Legacies of the Tokugawa Regime

• Establishment of the Tokugawa Bakufu
 – Tokugawa Ieyasu (1542-1616)

• Important Policies
 – Position of Emperor
 – Banning of Foreign Trade
 – Bakuhan system
 – The Rise of Cities

Japan Prior to 1600

• Japan had interacted heavily with China
 – Chinese Characters
 – Political Ideology was Confucian
 – Religion was a combination of native animism (Shinto) and Buddhism, which originated in India and entered via China

• Between 1500 and 1600 Japan was immersed in a long sequence of bloody civil wars
 – In 1600, Tokugawa Ieyasu emerged as victorious at the battle of Sekigahara
 – In 1603 the emperor named Tokugawa Ieyasu shogun
Political Issues

• Tokugawa government feared local rebellion
 – Prohibited local population from using guns
 – Wanted to make sure people would stay put and produce

• Divided the Daimyo into two types (approx)
 – 150 fudai daimyo - hereditary retainers - those that had allied themselves with Tokugawa
 – 100 tozama daimyo - outside lords- those that had opposed
 – Tozama han were placed between fudai han in outlying areas

Tokugawa Policy

• Shogun ruled in the name of the emperor
 – Emperor continued to remain as a figure head

• Banned all Foreign Contacts from 1639 to 1856
 – No Trade except with Dutch and Chinese

• Established the Bakuhan system
 – Bakufu had control over the daimyo (feudal lords)
 • Daimyo had control over their han (feudal domains)
 – Daimyo were basically administrators of regions that produced more than 10,000 koku (Japanese bushels)
 – Han were relatively small
 • In 1598 Japan produced about 18.5 million koku
 • Shogun controlled about 2 million koku
 • Only one had more than 1 million Koku
 • Only 22 had more than 200,000 koku
Social Structure

• Adopted a four class social structure based on Confucianism
 – Samurai, farmers, artisans and merchants
 – System similar to Physiocrats in France: “All value comes out of the ground”
• Peasants constituted 80% of the population and were heavily taxed to support Daimyo
 – Peasants were not permitted to leave farms but often did
 – Small Scale farms
 – Little capital
• Little use of machinery until end of nineteenth century
• Merchants were just “movers of goods” and therefore didn’t have real value

Development of Transportation Networks

• Established Sankin Kotai (alternate attendance) system
 – Required daimyo to spend every other year in capital Edo (Tokyo) and leave family behind
 – Caused roads, communication networks, towns to be built along the Tokaido road.
 • Five major roads left Edo
 • Dutch were very impressed, indicating relative development of Japan
 • Postal system became quite advanced
 • Greatly enhanced the wealth of Edo
 • Edo was probably Largest city in world by 18th century with a population of over 1 million
 • Population of Kyoto was over 500,000
 • Osaka had a population of 400,000
 – Relatively clean and well run
Urban Policy

• Bakufu issued decree requiring each daimyo to build a castle in his han
 – Samurai had to be kept in the castle town
 – Mechanism of monitoring weaponry
 – Prevented samurai from marauding and stealing from peasants
 – Broke connection between Samurai and land
 – Broke connection between Samurai and warrior past
 – Made Samurai dependent on Daimyo for stipends b/c couldn't collect them directly.

• Contrast with Europe
 – In Europe the aristocracy ruled from countryside as opposed to the urban based system in Japan
 – More urbanization than Europe
Legacy of the system today

- It is often argued that reaction of “castle towns” in Tokugawa period created agglomerations of people
 - These cities were more productive and created inward migration
 - Industries changed but the centers of production did not
 - Had the capital not moved to Edo, Tokyo would have remained a backwater.
Theory 1: Random Growth

- Random Growth
 - “History is one damn fact after another” – Henry Ford
 - Big cities form when the random events of history conspire to make them a location where many people end up
 - Immigrants arrived in New York and tended to stay here
 - People killed in catastrophic events result in permanent drops in population of the same magnitude.
- Not a Lot of Economics Underlying This
 - Oddly enough, this theory is successful at explaining the rank-size rule (Zipf’s law)
 - The rank-size rule is the fact that in virtually all countries the size of the \(n \)th largest city is \(1/n \) times the size of the largest
 - Stunningly robust result in most countries.

Theory 2: Locational Fundamentals

- Locational fundamentals posits that there are unchanging characteristics of locations that determine the size of cities
 - For example, proximity to rivers, coasts, harbors, deserts, mountaintop, rainfall, flatland, latitude, etc
 - Each location is the sum of a long sequence of randomly distributed spatial qualities
 - Difference with RG is response to temporary shocks:
 - Random growth: shocks are permanent
 - Locational fundamentals temp shocks have no long run impact
Theory 3: Increasing Returns to Scale

- Productivity of firms is enhanced by surrounding economic activity
 - Achievement of Minimum Efficient Scale (MES)
 - Not enough local demand to achieve MES, so firms are less productive
 - Informational Exchange:
 - The more people one interacts with, the smarter one gets (and hopefully) the smarter they get!
 - But it is harder to interact with people who are farther away
 - Cost Linkage
 - The more varieties of inputs a firm has the better the output
 - But imported inputs are more expensive than local inputs
 - Cities arise because we are more productive when more concentrated

How to Measure Regional Dispersion?

