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Part IV: Sampling

…Upon the supposition of a certain determinate law according to which any event is to happen, we demonstrate that the ratio of the happenings will continually approach to that law as the experiments or observations are multiplied. Conversely, if from numberless observations we find the ratio of events to converge to a determinate quantity, …then we conclude that this ratio represents the determinate law according to which the event is to happen. 

 — Abraham de Moivre (1667-1754).

Definitions

Population: The entire group of objects about which information is wanted.

Parameter: A numerical characteristic of the population. It is a fixed number, but we usually do not know its value.

Unit: Any individual member of the population.

Sample: A part or subset of the population used to gain information about the whole.

Census: A sample consisting of the entire population.

Sampling Frame: The list or units from which the sample is chosen.

Variable: A characteristic of a unit, to be measured for those units in the sample.

Statistic: A numerical characteristic of the sample. The value of a statistic is known when we have taken a sample, but it changes from sample to sample.

Random Sampling

A simple random sample of size n is a sample of n units chosen in such a way that every collection of n units from the sampling frame has the same chance of being chosen. This is done using either:

· Physical Mixing

· Random Number Tables

· Random Number Generator (in Excel: Data tab – Data Analysis group – Random Number Generation)

Sampling Distributions

Example: You have a box containing a large number of round beads, identical except for color. These beads are a population. The proportion of black beads in the box is p = 0.20. This number is a parameter (assume that I know the rest are white). 

Say you reach in and take out 25 beads at a time. Assume this is a random sample of size 25 from the population, so each bead has an equal chance to be picked. 

· How many black beads do you expect to appear in the sample? 

· If you take many samples, do you expect ever to find a sample with 25 black beads? One with no black beads? One with as many as 15 black beads? 

· Is the sample proportion from one sample a good estimate of the population proportion? How likely is 
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to be wildly different from p?

You might expect that about 20% of your sample should be black, that is, about 5 black beads out of the 25. But you will not always get exactly 5 black beads. If you get 4 black beads, then your statistic 
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 is still a good estimate of the parameter p = 0.20. But if you draw a sample with 15 black beads, then 
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 (a relatively bad estimate of p). How often will you get such poor estimates from a random sample?

Say you performed this experiment 200 times and recorded the table below.

	# of black beads in sample 
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	Sample proportion 
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	0
	0.04
	0.08
	0.12
	0.16
	0.20
	0.24
	0.28
	0.32
	0.36

	# of such samples 
	3
	8
	12
	34
	40
	47
	24
	20
	9
	3

	Fraction of such samples 
	0.015
	0.040
	0.060
	0.170
	0.200
	0.235
	0.120
	0.100
	0.045
	0.015


The results are shown in this histogram:
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Errors 

Random Sampling Errors: these are the deviations between sample statistic and population parameter caused by chance in selecting a random sample. 

Non-Random Sampling Errors: These arise from improper sampling, and can lead to bias: the consistent, repeated divergence of the sample statistic from the population parameter in the same direction. Some examples are: 

Convenience Sampling: Selection of whichever units of the population are easily accessible.

Voluntary Response: A common form of convenience sampling. The sample is chosen from those who respond to questions asked by mail or who call-in during television broadcasts. 

Non-sampling Errors: Examples include missing data, response errors, processing errors and the effect of the data-collection procedure. 

Stratified Sampling

Consider the following situation.

Example: A university would like to know the attitudes of its students on the issue of whether a women's studies department should be opened. The university has 30,000 students of which 25,000 are men and 5,000 are women. A common method of sampling can be done as follows: 

1. Divide the sampling frame into groups of units, called strata. The strata are chosen because we have a special interest in these groups within the population or because the units in each stratum resemble each other.

2. Take a separate simple random sample in each stratum and combine these to make up the stratified random sample.

If we took a random sample of 200 students, we’d expect only about (200)(0.16667) = 33 to be women. To gain a more accurate picture of each group, we could take a random sample of 100 from each group. Suppose we do this and record the responses to the question: “Do you favor creation of a new degree program in Women's Studies?” In response, 74 women and 42 men say “Yes”. We estimate that 74/100 = 74% of women favor the new program and 42/100 = 42% of men favor it. To estimate the proportion of all students who favor the program, first we estimate how many students are in favor, as follows:

(0.74)(5,000) = 3,700 women, and

(0.42)(25,000) = 10,500 men.

