by our algorithm will be called the Robust Policy.

To gauge its usefulness, we study its performance under different scenarios, each of which is defined

by a tuple (p1, p2, d) representing the initial probability of contagion (p1), the time period where it

changes (d) and the value to which it changes (p2).

A natural alternative to the Robust Policy is that which best responds to what could be construed

as a worst-case scenario - the scenario which yields the highest cost when no contingency plan is

implemented. Such a strategy can be obtained by solving a linear program as described in (7.5) once

the tuple that implies the evolution of pt in this scenario is identified. In this example such tuple is

given by (0.01092, 0.0135, 140); we will term it the No-Action-Max-Cost tuple, and the deployment

strategy which achieves minimum cost under this tuple the Naïve-worst-case Policy. We compare the

Naïve-worst-case and Robust Policies under the following scenarios:
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Table 6.2: Parameter values for example 1

Parameter Description Value(s)

Epidemic related parameters
P Uncertainty set [0.01, 0.012]× [0.0125, 0.0135]

Possible days of change {140, ... , 160}
(Λ1, Λ2) Contact rates (30, 35) per day
µ−1E Latent period 1.9 days
µ−1R Infectious period 4.1 days

1− f Mortality rate 0

R0 R0 [1.24, 1.48]

Deployment threshold 2.4% weekly

Population parameters
N1 General population size 900,000
N2 High risk population size 20,000

[I1, I2] Initial infectives [5,0]

System Utilization (Queueing setting)
ζ̄ Patient arrival rate 500 per day
µ Service rate per person 30 patients per day
ρ0 Initial occupation rate 0.875
δ Daily increase in demand for health care 0.07%

Deployment parameters
Total number of available volunteers 3, 000

τ Length of stay (w/o sickness) 7
Deployment lag 1

1. No-Action-Max-Cost tuple (0.01092, 0.0135, 140);

2. The tuple that achieves highest cost if the Naïve-worst-case Policy is implemented; and

3. The tuple that achieves highest cost if the Robust Policy is implemented.

Results are summarized in Table 6.3. In Scenario 1 the Robust Policy presents a cost improvement

of almost 99% over the no-intervention policy. While it is not completely able to prevent ρ from

exceeding 1, it reduces the number of critical days from 28 to 8, and the maximum ρ from 1.05 to

below 1.002. Indeed, the undesirable instability in which a system is put through when ρ > 1 is heavily

penalized with the use of the exponential function in our objective function (see 5.1.2). On the other
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Table 6.3: Results. Example 1.

Scenario / Strategy / tuple No Intervention Robust Policy Naïve-worst-case
Policy

1 Cost 4.5812 0.0495 0.0000
No intervention Maximum ρ 1.0481 1.0018 0.9999

(0.01092,0.0135,140) # days ρ ≥ 1 28 8 0

2 Cost 1.4300 0.0500 0.7100
Naïve-worst-case Policy Maximum ρ 1.0210 1.0020 1.0185
(0.01172, 0.0135, 140) # days ρ ≥ 1 20 8 13

3 Cost 1.6938 0.0521 0.6862
Robust Policy Maximum ρ 1.0236 1.0027 1.0170

(0.01168, 0.0135, 140) # days ρ ≥ 1 21 7 12

hand, under Scenario 1 the Naïve-worst-case Policy reduces the cost to 0; that is, there is no day in

which ρ is greater than 1. Without doubt, it represents a better solution than the Robust Policy for

this particular case. This result is expected; the solution derived from that single linear program is

specialized in this scenario, while the Robust Policy, having to hedge against other possible bad cases,

does not perform as well in this instance.

The situation is considerably different, however, when we look at Scenario 2, which achieves the

highest cost when the Naïve-worst-case Policy is being implemented. In this case, the Robust Policy

performs much better than the Naïve-worst-case Policy: the former reduces the cost of this scenario

by 96.5%, while the latter does so by only 50%; the Robust Policy reduces the number of critical days

from 20 to 8 days, while this number jumps to 13 for the Naïve-worst-case Policy. The maximum

value of ρ is 1.002 for Robust Policy and 1.018 for scenario 2, compared to 1.021 with no intervention.

The third scenario presents similar characteristics; what is worth noticing is that even though this is

the highest-cost scenario for the Robust Policy, its cost is still the same as in Scenario 2.

This fact is further illustrated in Figure 6.1, where we compare the behavior of ρt with and without
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(a) Scenario 1:Effectiveness of Robust Policy
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(b) Scenario 1:Effectiveness of Naïve-worst-case Policy
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(c) Scenario 2:Effectiveness of Robust Policy
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(d) Scenario 2:Effectiveness of Naïve-worst-case Policy
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(e) Scenario 3:Effectiveness of Robust Policy
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(f) Scenario 3:Effectiveness of Naïve-worst-case Policy

Figure 6.1: Reduction in ρ obtained by the Robust and Naïve-worst-case deployment strategies under three scenarios:
1) Highest-cost scenario given that no policy is implemented, 2) Highest-cost scenario given that the
Naïve-worst-case Policy is implemented, and 3) Highest-cost scenario given that the Robust Policy is
deployed.
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interventions for the three scenarios, together with the deployment patterns. We note that the Naïve-

worst-case Policy deploys staff around in large, sharp bursts between days 27 and 52. The Robust

Policy deployment, on the other hand, trails ρ in Scenario 1 in a smoother way by calling in personnel in

smaller batches, and also over a longer period of time: 36 days. This shows the importance of Scenario

1 as the costliest case and, at the same time, how the strategy hedges against scenarios where the

epidemic has its peak later (than under the No-Action-Max-Cost tuple), even if not so aggressively.

In particular, the last wave of staff deployed by the Robust Policy (on days 54, 58, and 63) could

seem somehow wasteful under Scenario 1; however their utility is displayed under Scenario 2, where

the Robust Policy tackles a delayed, weaker ρ peak much more effectively than the Naïve-worst-case

Policy. Because an unstable system builds up a queue exponentially fast, even this small changes in ρ

could translate in significant difference in the load experienced by the system.

A similar situation is presented in Scenario 3, as illustrated in both Figure 6.1 and Table 6.3. The

Naïve-worst-case Policy is not as effective as handling what would have been a milder epidemic, while

the Robust Policy performs consistently well. In fact, this is the scenario with highest cost for the

Robust Policy; nevertheless it manages to significantly outperform the Naïve-worst-case Policy here

as well. Indeed, a feature of the Robust Policy is its near-uniform behavior under all scenarios; this

epitomizes the use of the term ’robust’.

Other strategies such as the Naïve-worst-case Policy, on the other hand, may be very sensitive to

changes in p depending on how they are constructed. In this example we make the case that preparing

only for the highest-cost scenario (under the No-Action Policy) is not necessarily enough to be prepared

for other milder cases: This is critical from the point of view of a decision maker: as seen above,

a policy built only to tackle such case does not allocate enough resources to other time periods in
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which milder cases may need them the most. At the same time, being able to cut down the number

of days in which the organization is completely overloaded should represent considerable economic

and operational advantages for the institution implementing the contingency plan. One estimate of

the costs saved in a given scenario could be derived as a function of the area between the ρ curves

corresponding to the No-Action Policy and the Robust Policy, whenever ρ > 1.

Smoothing out the solution

An additional restriction on the implementation of the proposed Robust Strategy could be for it to be

as regular as possible. In other words, it could be deemed more desirable to have a contingency plan

with fewer fluctuations in the surge staff calls in terms of its applicability. There are several ways of

imposing these constraints. We chose to incorporate the constraints

ht > 0⇒ ht+1 ≤ (1 + r)ht ∀t, (6.2)

where 0 < r < 1 is a given tolerance. These constraints allow the policy to consider more even

deployment blocks, avoiding drastic increases in the number of surge staff called in. It also discourages

long sequences of days in which relatively few people are deployed, for the following days would be

very constrained if a strong increase is needed.

At the same time, it is important to mention that these additional restrictions imply a loss in robustness:

constraining the variability of the hiring policies hinders the structure of the strategy’s best response.

The obvious question is how much of this robustness would be lost to favor an easier implementation.

To answer this question and to illustrate the new policies, we repeated Exercise 1 for 3 values of
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Figure 6.2: Example 1. Deployment strategies for different smoothing tolerances.

r : 0.1, 0.2, and 0.3. The changes in the structure of the deployment strategies can be observed in

Figure 6.2 and the change in the highest cost in Table 6.4. The loss in robustness is modest, but it

would be up to the decision maker to evaluate the trade off.

Table 6.4: Change in highest cost due to smoothing out solution.