- Concentration Ratio: Share of Population in Largest Regions

- Relative Variance
 - Ratio of Variance of Log Population Density in Year t Relative to 1998

- Zipf Coefficient
 - Coefficient in Regression of Log of the Rank of a Region on the Log of Its Population Density
 - Note if region n is $1/n$ times the size of region 1 then
 - $\text{Pop}(n) = 1/n \times \text{Pop}(1)$ or $\ln[\text{Pop}(n)] = \ln[\text{Pop}(1)] - \ln(n)$
Size Distribution of Feudal Domain Size in Japan (1597) Top 50 Daimyo

Zipf's Law for Daimyo

\[y = -0.9326x + 14.224 \]
\[R^2 = 0.9801 \]

\[\ln(\text{Rank of Han}) \]
\[\ln(\text{Rice Output of Han}) \]

Zipf's Law and US Cities

\[y = -1.0012x + 10.547 \]
\[R^2 = 0.9869 \]

\[\ln(\text{rank}) \]
\[\ln(\text{size}) \]
Zipf’s Law and Japanese Regions

Evaluating Theories: Historical Regional Population Data

- Data for the Years 725 –1150 Is Based on Censuses Done for Tax Purposes
 - Japanese Tax System Was Lump Sum and Therefore Required Detailed Censuses and Tax Districts Based on Population

- Data for 1600 Is Augmented With Major Land Survey

- From 1721 to 1998 We Do Not Need Tax Data As Actual Population Data Exists
What has happened to regional density? Look at Variation across 36 Regions

<table>
<thead>
<tr>
<th>Year</th>
<th>Population in Thousands</th>
<th>5 Largest Region Share</th>
<th>Relative Var of log Pop Den</th>
<th>Zipf Coefficient</th>
<th>Raw Correlation with 1998</th>
<th>Rank Correlation with 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jomon</td>
<td>125</td>
<td>0.39</td>
<td>2.46</td>
<td>-0.809</td>
<td>0.53</td>
<td>0.31</td>
</tr>
<tr>
<td>Yayoi</td>
<td>595</td>
<td>0.23</td>
<td>0.93</td>
<td>-1.028</td>
<td>0.67</td>
<td>0.50</td>
</tr>
<tr>
<td>725</td>
<td>4511</td>
<td>0.20</td>
<td>0.72</td>
<td>-1.207</td>
<td>0.60</td>
<td>0.71</td>
</tr>
<tr>
<td>800</td>
<td>5506</td>
<td>0.18</td>
<td>0.75</td>
<td>-1.184</td>
<td>0.57</td>
<td>0.68</td>
</tr>
<tr>
<td>900</td>
<td>7442</td>
<td>0.29</td>
<td>0.68</td>
<td>-1.230</td>
<td>0.48</td>
<td>0.65</td>
</tr>
<tr>
<td>1150</td>
<td>6836</td>
<td>0.20</td>
<td>0.66</td>
<td>-1.169</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>1600</td>
<td>12266</td>
<td>0.30</td>
<td>0.64</td>
<td>-1.192</td>
<td>0.76</td>
<td>0.83</td>
</tr>
<tr>
<td>1721</td>
<td>31290</td>
<td>0.21</td>
<td>0.43</td>
<td>-1.582</td>
<td>0.85</td>
<td>0.84</td>
</tr>
<tr>
<td>1798</td>
<td>30531</td>
<td>0.21</td>
<td>0.37</td>
<td>-1.697</td>
<td>0.83</td>
<td>0.81</td>
</tr>
<tr>
<td>1872</td>
<td>33748</td>
<td>0.18</td>
<td>0.30</td>
<td>-1.877</td>
<td>0.76</td>
<td>0.78</td>
</tr>
<tr>
<td>1920</td>
<td>53032</td>
<td>0.25</td>
<td>0.43</td>
<td>-1.476</td>
<td>0.94</td>
<td>0.93</td>
</tr>
<tr>
<td>1998</td>
<td>119486</td>
<td>0.41</td>
<td>1.00</td>
<td>-0.963</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Persistence of Density
What did we learn?

• High degrees of variation in population density has always been a feature of the world
 – Zipf’s law has always held, i.e. n^{th} largest region is $1/n$ times the size of the largest region
 • Suggests the importance of either Random Growth model or Locational Fundamentals Model
 – High degree of persistence in the size of regions over time
 • Suggests that Locational Fundamentals are critical to understanding region size
 – There has been an increase in concentration in last century which coincides with industrialization
 • Increasing returns may play a role in the size of cities