Then, we estimate that 3,700 + 10,500 = 14,200 of the 30,000 students are in favor; that is

14,200/30,000 = 47.3%.

Methodology

1. Get a random sample.

2. Analyze the sample, i.e., calculate mean, variance, etc....

3. Make inferences about the population from the sample.

4. Give (probabilistic) measures of how good the inference is.

Sampling Distribution of the Mean

There are many occasions in business when we want to know the mean of some random variable, but we find it too expensive or time-consuming to conduct an exhaustive census of all of the N possible data. In this section we study how to make some useful inferences about a population mean from sample data.

We are interested in the population mean (, but since we are using sample data, there will be some uncertainty about our estimate for (. Therefore, we need both a measure of central tendency and a measure of dispersion to describe the behavior of sample means.

To estimate (, we will use 
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 Why? Because:
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Note: 
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 is a known quantity (as we've already taken our sample), but before the sampling, its value was unknown, hence random (as it depends on what sample we get). Whatever number 
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 we happen to see, its expected value is (. This suggests 
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 is a “good” guess or estimate for (. 

We refer to this property (when an estimator’s expected error is zero) as “unbiased”; it is a desirable attribute of an estimator.

If the Xi are normally distributed with mean ( and standard deviation (, then E(
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Hence, 
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 is normally distributed with mean ( and standard deviation 
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. The term 
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 is often called the standard error of the mean, or simply the standard error. 

If an estimator has a low variance (another desirable attribute), we say that it is “efficient”. When estimating population means with sample means, we can make them more efficient by increasing the sample size.

Example: Assume a bank has a large number of personal savings accounts. The mean amount in the accounts is $5,000 and the standard deviation is $1,000. For the sake of argument, let's call someone wealthy if they have more than $6,000 in their account. Then there is about a 16% chance that someone with an account at this bank is wealthy (to see this, calculate P(X > 6000) = P(Z > 1) = 16%). 

Now consider picking a set of 5 accounts and taking an average of the amounts. What do you expect your sample average or mean to be? You expect it to be about $5,000. Now how likely is it that your average is on the wealthy side (( 6,000)? 

It seems reasonable to think that the chances that the average is more than $6,000 are less than the chances that any individual account is more than $6,000. In fact, in order for an average of 5 accounts to be on the wealthy side you would probably need at least 2 or 3 of the accounts to be wealthy and that is not too likely. The fact is that the average of 5 accounts has a standard error of $1000/
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 = 447. Therefore $6,000 is 2.24 (that's [6000-5000]/447) standard errors above the mean. Hence, the chance that an average of 5 accounts comes up wealthy is 

P(
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 > 6000) = P(Z > 2.24) = 0.5 - 0.4875 = 1.25%.

If the Xi's are not normally distributed, but n is large (n ( 30), then using the CLT we can make the same assertion: 
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 is (approximately) normally distributed with mean ( and standard deviation 
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Note: It is clearly unrealistic to assume, as we are doing, that we will be making inferences from a sample when the population parameters are known. In reality we will have sample data, and use it to make inferences about an unknown population. However, we can learn a great deal by studying the kinds of samples that result when the population is known. 

Example: A marketing firm would like to know the number of hours per week that teenagers spend watching television in a particular city. Let the unknown mean be (, that is, the (true) number of hours per week. Let N = size of population = total number of teenagers in the city. This is probably too large a population to perform a census. 

We will sample (randomly) n members out of N (population size). We might telephone a sample of homes and collect data. Our data would look like X1, X2, ..., Xn where Xi = hours per week that teenager i reports having watched TV.

Suppose that the number of hours watched per week (by the teenagers of the city) has mean ( = 15 and ( = 5 and they are normally distributed. What is the probability that with a sample of 40 teenagers, we will find 
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 less than 14 (thereby underestimating the amount of time spent watching TV)?

Example: If the hours in fact average ( = 16 (with ( = 5) what is the probability that we find a sample mean greater than 16.5?

Sampling Distribution of a Proportion

Example: Polling: Let N = size of population = total number of people who vote, and let n = number of people polled. Let p = actual proportion of people who vote for Obama. Let 1 - p = actual proportion of people who vote for Clinton. So, p (before the election) is an unknown population parameter that we would like to know.