Original r = 0.3 r = 0.2 r = 0.1

Highest cost 0.050767 0.051025 0.051308 0.052327
% increase 0.51% 1.07% 3.07%

In algorithmic considerations, note that these are so-called “If-then" constraints and they require the

use of binary variables. However, this didn’t present any computational difficulty: each iteration’s

running time did increase slightly, but the number of iterations didn’t, making the change in total

running time negligible1.
1The variables and constraints are added to the master problem – See Chapter 7 for its definition.
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Sensitivity of the grid’s resolution

To compute the tuple that yields the highest cost at each iteration we make use of grid search over

the interval(s) pt belongs to. In this section we inspect the sensitivity of our algorithms’ solution to

different grid resolutions of our uncertainty set. We compare the obtained highest costs under the

discretization they were computed with and under finer grid resolutions to gauge any loss in robustness.

In particular, we present a finer discretization of the grid we used as a base example and three other

coarser resolutions. We also present the tuples associated with such costs and the average CPU time

required to compute them. Results are summarized in Table 6.5.

This exercise shows the importance of using the correct resolution to compute the final policies.

Extremely fine grids may provide somehow more accurate approximations. At the same time, they can

be computationally much more expensive. Comparing the Base case with the Super Fine case, we can

see that the difference in the highest cost is minimal while the time to find the desired tuple for the

finer grid is more than 30 times more than the time it takes for the Base case grid. As expected, even

coarser grid searches provide faster but less robust solutions. While our algorithm performs well, this

analysis suggests that one could make use of coarse discretizations for the first iterations and finer

grids in subsequent iterations.

The resulting deployment strategies for the different grid resolutions are also quite dissimilar as shown

in Figure 6.3. The deployment strategies resulting from coarser grids are represented in dashed, light-

colored lines, while those obtained from finer discretizations are shown in darker, solid lines. The first

thing to notice is that the differences between the strategies obtained from the Original and the Fine

discretizations are negligible. On the other hand, as the resolution of the grid gets coarser, the staff is

deployed in bigger, more sprawled bursts. The fact that the smoother strategies are more robust (see
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Table 6.5: Change in highest cost for different discretizations of the uncertainty set. In this example, it is given by
P = [0.01, 0.012]× [0.0125, 0.0135]× {140, ..., 160}. Different resolutions were taken for the first 2
intervals.

Discretization cost Highest cost Highest cost Highest cost CPU time Size of
Step1 × Step2 tuple with given resolution with Base resolution with Fine resolution worst-tuple Uncertainty Set

0.00001 x 0.00001 0.050950 - - 125s 420K
(Fine) (0.01111,0.0135,140) -

0.00001 x 0.0005 0.050768 - 0.050768 3.75s 16.8K
(Base) (0.01172,0.0135,140) (0.01172,0.0135,140)

0.00005 x 0.00005 0.004059 0.2515 0.2515 5.234s 33.6K
(Coarse 1) (0.01105,0.0135,156) (0.01172,0.0135,140) (0.01172,0.0135,140)

0.0001 x 0.0001 0.000104 0.3141 0.3141 1.484s 8.4K
(Coarse 2) (0.0113,0.0135,140) (0.01172,0.0135,140) (0.01172,0.0135,140)

0.0005 x 0.0005 0.002302 0.2031 0.2031 0.094s 0.336K
(Coarse 3) (0.011,0.0135,143) (0.01168,0.0135,140) (0.01168,0.0135,140)
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Figure 6.3: Example 1. Deployment strategies for different discretizations of the uncertainty set.

Table 6.5) shows that, in this particular example, a more even deployment of the surge staff is better

capable of dealing with different epidemic scenarios. It is important to mention that this assumes

that a certain amount of surge staff is available. We modify this assumption in the following example

(Section 6.1.2).
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Threshold objective function

In this section we present analogous results, now considering a threshold objective function in which

cost increases as staff levels decrease (see 5.1.1 for more details). For this example we take 95%

and 99% as the breakpoints of the piecewise linear function: whenever staff levels are below 95%,

costs increase by 1 unit for every percentage point workforce availability is reduced; if staff levels are

between 95% and 99% costs increase by 1/4 of a unit for each percentage point, and there is no cost

whenever there is 99% or more of the workforce available. In mathematical terms, given a percentage

of available staff at time t, ωt ∈ [0, 1], the daily cost is given by

zt = max{−100ωt + 96,−25ωt + 24.75, 0}. (6.3)

All other parameters remain as listed in Table 6.2.

As with the queueing model-based objective, we compare the Robust solution with the Naïve-worst-

case Policy under different scenarios: 1) the No-Action-Max-Cost tuple (0.01092, 0.0135, 140) and

2) the highest-cost tuple if the Naïve-worst-case Policy is deployed, (0.01168, 0.0135, 140). In this

case Scenario 1) coincides with Scenario 3); that is, the tuple that achieves the highest cost if the

Robust Policy is implemented is the same as the No-Action-Max-Cost tuple. As with the queueing

model-based objective function, while the Naïve-worst-case Policy fares better than the Robust Policy

in Scenario 1), its cost can be up to 28% higher than the Robust Policy for other tuples. Moreover,

given the number of surge staff available, the Robust Policy avoids going under the preestablished

critical threshold of 95% in both scenarios, while the Naïve-worst-case Policy presents as many as 8

of these days. These statistics are exhibited in Table 6.6.
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Table 6.6: Results with threshold function. Example 1.

Scenario / Strategy / No Intervention Robust Policy Naïve-worst-case
tuple Policy

1 Cost 83.1445 32.4503 32.2351
No intervention & Max. absenteeism 6.90% 4.96% 5.00%
Robust Policy # days AvWF < 95% 28 0 0

(0.01092,0.0135,140)

2 Cost 64.3800 29.0090 37.3449
Naïve-worst-case Policy Max. absenteeism 5.97% 4.27% 5.95%
(0.01168,0.0135,140) # days AvWF < 95% 22 0 8

The structure of the deployment strategies together with its impact on the workforce availability

(measured in percentage) for Scenarios 1 and 2 is displayed in Figure 6.4. It is worth nothing that if

Scenario 2 took place, it could be thought that the Robust Strategy is somehow wasteful: staff levels

surpass 100% around day 36 (Figure 6.4c). However, one must remember that the strategy must

be resilient to all situations, including one such as Scenario 1, where there is no underutilization of

the surge workers (Figure 6.4a). In the same scenario, the Naïve-worst-case strategy not only would

deploy too many extra workers (around day 25) for many more days, it would allow the absenteeism

to grow above 5% for 8 days as we mentioned above.

6.1.2 Example 2

To further illustrate the structure of the Robust Policy under different scenarios, we now consider

the previous example with some modifications. Here, the uncertainty set is p lies in the interval

[0.01, 0.0125] throughout, but can change values once on any day in the range {100, ... , 115}. R0 is

now between 1.24 and 1.54. The total number of available volunteers is 2, 000 and the contact rates

are not dampened while the epidemic is being declared. All other data remains as in the first example.

Following the same logic as in the previous example, we present the Robust Policy and compare it



Chapter 6. Numerical Experiments 60

100

200

300

400

500

600

0.92

0.94

0.96

0.98

1

1.02

Pr
o
cu

re
m

en
t 

St
ra

te
g

y

%
 A

va
il
ab

le
 W

o
rk

fo
rc

e

00.9

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

Time from declaration of epidemic
%Av WF (Robust)
Cost = 32.4503

%Av WF (No Interv)
Cost =  83.1445

Abs thresh Robust PS

(a) Scenario 1:Effectiveness of Robust Policy
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(b) Scenario 1:Effectiveness of Naïve-worst-case Policy
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(c) Scenario 2:Effectiveness of Robust Policy
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(d) Scenario 2:Effectiveness of Naïve-worst-case Policy

Figure 6.4: Changes in the workforce availability after the deployment of the Robust and Naïve-worst-case strategies
under two scenarios: 1) Highest- cost scenario given that no policy is implemented, 2) Highest- cost
scenario given that the Naïve-worst-case Policy is implemented.

to the Naïve-worst-case Policy (obtained as before by solving the linear program associated with the

highest-cost tuple of our uncertainty set). We present results for the same three scenarios: the No-

Action-Max-Cost tuple, the costliest tuple for the Naïve-worst-case Policy, and the costliest tuple for

the Robust Policy, respectively. This fact hints on the non-convexity of the problem, a topic we will

touch upon later in this section.

Table 6.7 displays the results. The Robust Policy is worse than the Naïve-worst-case Policy in the first

instance, while keeping a fairly consistent and low cost for the other scenarios; where the Naïve-worst-

case Policy does not perform as well. What is worth noting is that, unlike in the previous example,
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Table 6.7: Results. Example 2.