Collect data X1, X2, ..., Xn where Xi =  preference of ith person in the sample, either Obama or Clinton. It is easiest to let 
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Therefore, the Xi's are all Bernoulli random variables. Assuming our sample is random, then we know the distribution of 
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. It is Binomial with n trials and probability of success p. The problem is we do not know the value of p since this is what we are trying to estimate.

Recall: If each Xi is Bernoulli (with p as the probability) then 
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 is Binomial with n trials and probability p. We then know (from the binomial) that 


[image: image24.wmf](

)

np

X

E

n

i

i

=

å

=

1

and that 
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Now, suppose that an independent sequence of binomial experiments is performed, in which there is a fixed number of trials (n) in each experiment. On each trial either event A occurs or does not occur, so we can look at the sequence of experiments as being independent trials with probability of success p = P(A).

Let X1, X2, … Xn be the corresponding number of successes in each experiment. The expected number of successes on any one trial is 
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And the expected number of successes in any given experiment (a set of n trials) is: 
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Now, recall from page 5 that
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For proportions, this can be rewritten as
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This means that the sampling standard deviation of a proportion is given by:
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In case of proportions, we sometimes write 
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 to designate 
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. (They are both used to represent the sample proportion, but we like to highlight when we are talking about a proportion and not just any old random variable.) So

E(
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) = p and 
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We can see that on average (from sample to sample), 
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 will vary from the actual p with a standard deviation of 
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The question remains: what is the distribution of 
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? The Central Limit Theorem can be invoked here (as long as n ( 30). We know, therefore, that 
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 is approximately normally distributed with mean p and standard error 
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Example: If the true proportion of people voting for Obama is 38% (that's p), what is the probability of randomly sampling 100 people and getting a proportion of at least 44% for Obama? This means, given that the true p is 0.38, what is the chance of getting a sample of 100 people with at least 44 for Obama?
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What about if we ask 1000 people?
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To recap:

· If the Xi's are normally distributed (or n ( 30), then 
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 is normally distributed with mean ( and standard deviation
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· If, for a proportion, n ( 30 then 
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 is normally distributed with mean p and standard deviation 
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Confidence Intervals

Given 
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, is there an error term we can associate with this value? That is, is there an interval we can say contains with high probability the true value of ( or p? 

For example, if we find 520 voters out of 1000 for Obama, is it possible to say with a high degree of certainty that the true percentage of voters who will vote for Obama is 52% plus or minus 2%? That is, his support is almost sure to be between 50% and 54%? 

This interval (50%, 54%), or 52% ( 2% is a confidence interval. The confidence level (usually denoted 1 - () is the probability that the true population parameter falls in the interval. 

Usually, ( (alpha) is chosen to be either 10, 5 or 1 percent, so the confidence levels used are usually either 90%, 95% or 99%.

For Normal Distributions or Large Samples

Usage: When the underlying distribution is normal with a known standard deviation, or when the sample is “large”, that is, n ( 30. 

Example: A market researcher wants to estimate the mean number of years of school completed by residents of a particular neighborhood. A simple random sample of 90 residents is taken, the mean number of years of school completed being 8.4 and the sample standard deviation being 1.8. 

Let's try to make probabilistic assessments of our 
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 estimate of ( (the true average number of years of school completed). Clearly our best estimate of ( at this point is 
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 = 8.4 years. But to account for variability in our sample, we will give a confidence interval for (. Since we have a large sample, according to the CLT, 
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 is a standard normal random variable (if we had a small sample then we would need to assume that the original Xi 's were normal). Therefore:
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Rearranging this, we get: 
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If the standard deviation ( is known, then we can calculate this confidence interval. However, in real life the standard deviation is usually unknown. If we have a large sample then s (the sample's standard deviation) is very close to ( anyway, so we can use s (a known quantity) instead of ( (unknown). In this case, a 95% confidence interval for ( is 
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Plugging in the numbers, we get the following interval: 
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We can say with 95% confidence that the actual mean number of years is 8.4 plus or minus 0.372 years, or between 8.028 and 8.772 years.

We have derived an interval (based on a random quantity 
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) which should contain the unknown ( with probability 95%. This is our 95% confidence interval. How would you construct a 90% confidence interval? An 80% confidence interval?

Example: What is a 90% confidence interval for the average number of years? Do you expect this interval to be wider or narrower than the 95% confidence interval? Again s = 1.8, n = 90 and 
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 = 8.4. For 90% confidence we need to replace the 1.96 with 1.645:
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Therefore we are 90% confident that the true ( is between 8.088 and 8.712.

For Proportions

Usage: When the underlying distribution is Binomial with unknown p, and when the sample is large (n ( 30).

Recall 
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 = sample proportion, and p = population proportion. By the Central Limit Theorem, 
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 is normal with mean p and standard deviation 
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To build a 95% confidence interval for p, we might try to mimic what we've done before, i.e., a 95% confidence interval for p is as follows: 
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What is wrong with this? There are terms with p in it, and p is what we are trying to find!

Simple solution: (But it is approximate.) In the error term, use 
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 instead of p, i.e., approximate the standard deviation of 
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Example: p = proportion of voters who would vote for Obama. We ask 300 people and find 
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 = 0.44 (that is, 132 people for Obama). So a 95% confidence interval for p is: 
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A report on this poll might say “Obama's percentage support is 44% with a margin of error of plus or minus 5.6%.”

Normal Distributions with Small Samples

Usage: When the underlying distribution is normal with unknown standard deviation and the sample is small (( 30).

So far when Xi was normally distributed with mean ( and standard deviation ( we either have assumed that ( is known or we used s (for large samples) and we only needed to estimate (. Of course, in reality, ( may not be known and since it is a population parameter, it must be estimated from the data. For a small sample, s may not be very close to (. We will use s anyway as our estimate of (, but we must make a few changes in our confidence intervals. 

Based on our large-sample method for confidence intervals for (, we would base the small-sample confidence interval on the quantity
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and get similar forms for our confidence intervals. For n ( 30 this is mathematically correct by the Central Limit Theorem. 

(
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is a standard normal random variable, since for large samples s is a good approximation of (.) 

However, if n < 30, our sample size is too small to invoke the C.L.T., and we need to know the probabilistic behavior of the random variable,
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William S. Gosset (1876-1937) first described the distribution of T in 1908. He wrote under the pen name Student, and to this day we call this variable "Student's T". We will use T instead of Z when the underlying distribution is normal with unknown standard deviation and the sample is small.
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	W. S. Gosset
	


Properties of the t distribution with n - 1 degrees of freedom (n > 3):

1) Symmetric (just like normal)

2) Mean is 0.

3) 
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T is a statistic that can be thought of very much like the now-familiar Z; its units are standard deviations. The principle difference between Z and T lies in the fact that T is influenced by n, as you can see by looking at the standard deviation formula. 

Note that 
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; thus T has greater dispersion than Z (the standard normal variable), especially for small values of n. As n increases, the t distribution becomes more and more like the normal distribution.
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	3
	1.732
	18
	1.061

	4
	1.414
	19
	1.057

	5
	1.291
	20
	1.054

	6
	1.225
	21
	1.051

	7
	1.183
	22
	1.049

	8
	1.155
	23
	1.047

	9
	1.134
	24
	1.044

	10
	1.118
	25
	1.043

	11
	1.106
	26
	1.041

	12
	1.095
	27
	1.039

	13
	1.087
	28
	1.038

	14
	1.080
	29
	1.036

	15
	1.074
	30
	1.035


As with the normal distribution, we have a t-table. Since a different number of degrees of freedom determines a different distribution, the table only lists certain “critical values” of the t distribution. (See page 292 in Levine for a discussion of the concept of degrees of freedom.)

We can consider an observed t-value (i.e., the actual number 
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) as the number of standard deviations 
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 is to the right or left of its mean.

For n < 30, if we observe the data X1, X2, ..., Xn, we calculate 
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 and s. A 95% confidence interval for ( is now
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where t(n - 1, 0.025) is the point in the t distribution with n - 1 degrees of freedom that has 2.5% of the area under the curve to its right.