Scenario / Intervention / Tuple No Intervention Robust Policy Naïve-worst-case Policy

1 Cost 3.8332 0.0280 0.0066
No intervention Maximum ρ 1.0410 1.0012 1.0003

(0.0125, 0.0125, 100) # days ρ ≥ 1 27 10 6

2 Cost 3.5906 0.0280 0.0542
Naïve-worst-case Policy Maximum ρ 1.0393 1.0019 1.0025
(0.01235, 0.0125, 112) # days ρ ≥ 1 26 7 8

3 Cost 3.7320 0.0295 0.0379
Robust Policy Maximum ρ 1.0403 1.0010 1.0017

(0.01015, 0.0125, 101) # days ρ ≥ 1 26 10 10
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Figure 6.5: Example 2. Structure of the deployment strategies.

the structure of the deployment strategies is much more similar (see Figure 6.5); nevertheless, the

apparently small differences make the Robust Policy more resilient to other scenarios. A second

observation regards the structure of the highest-cost tuples evinced by the policies. In this example

the No-Action-Max-Cost tuple corresponds to having an epidemic with a fixed probability of contagion

p = 0.0125, the highest in the interval of the uncertainty set. However, the costliest tuples for the

Robust and Naïve-worst-case policies are quite different.
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Cost-benefit analysis

We now present a cost-benefit analysis on the availability of surge staff. We took this example as

a base case and recomputed the optimal Robust and the Naïve-worst-case policies assuming 1, 000,

1, 500, 2, 500, and 3, 000 surge staff on hand. Table 6.8 displays their corresponding worst-scenario

tuples along with the associated costs for when the corresponding policy is being implemented and for

when no contingency plan was put in place.

We point out that the difference in the highest-cost tuples explains the difference in the costs when no

intervention takes place: the highest-cost scenarios are obtained assuming that a corresponding policy

is being implemented. In fact, it is interesting to see how the structure of the tuples change with

the different policies. When there is not much staff available, the worst scenario for both policies is

given by the tuple (0.0125, 0.0125, 100). The highest costs for the Naïve and the Robust Policies are

very close, although the deployment strategies not as much. When there are 1, 000 and 1, 500 staff

available, the Robust Strategies are more concentrated towards the middle, while the Naïve-worst-case

Policies are more spread out (see Figure 6.6).

Table 6.8 also presents the change in the maximum value of ρ and the number of days that ρ is

at or above 1. The last row of the table shows the ratio between the change in the highest cost

and the change in the number of available surge staff. For example, when there are 1, 500 volunteers

available, there is a change in the cost of 0.156% for each of the 500 that are now not at hand. At the

same time, the benefit obtained per additional worker available decreases for both the Robust and the

Naïve-worst-Case Policy, but more so for the latter. That is, the Robust Strategies make better use

(cost-wise) of extra staff in terms of the highest cost. This is again because the Robust Policy “knows”

how to allocate the additional staff to cover up for different bad cases, while the Naïve-worst-case
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Policy has only one scenario to focus on. This fact is particularly noticeable when the Naïve Policy

chooses to hire only 2, 579 emergent workers out of the 3, 000 that are available. While this amount

of staff is enough to tackle the highest-cost scenario (under no intervention), it is not distributed well

enough to tackle milder cases, whereas the Robust Policy has a maximum cost of 0 when so much

staff is on hand.

Figure 6.6 illustrates the structure of the above mentioned strategies. To make the strategies com-

parable, we display the percentage of the staff that is called in on each day; percentages are stacked

on top of each other. The plots further support our claims: for the cases in which the Robust Policy

has more surge staff available, more people are hired towards the end of the planning horizon, while

the Naïve-worst-case Policies look to tackle the system congestion early after the epidemic has been

declared.

Table 6.8: Cost-Benefit Analysis for different quantities of available surge staff.

Robust Policy

Total staff deployed 1,000 1,500 2,000 2,500 3,000

Highest-cost tuple (p1, p2, d) (0.0125,0.0125,100) (0.0125,0.0125,100) (0.01015,0.0125,101) (-,-,-) (-,-,-)

Highest cost 1.755971 0.818334 0.029545 0 0

Highest cost (No Int) 3.8332 3.8332 3.732 3.8332 3.8332

Maximum ρ 1.02 1.02 1.001 0.999 0.998

Maximum ρ (No Int) 1.04 1.04 1.04 1.04 1.04

# days ρ ≥ 1 27 27 10 0 0

# days ρ ≥ 1 (No Int) 27 27 26 27 27

Cost Change / Extra Surge Staff 0.345% 0.158% - -0.006% -0.003%

Naïve-worst-case Policy

Total staff deployed 1,000 1,500 2,000 2,500 2,579

Highest-cost tuple (0.0125,0.0125,100) (0.0125,0.0125,100) (0.01235,0.0125,112) (0.01235,0.0125,105) (0.01235,0.0125,113)

Highest cost 1.75351 0.811355 0.05418 0.018956 0.015555

Highest cost (No Int) 3.8332 3.8332 3.6077 3.6997 3.5906

Maximum ρ 1.02 1.01 1.002 1.002 1.002

Maximum ρ (No Int) 1.04 1.04 1.04 1.04 1.04

# days ρ ≥ 1 27 27 8 3 2

# days ρ ≥ 1 (No Int) 27 27 26 26 26

Cost Change / Extra Surge Staff 0.345% 0.156% - -0.002% -0.002%



Chapter 6. Numerical Experiments 64

20%

30%

40%

50%

60%

f 
st

af
f 

al
lo

ca
te

d

0%

10%

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

%
 o

f

Time from declaration of epidemic
TH = 1000 TH = 1500 TH = 2000 TH = 2500 TH = 3000

(a) Robust Policies.

20%

30%

40%

50%

60%

f 
st

af
f 

al
lo

ca
te

d

0%

10%

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

%
 o

f

Time from declaration of the epidemic
TH = 1000 TH = 1500 TH = 2000 TH = 2500 TH = 2579

(b) Naïve-worst-case Policies.

Figure 6.6: Changes in the distribution of the deployment strategies for different amounts of available surge staff.

Non-convexity

As the examples above make clear, the systems we study can be strongly dependent on the choice of

p, with clear nonlinearities and non-convexities. This justifies the use of robustness in the design of

response strategies.

To further study the dependence on p, we considered the cost of a set of strategies when p is constant

throughout the epidemic. Figure 6.7a plots the objective function as a function of p in the interval

[0.0115, 0.0125] when there is no intervention; clearly it is monotone increasing in p. Figure 6.7b, on

the other hand, shows the cost of three strategies for computed by our algorithms2. These curves are

certainly not monotonic and, not surprisingly, particular values of p are able to exploit relative “gaps”

in deployment. This fact has algorithmic consequences; we use grid search to look for the highest-cost

tuple at each iteration of our algorithm. We delve into more details in Chapter 7.
2These strategies were obtained from intermediate iterations of our Robust algorithms. These are fully described in

Chapter 7.
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Figure 6.7: Total cost of an epidemic as a function of p under a)No intervention, and b) Three different deployment
policies.

6.1.3 Out-of-sample tests

The set of experiments we present below amount to out-of-sample testing. Its purpose is to evaluate

the robustness of our proposed strategies outside the uncertainty set they were built upon. We first

build on Example 1 (Section 6.1.1) in which the initial uncertainty interval for p was [0.01, 0.012], and

the second interval was [0.0125, 0.0135]; p was allowed to change between days 140 and 160. We

also recall that the contact rates were diminished by 30% while the epidemic is declared.

The first test goes about gauging the impact of modifying the tuple (p̃1, p̃2, d̃) that corresponds

to the highest-cost scenario should the Robust Policy be implemented (Scenario 3), which is given

by (0.01168, 0.0135, 140). For this experiments the epidemic is declared on day 113 with deploy-

ment under the Robust Policy beginning on day 140, i.e. 28 days after the declaration (thus,

p changes on the day of deployment).The experiments go out-of-sample in two ways: we made

changes both in p̃2 and d̃ . p̃2 was allowed to take values in the set {0.0135, 0.014, 0.015} and d̃ in

{125, 130, 135, 140, 150, 155, 160, 165}.

We refer the reader to Figure 6.8a to exemplify the results. Each solid curve represents the cost of
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a fixed pair of the form (0.01168, p̃2); the different days in which the change in p occurs are indexed

in the x axis. For example, the darkest colored curve corresponds to the cost of tuples of the form

(0.01168, 0.015, d̃), with d̃ varying in the x axis. As benchmark, the dotted lines represent the cost

of the No-Intervention Policy for the same tuples.

The first thing to point out is that any change before day 130 translates into zero cost for both,

the Robust Policy and the No-Intervention strategy. This is because of the contact rate dampening

factor. Given the specified parameters in this experiment, early changes in the probability of contagion

p result in extended periods of time in which social distancing is implemented. We admit this could be

too strong an assumption; social distancing measures that include the closure of public spaces such as

restaurants, theaters, and stadiums could be prohibitively expensive. Further numerical experiments

could be done limiting the number of days the social distancing measures are applied. At the same

time, it highlights the clout of such measures should they effectively diminish the contact rates by that

amount. This phenomenon does not occur in the case of a late changes in p, wherein the epidemic

does not last for more than 20 days.