Example: Due to time restrictions, we were only able to get data for 18 people in the earlier example on the number of years of school. If the data have a bell shaped distribution (we need to assume this), then we can apply the above technique. Assume we found 
[image: image96.wmf]X

 = 7.9 and s = 2.5. To get a 95% confidence interval for (, the number of degrees of freedom is 18 - 1 = 17, and t(17, 0.025) = 2.11.
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Therefore, the confidence interval is (6.66, 9.14).

Example: In a study to determine the average dollar amount of loan requests at a suburban bank, the mean of a random sample of 25 requests was $7,500, and the (sample) standard deviation was $1,000. Assuming the loan requests are normally distributed, estimate with 90% confidence the mean loan request of all the bank's customers. 

Comparing Two Populations 

Example: Wall Street Journal runs a contest comparing the performance of stocks chosen by a experts to stocks chosen by throwing darts at the stock listings. The returns on the stocks picked by the experts and the darts are listed in the following table:

	#Period
	6-mo Per. Ending
	Experts
	Dartboard
	#Period
	6-mo Per. Ending
	Experts
	Dartboard
	#Period
	6-mo Per. Ending
	Experts
	Dartboard

	1
	Jun-90
	0.13
	0.00
	41
	Oct-93
	5.00
	-4.90
	81
	Feb-97
	47.60
	24.60

	2
	Jul-90
	26.40
	1.80
	42
	Nov-93
	-7.40
	-21.40
	82
	Mar-97
	-10.00
	-16.90

	3
	Aug-90
	2.50
	-14.30
	43
	Dec-93
	2.20
	42.20
	83
	Apr-97
	-13.60
	-9.70

	4
	Sep-90
	-20.00
	-7.20
	44
	Jan-94
	27.80
	18.50
	84
	May-97
	10.50
	-21.40

	5
	Oct-90
	-37.80
	-16.30
	45
	Feb-94
	3.70
	1.50
	85
	Jun-97
	20.20
	18.00

	6
	Nov-90
	-33.30
	-27.40
	46
	Mar-94
	4.70
	-9.20
	86
	Jul-97
	29.30
	-13.90

	7
	Dec-90
	-10.20
	-22.50
	47
	Apr-94
	5.40
	-10.50
	87
	Aug-97
	20.70
	0.10

	8
	Jan-91
	-20.30
	-37.30
	48
	May-94
	-9.50
	1.40
	88
	Sep-97
	50.30
	35.60

	9
	Feb-91
	38.90
	-2.50
	49
	Jun-94
	-13.10
	-8.70
	89
	Oct-97
	38.40
	20.70

	10
	Mar-91
	20.20
	11.20
	50
	Jul-94
	-10.00
	16.90
	90
	Nov-97
	-3.50
	6.50

	11
	Apr-91
	50.60
	72.90
	51
	Aug-94
	28.40
	-4.30
	91
	Dec-97
	-14.10
	6.50

	12
	May-91
	66.90
	16.60
	52
	Sep-94
	10.60
	20.60
	92
	Jan-98
	14.30
	-9.00

	13
	Jun-91
	7.50
	28.70
	53
	Oct-94
	27.20
	10.30
	93
	Feb-98
	10.90
	-3.30

	14
	Jul-91
	17.50
	44.80
	54
	Nov-94
	37.00
	-6.80
	94
	Mar-98
	5.50
	13.30

	15
	Aug-91
	39.60
	71.30
	55
	Dec-94
	-15.80
	5.30
	95
	Apr-98
	17.40
	-10.50

	16
	Sep-91
	15.60
	2.80
	56
	Jan-95
	20.40
	2.80
	96
	May-98
	0.00
	28.50

	17
	Oct-91
	12.40
	38.00
	57
	Feb-95
	5.40
	11.90
	97
	Jun-98
	24.40
	3.20

	18
	Nov-91
	3.00
	-23.20
	58
	Mar-95
	-14.80
	3.80
	98
	Jul-98
	39.30
	-10.10

	19
	Dec-91
	12.30
	4.10
	59
	Apr-95
	12.10
	1.40
	99
	Aug-98
	-18.80
	-20.40

	20
	Jan-92
	39.30
	-14.00
	60
	May-95
	10.80
	9.00
	100
	Sep-98
	-20.10
	-34.20

	21
	Feb-92
	51.20
	11.70
	61
	Jun-95
	72.70
	11.80
	101
	Oct-98
	
	