The second fact to point out is that for any fixed day (after 130) the cost of the Robust Policy does

increase over its highest cost for higher values of p̃2 – however, the increase is modest relative to the

cost of not intervening. Most importantly, the cost of the Robust Policy decreases rapidly as d̃ moves

out of scope of the original model. In fact, the same is true even under the No-Intervention Policy.

This is the salient fact that we want to point out. Its explanation is simple: even though p is increasing

to a larger value than originally envisioned, if d̃ is large, the impact of the increase is negligible – the

increase is taking place so late, that by then the epidemic (under the initial p value) has largely run

its course. In other words, we have a long-running epidemic which, under the Robust Policy, ends up
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Figure 6.8: Out-of-sample testing: Changes in the cost of the Robust Strategy for scenarios that are not in the
uncertainty set it was built upon.
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having no impact. Numerical details of the change in cost given a change in p after day 140 for both,

the Robust and the No-Intervention Policies, are reported in Table 6.9.

Table 6.9: Effects of a late change in p on Scenario 3

Scenarios Original Hypothetical 1 Hypothetical 2

p1 0.01168 0.01168 0.01168
p2 0.0135 0.014 0.015

day epidemic declared 113 113 113
day deployment starts 140 140 140

day change p 140 150 155 160 165 - 150 155 160 165
cost Robust Policy 0.0508 0.3268 0.0729 0 0 2.1737 1.4068 0.6282 0.0294

cost No Intervention 4.58 1.6087 0.7619 0.087 0 4.1327 2.6688 1.2427 0.1462

Along the same lines, it is also worthwhile to note that in all cases where the out-of-sample increase

in p actually does have a cost impact, the change takes place shortly after the epidemic declaration

and very shortly after deployment of the robust strategy begins. These facts indicate that there is

a critical period (in this example of duration less than forty days or even shorter) starting from the

declaration of the epidemic during which correct action is important. To some degree this supports

our model of rolling-out a fixed strategy that deals with the immediate future; should the epidemic

“slow down” only to restart much later, a completely new plan would then be deployed.

A second, more general, related out-of-sample exercise modifies the uncertainty set directly (vs

changing the highest-cost tuple only, as in the previous test). With the use of Robust Optimiza-

tion, it is natural to inspect what the highest cost would be should the uncertainty set change as

a whole. Again, the tests were constructed in two ways: The uncertainty sets are of the form

[0.01, 0.012] × [0.0125, p̃2] × {d̃ , ...}3. Once again, we let p̃2 be either 0.0135, 0.014 or 0.015 and

d̃ to be within the set {125, 130, 135, 140, 150, 155, 160, 165}. The Robust Policy’s highest cost for

each of these uncertainty sets are represented by the dashed lines in Figure 6.8b. The corresponding
3The second interval, [0.0125, p̃2] is referred to as P2 in Figure 6.8b
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Figure 6.9: Example 2. Out-of-sample testing: Implementing the Robust and Naïve strategies n days late.

costs for the No-Intervention policy are shown in dotted lines in Figure 6.8c. These two charts re-

inforce what we had previously argued: while there is an increase in the total cost for out-of-sample

scenarios, it is moderate, especially if compared against the No-Intervention Policy. Moreover, late

changes in the probability of contagion have a milder impact in the total cost because the epidemic

has largely run its course by then. The implementation of the Robust Policy helps to bring these costs

further down.

To finish this section we present a last out-of-sample test, also built upon Example 1. Its purpose is to

measure the impact of a delay in the implementation of the Robust Policy. That is, we are interested

in the change in the highest cost if the policy is shifted n days late. This could happen if the decision

maker fails to declare the epidemic on time, for example. We compare its performance by making the

same computations for the Naïve Policy. Results are presented in Figure 6.9. It is interesting to see

how the Naïve Policy outperforms the Robust Policy after 3 days of delay. This is coherent with our

previous results. The test just checks how sensitive policies are when they are shifted to the right. The

Naïve Policy was specialized in tackling an early, very aggressive epidemic. As a consequence, when
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adjourned a few days it becomes resilient to more bad cases, as the unshifted Robust Policy is. At the

same time, if postponed too many days, the Naïve Worst-Case Strategy also loses its effectiveness

as expected. While this could translate in the Naïve Worst-Case Strategy being more attractive to

implement than the Robust Strategy, this could also imply that we should incorporate this parameter

into the uncertainty set. We leave that exercise for future work.
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77
Solving the Robust Problem

In this chapter we describe an algorithm for solving the robust optimization problem (5.4), which is

worth restating:

V ∗ := min
h∈H

max
~p∈P

V (h |~p). (7.1)

We will formulate this problem as a semi-infinite linear program and use a variant of Benders’ de-

composition [13] to solve it. In this chapter we also present procedures to improve the numerical

performance of an otherwise purely theoretical algorithm. We begin by characterizing the representa-

tion of the cost incurred by a given deployment vector under a given vector of contagion probabilities

~p, V (h |~p) as a linear program, a critical component of our method.
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7.1 The robust problem as an infinite linear program

Let h be a given surge staff deployment vector, and let ~p describe an evolution of the contagion

probability. We recall that the i-th element of h dictates how many members of our surge staff are

called i days after the epidemic is declared. ~p dictates the value of the probability of contagion at

each point in time (since the epidemic starts) and determines the severity of the epidemic once all

other parameters are fixed.

We now compute V (h |~p), the cost induced by h given ~p, representing it as the value of a linear

program. To this end, we observe that this quantity captures the impact on the operations performance

of the total availability of the regular workforce together with that of the surge staff. This availability

–for both groups– is given by the intensity of the epidemic, that is, by ~p. All other parameters fixed,

knowing ~p allows us to calculate the expected trajectory of the epidemic and thus, the total workforce

availability at each time period. In particular, we have knowledge of what the absenteeism will be like

for the regular workforce, and the conditions the surge staff would be subject to should they be called

in (via h).

To this effect, let h and ~p be given, let (S j0,E
j
0, I
j
0,R

j
0, j = 1, 2) denote the initial SEIR distribution,

and let all the other SEIR parameters be fixed. As we just described, these conditions fully describe

the predicted epidemic trajectory, particularly the values βt for all t. These in turn fully define the

disease dynamics of the deployed staff through equation (7.2) given below.

The next step is to obtain a linear inequality representation of the quantity of available surge staff at

any given time t. Define:
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• S3t,j , the number of surge staff deployed at time t − j that remain susceptible on day t, and

• E3t,j , the number off exposed surge staff deployed at time t − j .

As before, T is the time horizon for the epidemic. Using this notation, we have that:

S3t+1,1 = ht , t = 1, ...,T − τ

S3t+1,j+1 = e−λ
2
tβtpt S3t,j , t = 2, ...,T − 1, j = 1, ... , min{t − 1, τ − 1}

E3t+1,2 = (1− e−λ2tβtpt )S3t,1, t = 2, ...,T − 1

E3t+1,j+1 = (1− e−λ2tβtpt )S3t,j + e−µE2E3t,j , t = 3, ...,T − 1, j = 2, ... , min{t − 1, τ − 1}

(7.2)

We note that the parameters λ2t ,µE2 correspond to those of the workforce subgroup (and not the

general population). This follows the assumption that the surge staff will be in the same circumstances

as the workforce of interest.

Given (7.2) and assuming that as soon as a staff member (regular or surge) becomes infectious he/she

does not show up for work, the available surge staff at each point in time t is given by

min{t,τ}∑
j=1

S3t,j +

min{t,τ}∑
j=1

E3t,j , for t = 2, ... ,T − τ , (7.3)

where we have set E32,j = 0.

Similarly, the total available regular staff at time t is given by the sum

S2t + E2t + R2t . (7.4)

Thus, the sum of (7.4) and (7.3) yields the total available workforce at time t, the quantity of interest
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to compute the desired operational performance.

Now we return to the robust optimization problem (7.1). For each period t, let ωt denote the total

number of available workers at time t. Based on discussions above, we assume that the cost function

to be optimized is given by a convex piecewise-linear function of the form max1≤i≤L {σi ωt + ki}, for

appropriate L, σ and k . This holds for the threshold function case (section 5.1.1) and for the queueing

case (section 5.1.2).

Using notation as in equation (5.3), we therefore have

V (h |~p) := min

T∑
t=1

zt

s.t.

S3t+1,1 = ht , t = 1, ...,T − τ

S3t+1,j+1 = e−λ
2
tβtpt S3t,j , t = 2, ...,T − 1,

j = 1, ... , min{t − 1, τ − 1}

E3t+1,2 = (1− e−λ2tβtpt )S3t,1, t = 2, ...,T − 1

E3t+1,j+1 = (1− e−λ2tβtpt )S3t,j + e−µE2E3t,j , t = 3, ...,T − 1,

j = 2, ... , min{t − 1, τ − 1}

ωt = S2t + E2t + R2t +

min{t−1,τ}∑
j=1

S3t,j +

min{t−1,τ}∑
j=1

E3t,j , t = 1, ...,T

zt ≥ σiωt + ki , 1 ≤ i ≤ L, t = 1, ...,T

(7.5)

In this formulation S , E , ω and z are the variables (they should be indexed by ~p, but we omit this

for simplicity of notation). Notice that the quantity ht appears explicitly in only the first set of
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constraints. Also, by construction all variables are nonnegative. We can summarize this formulation

in a more compact form. Using appropriate matrices A~p and C~p and vectors κ~p and d~p,

V (h|~p) := min
x
κ′~px (7.6)

s.t. A~p x = h (7.7)

C~p x ≥ d~p (7.8)

Here, x denotes a vector of auxiliary variables comprising all S , E , w and z . We can now write:

V ∗ := inf
h,x

ν

s.t. ν ≥ κ′~px , ∀~p ∈ P

A~p x = h, ∀~p ∈ P

C~p x ≥ d~p, ∀~p ∈ P

h ∈ H.

(7.9)

The feasible set of problem is an intersection of closed, convex sets (provided H is of this form).

Hence, we can substitute infimum for minimum. We note that even in the simple case in which P is

an interval (7.9) is a semi-infinite linear program. This motivates the use of cutting-plane algorithms.

A fine discretization of such an interval creates a prohibitively large number of constraints, and as we

mentioned in Section 6.1.1, this can affect the quality of the solution.
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7.2 Algorithm

We can now describe our procedure for solving optimization problem (7.9). We make use of the dual

of (7.6)-(7.8) to construct cuts that will approximate the desired objective function.

Let π, α be feasible dual vectors for the LP (7.6)-(7.8), corresponding to (7.7) and (7.8), respectively.

Then by weak duality,

V (h |~p) ≥ π′h + α′d~p. (7.10)

Furthermore, π and α are optimal for the dual if and only if

V (h |~p) = π′h + α′d~p. (7.11)

Denoting by D(~p) the set of feasible duals to LP (7.6)-(7.8), it follows that

V (h |~p) = max
(π,α)∈D(~p)

π′h + α′d~p. (7.12)

and so we can rewrite (7.1) as

V ∗ = min
h∈H

max
~p∈P

max
(α,π)∈D(~p)

α′h + π′d~p. (7.13)

Now consider a finite family of vectors (πk ,αk) (k = 1, ... ,K) such that for each k there is a vector

~p(k) ∈ P with (πk ,αk) ∈ D(pk). Then, by (7.13), we have

V ∗ ≥ min
h∈H

max
1≤k≤K

α′kh + π′kd~p(k). (7.14)
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This observation gives rise to Algorithm B.

Algorithm B

0. Set K = 0 and r = 1.

1. Let hr be an optimal solution for the LP

W r := min
z ,h

z

s.t. z ≥ α′kh + π′kd~p(k), 1 ≤ k ≤ r − 1

h ∈ H.

2. Let ~p(r) ∈ P be such that

V (hr |~p(r)) = max
~p∈P
V (hr |~p), (7.15)

Note: ~p(r) is the contagion probability vector that attains the worst case should
deployment vector h be used.

3. Using notation as in formulation (7.6)-(7.8), let (πr ,αr ) be optimal duals for the LP

min
x
κ′~p(r)x (7.16)

s.t. A~p(r) x = hr (7.17)

C~p(r) x ≥ d~p(r) (7.18)

Note: The value of this LP is V (hr |~p(r)).

4. If W r ≥ V (hr |~p(r)), STOP – algorithm has terminated.
Else, reset r ← r + 1 and go to 1.

Remark : The above algorithm can be viewed as a special case of Benders’ decomposition [13]. The
linear program solved in Step 1 is called the master problem.

Lemma 7.2.1 For any r ≥ 0 we have (a) W r ≤W r+1 and (b) W r ≤ V ∗ ≤ V (hr |~p(r)).



Chapter 7. Solving the Robust Problem 78

Proof. (a) This follows because in each iteration we add a new constraint to the problem solved in

Step 1. (b) This follows as per equation (7.14).

Corollary 7.2.2 If the algorithm terminates in Step 4, it has correctly solved problem (7.1).

In practice we would not stop the algorithm in Step 4, but rather use part (b) of Lemma 7.2.1 to

stop when a desired optimality guarantee is reached. An issue of theoretical interest is the rate of

convergence of Algorithm B. The following result indirectly addresses this question.

Lemma 7.2.3 There is an algorithm that computes V ∗ by solving problem (7.15) a polynomial number

of times.

We stress that the algorithm in Lemma 7.2.3 is not Algorithm B; rather, it relies on the well-known

equivalence between separation and optimization [35] and it is similar to Algorithm B except that

(essentially) the computation of hr in Step 1 is performed differently. The resulting algorithm, while

theoretically efficient, may not be practical. Instead, in practice researchers in the nonconvex opti-

mization community would rely on a classical cutting-plane algorithm such as Algorithm B. In the

following section we give more details about its implementation.

7.2.1 Implementation

The above discussion highlights the pivotal elements of the implementation of the algorithm, par-

ticularly the ones that help build the correct cuts that are added to the master problem at each

iteration:
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SEIR model: Given a set of initial parameters1, and a deployment strategy h, the algorithm heavily

depends on a routine that computes and keeps track of the progression of the epidemic for both

population subgroups and the surge staff. This is done by using equations 4.5. We remind the

reader that the surge staff is subject to the epidemic as soon as they are called in and that we

assume that the parameters of the SEIR model we’ll use are those of the regular workforce (or

subgroup 2).

The utility of such routine is mainly twofold: i) Combined with the appropriate objective function,

it is used to compute the worst-case tuple given a deployment strategy hr (Step 2). ii) Given

a deployment vector hr and its associated worst-case ~p(r), it generates the necessary data that

will be fed as coefficients in the auxiliary linear program of our algorithm (Step 3).

Highest-cost tuple: The discussion in the previous section brings attention to the importance, both

theoretical and practical, of having a fast way of computing argmax~p∈P V (h |~p) for a given

deployment vector h (Step 2). Even in the case in which p does not change throughout an

epidemic, a one-dimensional maximization problem, it is possibly non-concave (recall Figure

6.7b). Thus, we proceed to compute this quantity via grid search by discretizing P. In this

context, an important experimental observation is that the calculation of V (h |~p) (via the SEIR

routine) is indeed extremely fast even for large T (long time horizons) – typically, V (h |~p) can

be computed in approximately one hundred thousandth of a second on a modern computer2.

More details about how this step could be furthered improved are described below.

Auxiliary LP: In Step 3 a linear program must be solved to compute V (hr |~p(r)). (See equations

(7.16-7.18) or (7.5) for a detailed description.) The structure of this linear program does not
1Initial number of infectives for both subgroups, I0, and parameter values for all the rates of transition between

compartments.
2We implemented this subroutine in C.
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change with each iteration; only the input data does: for a given ~p(r), a deployment strategy

hr , and preset initial conditions, we need to run the SEIR model to generate the coefficient

matrices (both of the SEIR model for the surge staff, and the objective function piece-wise

linear approximation), the right-hand side and the objective vectors of this LP.

We used AMPL together with the Gurobi optimization solver to update such input and solve

this LP at each iteration. This software readily gives us the optimal dual variables αk and πk

that are used to construct the cuts that go into the master problem.

Master problem: While this is the Linear Program that provides the optimal solution, it is the step

that requires the least effort to implement. Using the information obtained from the lastly-

solved auxiliary LP, at each iteration one only needs to append a new cut to the file that carries

the master problem and re-solve the LP. Such cut is easily constructed with the dual optimal

variables of the auxiliary LP after it is solved at the end of Step 3.

In addition to these elements, a wrap-up routine synchronizes all the subroutines involved and, among

other things, keeps track of the bounds that determine whether to stop the algorithm or not at a

pre-specified level of accuracy.

Thus, the r−th iteration of the algorithm is implemented as follows:

1. Solve the master problem with the current cuts (empty if at first iteration). The optimal value

of this linear program constitutes a lower bound on the optimal cost we are looking for, and is

recorded for future reference.

2. Use obtained deployment vector hr to compute its associated highest-cost tuple using grid

search.
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3. Take such tuple to construct corresponding vector ~p(r). Run the SEIR model subroutine with

~p(r) and hr as inputs to construct the input data of the auxiliary LP. The optimal solution of

this program is an upper bound to our optimal cost. Store optimal dual variables to append to

Master Problem if necessary.

4. Check if algorithm should be stopped. If the lower and upper bound are within certain pre-

specified tolerance, the algorithm is stopped. Otherwise, the optimal solution readily provides

the optimal dual variables needed to construct a new cut that is appended to the master problem.

A smarter use of grid search

In Section 6.1.1 we discussed the importance of using the right discretization of the grid to compute

the optimal robust solution. We also commented on the possibility of using coarser grids at the

beginning of the algorithm to speed it up (in particular, to speed up Step 2). In this section we give

theoretical details of this approach.