	22
	Mar-92
	25.20
	1.10
	62
	Jul-95
	30.50
	16.50
	102
	Nov-98
	
	

	23
	Apr-92
	-3.30
	-3.10
	63
	Aug-95
	26.70
	11.40
	103
	Dec-98
	
	

	24
	May-92
	7.70
	-1.40
	64
	Sep-95
	75.00
	3.30
	104
	Jan-99
	
	

	25
	Jun-92
	-21.00
	7.70
	65
	Oct-95
	12.60
	17.60
	105
	Feb-99
	21.30
	76.30

	26
	Jul-92
	-13.00
	15.40
	66
	Nov-95
	31.00
	23.80
	106
	Mar-99
	33.30
	24.60

	27
	Aug-92
	-2.50
	3.60
	67
	Dec-95
	-11.00
	18.70
	107
	Apr-99
	7.20
	1.40

	28
	Sep-92
	-19.60
	5.70
	68
	Jan-96
	28.10
	-2.40
	108
	May-99
	24.30
	9.90

	29
	Oct-92
	6.30
	-5.70
	69
	Feb-96
	15.10
	25.40
	109
	Jun-99
	24.90
	-4.30

	30
	Nov-92
	-5.10
	6.90
	70
	Mar-96
	1.50
	50.50
	110
	Jul-99
	23.50
	12.60

	31
	Dec-92
	14.10
	1.80
	71
	Apr-96
	10.80
	24.40
	111
	Aug-99
	-12.90
	9.00

	32
	Jan-93
	15.60
	-13.90
	72
	May-96
	2.00
	11.50
	112
	Sep-99
	-4.20
	7.00

	33
	Feb-93
	-26.70
	15.60
	73
	Jun-96
	-9.20
	-5.30
	113
	Oct-99
	1.50
	1.80

	34
	Mar-93
	25.20
	18.70
	74
	Jul-96
	-8.60
	2.60
	114
	Nov-99
	67.60
	-5.30

	35
	Apr-93
	-13.90
	-3.60
	75
	Aug-96
	31.70
	-5.70
	115
	Dec-99
	10.50
	0.90

	36
	May-93
	27.90
	6.60
	76
	Sep-96
	8.70
	7.80
	116
	Jan-00
	42.80
	130.40

	37
	Jun-93
	-6.60
	4.70
	77
	Oct-96
	7.00
	2.00
	117
	Feb-00
	-17.70
	24.10

	38
	Jul-93
	29.10
	-43.00
	78
	Nov-96
	5.10
	6.20
	118
	Mar-00
	
	

	39
	Aug-93
	0.30
	-5.60
	79
	Dec-96
	41.20
	6.90
	119
	Apr-00
	40.60
	13.90

	40
	Sep-93
	2.60
	-17.70
	80
	Jan-97
	7.70
	4.70
	120
	May-00
	-8.50
	-9.40


For the experts 
[image: image99.wmf]X

 = 11.6% and sX = 22.4%, for the darts 
[image: image100.wmf]Y

 = 6.5% and sY = 22.8%.

Confidence Intervals for the Difference in Means

Let Xi be the return in the ith period for the stocks picked by the experts, and let Yi be the return in the ith period for the stocks picked by the darts. Assume the population parameters for the experts are E(Xi)=(X and ((Xi) = (X. For the darts: E(Yi) = (Y and ((Yi) = (Y. 

We have a sample of nX = 115 returns on the experts' stocks and nY = 115 returns on the darts' stocks. To estimate (X and (Y we'll use 
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 and 
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, respectively. 

We know that 
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. (We know this because in this case we have large samples, but if we had small samples we would need to assume that the distribution of stock returns is normal.)

To compare the experts to the darts, we will estimate the value of (X - (Y. If we can say this difference is positive, then the experts are better pickers of stocks. If it is negative, then the darts are better. There are two types of situations that can arise when comparing two populations: matched pairs and independent samples. 

Matched Pairs: Two data samples are considered to be “matched pairs” if there is a clear matching between each member of one sample and a corresponding member of the other. For example, if we were testing the effectiveness of a speed reading course, one possible approach would be to test each student before taking the course (that would be sample data 1) and then test each student after taking the course (that would be sample data 2). Then there is a clear correspondence between each data point in sample 1 and each data point in sample 2, namely each student appears once in each sample.