Recall that in our uncertainty model (Section 5.2.1), that for t ≤ t̆, pt takes a fixed value in [pL, pU ]

whereas for t > t̆, pt takes a fixed value in [p̂L, p̂U ]. Let N be a large integer, and write

QN =

{
pL +

pU − pL

N
j , 0 ≤ j ≤ N

}
and Q̂N =

{
p̂L +

p̂U − p̂L

N
j , 0 ≤ j ≤ N

}
(7.19)

QN is a finite approximation to the interval [pL, pU ] and likewise with Q̂N and [p̂L, p̂U ]. Define

ΠN = { (q, q̂, t̆) : q ∈ QN , 1 ≤ t̆ ≤ T , q̂ ∈ Q̂N},
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and for any π = (q, q̂, t̆) ∈ ΠN , let ~p(π) be the vector of probabilities defined by

pt(π) = q for 1 ≤ t ≤ t̆, and pt(π) = q̂ for t̆ < t ≤ T .

Finally, define

PN = { ~p(π) : π ∈ ΠN }.

Thus, PN is a discrete approximation to P, and, furthermore V ∗N := minh∈Hmax~p∈PN V (h |~p) can be

computed using a (finite) linear program analogous to (7.9) which we include for completeness:

V ∗N :=min
h,x

ν

s.t. ν ≥ κ′~px
~p, ∀~p ∈ PN

A~px
~p = h, ∀~p ∈ PN

C~px
~p ≥ d~p, ∀~p ∈ PN

h ∈ H.

(7.20)

Clearly, V ∗N ≤ V ∗ since PN ⊂ P, and one can show that V ∗N → V ∗ as N → +∞. From a practical

perspective, a large enough value for N, such as N = 1000, should provide an excellent approximation

to our robust staffing problem. Note that, for any N we have PN ⊂ P2N . Hence, we can proceed

by computing V ∗1 , followed by V ∗2 , followed by V ∗4 , and so on until the desired accuracy (in terms of

p) is attained in a logarithmic number of iterations. Notice that in this framework the cutting planes

(7.15) discovered in each iteration of Step 1 performed when computing each value V ∗N remain valid

for the computation of V ∗2N (precisely because PN ⊂ P2N) and thus each iteration is warm-started by

the preceding iteration. Additional strategies are possible.
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7.3 Improved algorithm

Algorithm B described is theoretically efficient. However, it may sometimes require many iterations

to achieve a desirable tolerance. The master problem starts empty and, given our computational

experience, approximating the objective function could easily take more than 150 iterations (This was

the case of Example 1 as discussed later in this section).

We started off the formulation of our Robust Problem with the description of a semi-infinite linear

program that could be approximated with a prohibitively large number of constraints (7.20). The

procedure outlined in this section is based on the view that we can partially use the structure of this

problem to set up a non-empty master problem to start Algorithm B. Even though (7.20) does not

offer a computationally viable solution, we combine it with the idea of looking for the right cuts of

Algorithm B to solve our problem in much fewer iterations.

Making a slight abuse of notation, problem (7.20) can be rewritten as

V ∗N :=min
h,x

ν

s.t. ν ≥ V (h|~p) ∀~p ∈ PN

h ∈ H.

(7.21)

Recall V (h|~p) represents the cost of a deployment vector h given ~p (7.6-7.8). The cuts of Algorithm

B approximate V (h|~p) with each iteration for different values of ~p, particularly of those dictated by

Step 2. We construct a master problem that instead of starting off by adding these cuts, it appends



Chapter 7. Solving the Robust Problem 84

whole sets of constraints that define V (h|~p), each of them of the form:

ν~p ≥ κ′~px
~p (7.22)

A~px
~p = h,

C~px
~p ≥ d~p.

Let us call (??) the block (of constraints) associated with ~p.

In other words, Procedure A mimics Algorithm B, but adds a block of constraints associated with ~p

to the master problem instead of a cut with each iteration. Clearly, the master problem acquires a

significantly large number of constraints with each of these blocks, but numerical experiments confirm

that even adding a few of these blocks improve the numerical performance significantly. The reason is

that instead of adding cuts that may loosely approximate V (h|~p) -especially during the first iterations

-, adding a set of constraints such as (??) is paramount to having constraints that describe its exact

cost. The careful choice of which blocks to add using Step 2 of Algorithm B counterbalances their

computational cost. When the master problem becomes too large, we can switch to adding cuts as

in Algorithm B. Formally, this approach is described as follows.



Chapter 7. Solving the Robust Problem 85

Procedure A

0. Set Q0 = ∅ and r = 1.

1. Let ~p(r) ∈ P be the tuple such that

V (hr |~p(r)) = max
~p∈P
V (hr |~p). (7.23)

Let Ṽ r = min{V (hk |~p(k))}rk=1 and update Q0 ← Q0 ∪ {~p(r)}.

2. Let hr be an optimal solution for the LP

W̃ r :=min
h,x

ν

s.t. ν ≥ κ′~px
~p, ∀~p ∈ Q0

A~px
~p = h, ∀~p ∈ Q0

C~px
~p ≥ d~p, ∀~p ∈ Q0

h ∈ H

x ≥ 0.

3. If |Ṽ r − W̃ r | < εW̃ r or r > K , STOP – algorithm has terminated.

Else, reset r ← r + 1 and go to 1.

Parameters ε and K are fixed a priori; they represent a duality gap tolerance and a maximum number

of iterations for Procedure A, respectively. As we mentioned above, the program acquires a significant

number of constraints with each iteration: for a single tuple, under the queueing scenario, there are

close to 2,800 constraints and more than 2,500 variables (after pre-solving). Thus, we expect K to

be small (not larger than 10).
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Once Procedure A terminates, we start Algorithm B, with the proviso that the master problem is

initialized as:

W r := min
z ,h,x

z

s.t. z ≥ α′kh + π′kd~p(k), 1 ≤ k ≤ r − 1

z ≥ κ′~px
~p, ∀~p ∈ Q0

A~px
~p = h, ∀~p ∈ Q0

C~px
~p ≥ d~p, ∀~p ∈ Q0

h ∈ H

x ≥ 0.

Algorithm B is then run as before. At each iteration r , Step 2 discovers a scenario ~p(r), and Step 3

produces a dual vector (πr ,αr ) which gives rise to the cut z ≥ α′rh + π′rd~p(r) that is added to the

master. The effect of the enhancement provided by Procedure A is, typically, to drastically shortcut

the number of iterations required by Algorithm B; essentially, the algorithm has been hot-started with

a very good initial representation of the critical constraints needed to define problem (7.1).

7.3.1 Example 1 Revisited

To illustrate the performance of the enhanced Algorithm B, we present a number of statistics corre-

sponding to Example 1 for both the queueing and the threshold cost functions (Section 6.1.1). For

each iteration of the algorithm we first point out if it is part of Procedure A (Enh_i) or if it is a regular

iteration of Algorithm B (Bend_i). We list its corresponding highest-cost tuple (p1, p2, d) and the

lower and upper bounds on the cost of the robust optimization problem. Finally we also add the CPU
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time per iteration (in seconds) used to compute the highest-cost tuple and to solve the corresponding

linear programs with AMPL3.

Tables 7.1 and 7.2 contain the statistics for the queueing and the threshold objective, respectively. In

both cases, it is clear that the computation of the highest-cost tuple is the most time-consuming task

at each iteration. As we briefly mentioned in Section 6.1.1, at present we have implemented this step

as a search process which could be improved in a number of ways. At the same time, we note that

for both objective-function types the time that it takes to solve the corresponding linear programs

increases with each iteration, but remains at less or about 0.5 second. In summary, the algorithm

appears effective: in each case the total CPU time does not exceed 35 seconds.

Tables 7.1 and 7.2 also show how fast the algorithm converged for this example. In terms of the

parameters that correspond to Procedure A, we chose the maximum number of iterations to be

K = 10 and ε = 0.05. The procedure was used for the first 8 iterations, after which only one more

cut was added to the master problem. The resulting duality gaps were slightly larger than 0.005%

and 0.0168% for the queueing and the threshold objective, respectively.

Table 7.1: Bounds and CPU times per iteration for Example 1, queueing cost function (Section 6.1.1). The algorithm
used the enhancement for the first 8 iterations and switched to our algorithm for one more iteration.

Highest-cost tuple Convergence Bounds CPU time (seconds)

Iter p1 p2 day ch Lower Upper highest-cost tuple AMPL
Enh_1 0.01092 0.0135 140 0 4.581151 3.406 0.328
Enh_2 0.01172 0.0135 140 0 0.710181 3.453 0.344
Enh_3 0.01132 0.0135 140 0.007060 0.217431 3.453 0.343
Enh_4 0.01081 0.0135 142 0.031251 0.132066 3.468 0.391
Enh_5 0.01185 0.0135 140 0.048387 0.132367 3.453 0.391
Enh_6 0.01168 0.0135 140 0.050479 0.073479 3.469 0.453
Enh_7 0.01177 0.0135 140 0.050686 0.056242 3.562 0.422
Enh_8 0.01111 0.0135 140 0.050686 0.052368 3.453 0.453

Bend_1 0.01172 0.0135 140 0.050765 0.050768 3.437 0.453

3Time is measured using _total_solve_elapsed_time, which reflects the elapsed seconds used by the solve com-
mands.
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Table 7.2: Bounds and CPU times per iteration for Example 1, threshold cost function (Section 6.1.1). The algorithm
used the enhancement for the first 8 iterations and switched to our algorithm for one more iteration.

Highest-cost tuple Convergence Bounds CPU time (seconds)

Iter p1 p2 day ch Lower Upper worst p AMPL
Enh_1 0.01092 0.0135 140 32.23508 83.14448 2.891 0.343
Enh_2 0.01168 0.0135 140 32.24410 37.34494 2.906 0.359
Enh_3 0.01132 0.0135 140 32.25421 34.37022 2.875 0.406
Enh_4 0.01081 0.0135 142 32.25740 33.12586 2.875 0.406
Enh_5 0.01111 0.0135 140 32.25866 32.55180 2.891 0.437
Enh_6 0.0109 0.0135 140 32.25912 32.33714 2.953 0.484
Enh_7 0.01125 0.0135 140 32.25914 32.29835 2.922 0.485
Enh_8 0.01118 0.0135 140 32.25915 32.27235 2.891 0.5

Bend_1 0.01091 0.0135 140 32.25915 32.26458 2.907 0.531

We now compare the deployment strategies obtained with our Robust Algorithm as presented in

Section 7.2 with the one from the improved version described in the present section.

In the case of the queueing objective, the Robust Algorithm has a worst-case cost of 0.05214 with

a duality gap of close to 5%; in turn, the enhanced algorithm has 0.0507 and 0.0052%, respectively.

As depicted in Figure 7.1, the strategies follow the same pattern for the first 15 days, which trail

the worst-case scenario without intervention (as described in Section 6.1.1). They later differ slightly

albeit maintaining the same general structure, which makes up for the difference in the duality gaps.
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Figure 7.1: Resulting deployment strategies from our Robust Algorithm and its improved version.

On the other hand, the corresponding deployment strategies for the threshold cost function are quite
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different (see Figure 7.2a). At the same time, their worst-case costs are less than 1% apart: the

strategy obtained from the Robust Algorithm without improvements has a cost of 32.45 with a

duality gap of 2.7% and with enhancements, 32.26 and 0.017%, respectively. We hypothesize that

the strategy obtained from the Improved Algorithm is very influenced by the No-Action-Worst-Tuple,

as evidenced by Figure 7.2b, while the Robust Strategy, obtained from an empty master problem, is

void of such influence.
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Figure 7.2: Comparison of deployment strategies obtained from our Robust Algorithm, our Improved Robust Algorithm,
and the Naïve-worst-case strategy. Strategies correspond to Example 1, using the threshold cost function.
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88
Extensions

In this chapter we outline two extensions to our approach where the decision-maker can apply recourse

when conditions significantly deviate from predictions. From a broad optimization perspective such

strategies clearly make sense – why stick with a rigid strategy?. However, we stress that in view of the

experiments at the end of the last section, the likely benefit from a dynamic policy would be primarily

realized during a period immediately following the epidemic declaration and of relatively short duration.

As as a result, a decision maker would likely face severe logistical constraints if attempting to rapidly

redeploy large numbers of staff. Thus, a dynamic policy might only be able to perform small changes

on a day-to-day basis. From an operational perspective such small changes would of course make

sense and would be applied; however the recourse might only amount to a set of small adjustments

to a pre-computed strategy.

In both cases that we consider we assume that a decision-maker can only approximately observe the
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behavior of pt (the value of p at time t). The Benders-decomposition solution methodology that we

described in Chapter 7 can be adapted to handle both models.

8.1 Robust optimization with recourse

Assume that uncertainty of pt is modeled using m intervals, or tranches, denoted I1, I2, ... Im, for some

integer m > 0. In addition, two time periods are given, Jmin and Jmax . A realization of the uncertain

values pt plays out as follows:

(i) A period Jmin ≤ J ≤ Jmax is chosen, as well as a value p(1) ∈ I1, a tranche H, and a value

p(2) ∈ H.

(ii) For each t < J we have pt = p(1) whereas for each t ≥ J, pt = p(2).

In other words, pt is allowed to change values, once. The decision-maker operates as follows. First,

a fixed time period, S , in which the deployment strategy will be revised is chosen in advance. Then

(a) At time t = 1, the decision-maker knows that p1 ∈ I1, but does not know its precise value. The

decision-maker then produces an initial, or “first-stage” deployment plan indicating the amount

of staff to call-up at time t, for each t < S . Further, m alternative “second-stage” deployment

plans (labeled 1, 2, ... ,m) are announced, each of which specifies the level of staff to deploy at

each period t ≥ S . Each second-stage plan is compatible with the first-stage plan in terms of

deployment constraints (such as total staff availability).

(b) At time t = S the decision-maker observes the tranche that pS belongs to, but not the actual

value of pS . If tranche h is observed, then second-stage plan h is rolled out on periods t ≥ S .
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Example. Consider a case with three tranches: I2 = [.1, .15], I1 = [.15, .18], and I3 = [.18, .19].

Further, Jmin = 18 and Jmax = 60. A realization of the data is the following: J = 20, p(1) = .155,

H = I3 and p(2) = .19. Thus, for t < 20 we have pt = .155 while for t ≥ 20, pt = .19. Suppose

S = 30. The decision-maker knows that .15 ≤ p1 ≤ .18; at time S = 30 the decision-maker observes

the tranche I3 and thus knows that for t ≥ 30, .18 ≤ pt ≤ .19, leading to an appropriate set of

deployments for future periods.

The model we just described is inherently adversarial: it assumes that, subject to the stated rules,

data will take on worst-case attributes. This feature can, of course, lead to overly conservative plans.

However, the proper statement to make is that the plans will be conservative only if the data (the

tranches, in particular) allow it to be so. A different drawback in this model is that an adversary could

simply “wait” to change p until just after the review period S . As the experiments in Section 6.1.3

indicate, if S is not too small the impact of such a late change in p is much decreased. If S is chosen

too large, then the adversary can change p much earlier, and then the impact will be felt before the

review can take place. Thus, care must be chosen in selecting S . A review strategy that proceeds

dynamically is given next.

8.2 Stochastic optimization

In contrast to the above, we also outline a model where the contagion probabilities pt behave stochas-

tically. Assume:

(i) p1 takes a random value drawn from a uniform distribution over a known interval Z .
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(ii) For any t, pt+1 = pt + εt , where εt is normally distributed, with zero mean and small standard

deviation (small compared to the width of Z).

Thus, pt executes a random walk, starting from Z . Let p̄ indicate the center (mean value) of Z . The

decision-maker’s actions, in this model, are as follows.

(a) At time t = 1, the decision-maker produces a policy consisting of a triple (h̃, α, R) where α ≥ 0,

and h̃ is an initial staff surge deployment plan indicating for each t the quantity h̃t , the amount

of staff to call-up at time t. Finally, the decision-maker also places an additional quantity R ≥ 0

of surge-staff on reserve (i.e., not yet part of the deployment plan). For notational purposes,

write ht = h̃t , for each t.

(b) The decision-maker can revise the plan at any of several checkpoints t1 < t2 < ... < tr .

(c) Consider checkpoint ti (1 ≤ i ≤ m). Let

Θ(ti , p̄) = the total number individuals infected by time ti , in the SEIR model where pt = p̄,

for 1 ≤ ti

Γ(ti) = the actual total number of individuals who are infected by time t.

Thus, Θ(ti , p̄) is an estimate of the random variable Γ(ti). We assume that the decision-maker

observes, as an estimate for Γ(ti), a quantity

ν(i) = Γ(ti) + δ(ti), (8.1)

where δ(ti) is normally distributed with zero mean and known variance. Then, the deployment
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plan is revised as follows. Write

∆ =
ν(i) − Θ(ti , p̄)

ti
.

Then, the decision-maker resets

ht ← ht + α∆, for each ti ≤ t < ti+1, and (8.2)

R ← R − (ti+1 − ti)α∆. (8.3)

Comment. The proposed scheme constitutes an example of affine control. The decision-maker

computes an initial estimate of the deployment plan (the initial ht) which are corrected on the basis of

real-time observations, using the parameter α to modulate the corrections. The quantity ∆ indicates

the (per-period) deviation between the observed behavior of the epidemic (including “noise”, given by

δ) and the predicted behavior as given by Θ(th, p̄).