Independent Samples: Two data samples are considered to be “independent samples” if they are not matched pairs. For example, a quality inspector may sample items from two assembly lines in different factories. Clearly item 1 in sample 1 is in no way related to item 1 in sample 2.

Matched Pairs

Usage: When the two underlying distributions are normal, and when each observed value of X has a logical correspondence to an observed value of Y.

We will see that this method is identical to methods we have used before. In the case of the stock data, it is reasonable to use the matched pairs method. Why? Note that each of these stocks can be matched by the date (month) in which its performance was tracked. And it is reasonable to assume that returns in the same month are somewhat correlated. What we will do is calculate the difference between each matched pair and build a confidence interval on that average difference. Let Di = Xi - Yi, that is, calculate the difference between the experts’ stock return and the darts’ stock return for each month.

For example:

	D1 
	= 0.13% - 0.00%
	= 0.13%

	D2 
	= 26.40% - 1.80%
	= 24.60%

	etc...
	
	


Now consider these values D1, D2, …, Dn as data from one sample. We calculate: 
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Now using the methodology of the previous sections, we can build a 95% confidence interval for the quantity (X - (Y in the following way:
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Plugging in the numbers:
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Equivalently, the true difference is somewhere in the interval (0.303%, 9.981%). 

[image: image113.jpg]Experts' % Returns - Darts' % Returns (Matched Pairs)
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We are 95% confident that the true population difference between experts and darts is somewhere between 0.303% and 9.981%. 

Since this interval is entirely in the positive range (> 0), we conclude that we are 95% confident that the experts are better stock pickers than the darts. (This is a crude form of hypothesis testing, a topic we will explore more rigorously in the next part of this course.)

Independent Samples

Usage: When the two underlying distributions are normal with known standard deviations, or when the two samples are large. This method has less statistical power than matched pairs; when the conditions for using matched pairs are met, then it is preferable to use matched pairs.

Example: A New York market research firm wants to compare the average price of pairs of shoes in Chicago with that in New York. It picks a random sample of 50 shoe stores in Chicago, and finds that the mean price is $56.35, the standard deviation being $3.42. It picks a random sample of 50 shoe stores in New York, and finds that the mean price is $58.15, the standard deviation being $4.13.

Let (X be the actual average price in Chicago and let (Y be the actual average price in New York, with (X and (Y, the standard deviations. Let nX and nY be the sample sizes (both 50). In this case we have independent samples, so to estimate (X - (Y (the actual difference in price) we'll use 
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. Now let's study this random variable. It is clearly normally distributed, and:
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Therefore, (
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) is a normally distributed random variable with mean of (X - (Y and a standard deviation of 
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We can now use the previous techniques to build a 95% confidence interval for (X - (Y:
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If (X and (Y are not known but the samples are large, one can use sX and sY (the sample standard deviations) instead. A 95% confidence interval for (X - (Y in this case is:

(
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Plugging in the numbers, we get:

(56.35 - 58.15) ( 1.96
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-1.80 ( 1.49 = (-3.29, -0.31).

So, with 95% confidence we can conclude that shoes in Chicago are cheaper than in New York.

Darts and experts revisited: If we use the independent samples method on the stock-picking data, we get:

	Confidence Interval
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	Or
	(-0.70%, 10.98%)
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Using the same data (but a less precise method) we are 95% confident that the true population difference between experts and darts is somewhere between 
-0.702% and +10.986%. 

The difference in statistical precision between matched pairs and independent samples is just enough to change our previous conclusion. We are no longer 95% confident that the experts pick stocks better than the darts.

Confidence Intervals for the Difference in Proportions

Usage: Underlying distributions are Binomial with unknown p values for each, and both samples are large.

Example: A U.S. senator from Michigan believes that the percentage of voters favoring a particular proposal is higher in Detroit than in other parts of the state. He picks a random sample of 200 Detroit voters and finds 59 percent favor the proposal. He picks a random sample of 200 Michigan voters from outside Detroit and finds 52 percent favor the proposal. What can we say about the actual difference between the support inside and outside of Detroit?

Let pD be the probability that a person from Detroit favors the proposal.

Let pM be the probability that a person from Michigan (outside of Detroit) favors the proposal.