When ∆ > 0, the behavior of the epidemic is worse than initially estimated and Rule (8.2) will increase

the near-future surge staff deployment. This increase is drawn from the surge staff held in reserve, as

per equation (8.3). When ∆ < 0, (8.3) moves staff back into the reserve ranks.

Note that in order for Rule (8.3) to be feasibly applied, the resulting R must be nonnegative. For this

to be the case when ∆ > 0 we should have α small enough, and, especially, that the initial estimate

for R be “high enough.” These are constraints to be maintained in our solution algorithms.

In order to consider algorithmic implications of this model, consider a fixed sample path specifying a

value for each pt and for each δ(ti) (see equation (8.1)). Denote by T the length of the planning

horizon. Recall that in the stochastic model the decision-maker announces, at t = 1, a triple (h̃,α,R).
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We have:

Lemma 8.2.1 Under the given sample path the cost incurred by the policy (h̃,α,R) (as per rules

(b)-(c) ) is given by a linear program whose right-hand side is an affine function of the h̃t and α.

As a consequence, we expect that several well-known methodologies for stochastic optimization, such

as sample average approximation [69], [70] and stochastic gradient schemes [68], [46], will be well-

suited for our problem.
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99
Discussion

The potential impact of a severe influenza epidemic on essential services is a matter of critical im-

portance from a public health perspective. There are current concerns that an influenza virus might

mutate into a highly contagious strain for which humans have little or no immunity, resulting in a

rapid widespread of the disease. In the event of such an epidemic or pandemic, organizations that

provide critical social infrastructure, such as health care clinics, police departments, public utilities,

food markets, and supply chains are likely to face severe workforce shortage that would jeopardize their

continuity of operations. In particular, at the most critical stage of the epidemic, health care clinics

would be required to provide care for an extraordinary number of patients, and thus could ill-afford

staff shortfalls.

Pandemic influenza preparedness would require an extensive set of challenging steps. It requires

the involvement and commitment of many segments of the academic, industrial and governmental
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communities. The planning process requires joint efforts to improve, among other things, the vaccine

and anti-viral development and distribution, the surveillance systems, and the design of pragmatic

and effective regional plans. These plans must include, among other important activities, methods

to expand surge capacity and to maintain essential services, including the deployment of ‘surge’ staff

to compensate for potential abnormal absenteeism rates. To address these issues, the CDC and the

HHS Department together with State authorities have published suggested courses of action.

The intelligent design of such contingency plans would necessarily model the spread of the epidemic.

In the case of a new strain of the influenza virus, such modeling entails incorporating significant

uncertainty: as far as we know, there are no clear ways of accurately predicting the transmissibility of a

new virus strain. Moreover, it has been suggested that the effective contagion rate may change under

different environmental conditions, such as weather, which are likewise unpredictable. Additionally,

social patterns may change during the epidemic, for example due to the implementation of public

health measures such as quarantine or social distancing.

Pre-event planning is critical: once pandemic flu strikes a community, it could be over in few months,

barely enough time to put together all the elements of emergency management that we have extensively

described. We believe Robust Optimization is the best tool to tackle the problem from this perspective,

particularly because of the sheer unpredictability of the epidemics’ intensity and length. Although it

could be deemed too conservative (in a way, it is optimizing against the worst-case scenario), this

methodology effectively immunizes the solutions against a pre-specified uncertainty set. This could

prove invaluable from a social cost perspective. Moreover, a decision-maker interested in using our

tool could vary the degree of risk aversion by varying the structure of the uncertainty set: the size of

the intervals that conform it is proportional to the degree of risk aversion. Several scenarios could be
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considered until a balanced tradeoff is reached.

In this thesis we build a tool that helps to study how to design robust pre-planned surge staff de-

ployment strategies that would aide an organization to cope with workforce shortfalls while optimally

hedging against uncertainty. As far as we know, this is the first time that this methodology is used

in this research area. As discussed in previous chapters, earlier work primarily focuses on conducting

simple sensitivity analysis as a way to measure robustness. These works implicitly assume probability

distributions on the parameters when these may not be readily available or are easily justifiable. Our

models do not need to make such assumptions.

Taking advantage of a version of the generalized Benders’ Decomposition, we propose fast and accu-

rate algorithms that prove sufficiently flexible to incorporate intricate uncertainty sets that reflect the

changeability of the environment. We bring insights on the structure of optimal robust strategies and

on practical rules-of-thumb that can be deployed during the epidemic.

To benchmark the effectiveness of the obtained robust policies, we compared them to the policies

that optimally solve the problem for the scenario with highest cost given that no action is taken (the

Naïve-worst-case Policy). Our proposed solutions could also be compared to policies obtained from

an equivalent Stochastic Optimization problem, which minimize the average cost over all possible

scenarios within the uncertainty set. While this is a useful exercise, we use the Naïve-worst-case

Policy as a first benchmark because preparedness plans often suggest decision makers to augment

their surge capacity based on a scenario similar to the Spanish Flu. This is considered to be the

worst influenza pandemic known by human kind (in terms of mortality and social impact). Our results

show that following a strategy that just considers the highest-cost scenario may allocate resources

inappropriately for milder cases, which are also likely to occur. This would translate in big savings for
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a decision maker: surge capacity would be effectively used in any scenario within the preestablished

uncertainty set avoiding wastage. We expect the comparison of our Robust Strategy to one obtained

from a Stochastic Optimization framework to yield similar results and leave it as an extension of this

thesis.

Our strategies also behave well in out-of-sample tests in which the probability of contagion was al-

lowed to change to larger values outside the uncertainty set, and at least 10 days after the surge

staff started to be deployed. A notable fact was that when p changes relatively late with respect to

the strategy’s deployment, the epidemic has largely run its course and the change doesn’t have any

meaningful impact. When the change occurs much earlier, social distancing prevents the epidemic

from unfolding, highlighting the importance of these kind of interventions. Further out-of-sample tests

suggested that it may be desirable to include a lateness factor in the uncertainty set.

A number of refinements and extensions of this thesis are possible. First, one could include a more

specific compartmental model for influenza: adding more population subgroups to the model should be

able to capture population dynamics better; similarly, incorporating more compartments would describe

the disease more accurately (such as an asymptomatic compartment, as presented in Chapter 12 of

[15]). These enhancements would have to handled with care, for they would require corresponding

parameter values. Data paucity could represent a disadvantage more than a benefit.

A second extension would incorporate the potential impact that a staff contingency plan could have

on the course of the epidemic (so far assumed to be negligible). This could be the case, for instance,

at vaccination centers; their adequate staffing could be crucial to reach critical vaccination fractions

in a timely matter. We did not venture into this endeavor because any such model would heavily rely
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on the ability of the surge staff to change the epidemic dynamics. In the case of the vaccination

centers, an effective vaccine would have to be readily available. For a new flu virus mutation it is

unclear whether this is possible, especially considering that influenza vaccines take at least 6 months

to manufacture. Thus, this extension would be useful should the model be used for seasonal influenza

or for epidemics for which effective means of fighting it are accessible and their deployment depends

on the effective implementation of a pre-specified contingency plan.

Another extension includes the use of cross-staffing, either within a hospital or a network of clinics

and institutions. In this study we are considering the entire workforce of a particular organization as a

whole; however, as part of the contingency plans proposed by the CDC, organizations are encouraged

to identify critical staff positions and cross-train personnel accordingly. The model could also be further

refined by modeling more than one employee group depending on levels of exposure to the disease or

social contact patterns. This would, of course, vary from organization to organization and should be

tailored judiciously.

Our methods could be easily used to manage any quantifiable scarce resource during an epidemic.

Moreover, it is very likely that a decision-maker will face parallel resource problems during such an

event - for example, a hospital would need to plan for bedding and other supplies on top of surge

staffing. Any multiple-objective cost function could be incorporated provided it has a convex piecewise-

linear shape. One such example involves antiviral inventory management. In the case of hospitals and

clinics, rates of transmission for health care workers may be minimized during a severe pandemic by

means of protective equipment or the use of antiviral medication. Given that stockpiles are limited, a

hospital could be interested in managing the doses during the outbreak. Appropriate extensions to the

SEIR model could be carefully made to accommodate the reduction on disease transmissibility, while
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keeping track of the antiviral stockpile. Additionally, our model currently assumes that surge staff is

not exposed to the epidemic until they are called into service. This relatively strong assumption could

be remedied by incorporating proper SEIR constraints to the linear program defined by V (h|p) (see

Chapter 5); we also leave this for future projects.

Finally, from an operational perspective, organizations may be able to react to evolutions of the

epidemic that significantly differ from initial estimations. While the space for action could be limited

(from what we learned from our out-of-sample tests), the topic is clearly of great interest. How to

incorporate optimal recourse decisions is a topic we briefly discussed in Chapter 8 and plan to address

in future work.
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