Both of these are unknown quantities.

Let nD = 200 be the number of voters sampled from Detroit, and let nM = 200 be the number of voters sampled from outside Detroit.

The senator would like to determine the value of pD - pM, that is, if this value is positive, then Detroit voters are more likely to favor the proposal, while if it is negative, then Detroit voters are less likely to favor the proposal. In order to understand pD - pM, we will naturally study 
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Using the CLT, we know that 
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M is normally distributed with mean pD - pM and standard deviation 
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M in the variance formula (because these are large samples) we get: 
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pD - pM and standard deviation 
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Thus, reorganizing into a confidence interval, we can say that with confidence level 95%: 
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Example: In our example, a 95% confidence interval for pD - pM can be calculated as follows. First determine your observed probability of a Detroit voter supporting the proposal, that is, 
[image: image167.wmf]p

ˆ

D = 0.59. Also determine the observed probability of a non-Detroit voter supporting the proposal, that is, 
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M = 0.52.

Then calculate:
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 = 0.0496.

So (0.59-0.52) ( 1.96 (0.0496) = 0.07 ( 0.097.

The 7% observed difference is not a statistically significant difference. That is, it is still possible that the two populations (Detroiters and non-Detroiters) have identical views on the proposal and the observed difference is due to chance alone. 

Determining the Appropriate Sample Size

Normal Distribution with Known Standard Deviation

Suppose you are sampling from a normal distribution with unknown mean ( but with a known standard deviation (. You sample n observations and construct the following 95% confidence interval for (: 
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This interval is centered at 
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 with a half-width (or acceptable sampling error) of 
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If you wanted to fix the half-width e in advance, what sample size should you choose? Rearranging, we get:
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, and
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The choice of a sample size at least this large will ensure a half-width of at most e or, equivalently, an interval of width 2e.

Example: A medical statistician wants to estimate the average weight loss of people on a new diet plan. In a preliminary study, she found that the standard deviation of the weight lost tended to be about 3 pounds. How large a sample is needed to approximate the true average weight loss within 0.5 pounds accuracy with 99% confidence?

We want a half-width of e = 0.5, ( = 3, and 99% confidence corresponds to 2.575 standard deviations, so: 
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At least 239 tests will have to be performed in order to guarantee this accuracy and confidence level.

Let's check our answer: If we do 239 tests and get an 
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 = 8.2, then our interval with a confidence level of 99% is: 
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This interval is of the correct length as determined by our choice of e.

For Proportions 

We saw that a 95% confidence interval for the proportion is: 
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Then the half-width of this interval is: 
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Thus, 
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and the correct sample size is obtained by squaring both sides:
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But 
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 is unknown before we take the sample! For each particular value of 
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, the formula gives the smallest value of n we can use. To determine the smallest value of n we can use for any 
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, we need to figure out what is the largest value this expression can take on. That is, find the 
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 = 0.5, and hence the maximum value of 
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So we know that whatever our 
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 will be we are guaranteed to have a large enough sample if we choose: 
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Example: Before asking people who they would vote for, a polling company decided that they wanted an accuracy of plus or minus 3 percentage points with a confidence level of 95%. How many people should they poll? In this case we use 1.96 standard deviations and e = 0.03. 
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So, they should poll at least 1068 people. (Be careful with this formula; note that the 3% must be put in as 0.03).

Excel Application

The Excel’s Descriptive Statistics has a built-in t-based confidence interval feature. Here’s how it works.

Start with 40 data (numbers of units sold over 40 days):

	5
	3
	7
	2
	4

	7
	8
	7
	7
	6

	9
	2
	7
	8
	4

	7
	4
	8
	6
	9

	4
	7
	3
	9
	2

	6
	6
	10
	9
	8

	5
	5
	6
	6
	6

	5
	5
	4
	5
	7


We enter those 40 data into column B of a spreadsheet. The spreadsheet goes for 40 rows of data; we’re just showing the top few rows.
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Here’s one way to calculate the limits on a 95% confidence interval:
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Here’s how to do it using Descriptive Statistics:
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Note that Excel doesn’t give you the confidence interval limits, but it does give you the “plus-or-minus” calculation (the 0.663579). Also note that this is based on t, not z, no matter how large the sample size is.
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