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Part VI: Simple Regression

"My own war work is obviously to brew Guinness stout in such a way as to waste as little labour and material as possible, and I am hoping to help to do something fairly creditable in that way."

 — W. S. Gosset (1876-1937)
Simple Regression is a statistical tool that uses data to estimate the slope and intercept of a line. This can be a very useful tool for managers, because many relationships between business variables are linear. If we understand the underlying relationship between an independent variable X and a dependent variable Y, then we can use a regression model to make forecasts or predictions about Y based on information about X.

In addition to providing us with estimates of the slope and intercept of the line, simple regression provides other statistics that can be used to create several useful confidence intervals and hypothesis tests. 

The term “simple” indicates that there is one independent variable; regression models with more than one independent variable come under the category of “multiple regression”.

The basic simple regression model:

	Expected value of Y, given a specific value of X
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(0 and (1 (the intercept and slope of the regression line, population parameters) are not known exactly, but are estimated from sample data. The central problem in regression, therefore, is to find good estimates of these two parameters, denoted 
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. This gives us:
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This model only yields an expected value for Y, and we expect there always to be some random difference between the value of Y predicted by the model and the actual observed value. This difference is called the residual error, and is represented by the random variable ( (the Greek letter epsilon), which takes on specific values e1, e2, etc. Another important regression problem is to estimate the distribution of (.
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 or, equivalently, 
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Real Estate Example

Suppose we want to predict the selling prices of houses in the region. Intuitively, we should compare the house for which we need a predicted selling price with houses that have sold recently in the same area, of roughly the same size, same style etc. Unfortunately, the list of houses meeting these criteria may be quite small, or there may not be a house of exactly the same characteristics. Therefore, we need to consider the factors that determine the selling price of a house in this region.

When X (house size) is fixed at a level x, then we assume the mean of Y (selling price) to be linear around the level x, where (0 is the (unknown) intercept and (1 is the (unknown) slope or incremental change in Y per unit change in X.

Assume that we have collected recent historical data on selling prices, and also a number of characteristics about each house sold (size, age, style, etc.). If asked to predict the selling price of a house without any particular knowledge of the house, we have no other choice but to use the average selling price of all of the houses in the data set. One of the factors that cause houses in the data set to sell for different amounts of money is the fact that houses come in various sizes. A preliminary model might posit that the average value per hundred square feet of a new house is $4 and that the average lot sells for $20,000. The predicted selling price (in thousands of dollars) of a house of size X (in hundreds of square feet) would be: 20 + 4X
Then a house of 2,000 square feet would be estimated to sell for 

20 + 4(20) = 100, or $100,000.

We know, however, that this is just an approximation, and the selling price of this particular house of 2,000 square feet is not likely to be exactly $100,000. Prices for houses of this size may actually range from $50,000 to $150,000. In other words, the deterministic model is not really suitable. We should therefore consider a probabilistic model. Let Y be the actual selling price of the house. Then:

Y = 20 + 4x + (,

where ( (Greek letter epsilon) represents a random error term (which might be positive or negative). If the error term is usually small, then we can say the model is a good one; in other words it tends to make accurate predictions. The random term, in theory, accounts for all the variables that are not part of the model (for instance, lot size, neighborhood, etc.). The value of ( will vary from sale to sale, even if the house size remains constant. That is, houses of the exact same size may sell for different prices.

Least Squares Estimation

We sample 15 houses from the region:

	
	Actual
	House

	
	Selling Price
	Size

	House
	($1,000s)
	(100s ft2)

	Number
	Y
	X

	1
	89.5
	20.0

	2
	79.9
	14.8

	3
	83.1
	20.5

	4
	56.9
	12.5

	5
	66.6
	18.0

	6
	82.5
	14.3

	7
	126.3
	27.5

	8
	79.3
	16.5

	9
	119.9
	24.3

	10
	87.6
	20.2

	11
	112.6
	22.0

	12
	120.8
	19.0

	13
	78.5
	12.3

	14
	74.3
	14.0

	15
	74.8
	16.7

	Averages
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 = 88.84
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With only two columns of data, we can make a scatter plot:
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The data in our scatter plot do not form a perfect line. This is not surprising, considering that our data are random. In other words, our line predicts the mean for any given level x. However, when we actually take a measurement (i.e., observe the data), we observe:

Yi = (0 + (1X + (i, 
for i = 1,2,…, n = 15,

where (i is the random error associated with the ith observation. Since we don't know the true values of (0 and (1, it is clear that we do not observe the actual errors ((i) precisely either.

Here is our scatter diagram with the line Y = 20,000 + 40x  superimposed.
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	Slope = 4, Intercept = 20
	Slope = 3, Intercept = 20
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	Slope = 4, Intercept = 30
	Slope = 3, Intercept = 30


These lines appear to fit the data fairly well, but which is the “best” line? There are a number of criteria by which we could judge which combination of slope and intercept make the “best” line. It is conventional to use the criterion of “least-squares”; we will use the line that minimizes the sum of the squared residual errors.

Assumptions about the Error

· E((i ) = 0 for i = 1, 2,…,n.

· (((i ) = (( where (( is unknown.

· The errors are independent, that is, the error in the ith observation is independent of the error observed in the jth observation, for all i and j.

· The (i are normally distributed (with mean 0 and standard deviation (().

These assumptions can be interpreted in another way: for each value of X (house size), Y (selling price) is normally distributed with mean (0 + (1X and standard deviation ((.

Recall (0 and (1 are (unknown) population parameters. From the sample data, we will calculate numbers 
[image: image16.wmf]0

b

ˆ

 and 
[image: image17.wmf]1

b

ˆ

 that are estimates of the population parameters. How should these numbers be chosen? For any choice of 
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, we can write the following prediction equation:
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The “hat” is used to denote a value estimated from the model, as opposed to one that is actually observed. For each house in our sample of 15 we could check to see how well this equation works at predicting the actual selling prices. Define ei to be the error associated with the ith observation. That is:

	ei
	= Yi - 
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	= (actual selling price) - (estimated selling price).


These are sometimes called the residuals or simply errors. These we can calculate.

We will pick the values of 
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, the sum of the squares of the residuals. This method is often called Least Squares Regression.

Here’s a picture of our data, showing the average selling price of all houses (the horizontal line at $88,840), the regression line (with a Y intercept of $18,354 and a slope of $3,879 for every 100 additional square feet of size), the predicted selling prices of the houses (the “hollow” dots on the regression line) and the actual observed selling prices (the solid dots).
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In the graph below, we zoom in and take a close look at house #11 from our sample.
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The Output from Excel

We will use the computer to do most of the calculations. Running the regression in a spreadsheet gives the following standard output. Microsoft Excel also gives upper and lower limits for confidence intervals around the estimated coefficients, which have been omitted here.

Regression Statistics

	Multiple R
	0.805

	R Square
	0.648

	Adjusted R Square
	0.620

	Standard Error
	12.997

	Observations
	15


Analysis of Variance 

	
	df
	SS
	MS
	F
	p-value

	Regression
	1
	4034.414
	4034.414
	23.885
	0.00030

	Residual
	13
	2195.822
	168.909
	
	

	Total
	14
	6230.236
	
	
	


	
	Coeff
	Stnd Error
	t-Stat
	p-value

	Intercept
	18.354
	14.808
	1.239
	0.23708

	X1
	3.879
	0.794
	4.887
	0.00030


Using the Equation

Reading from the output: 
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 = 18.354 and 
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 = 3.879. The regression line is then:
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 = 18.354 + 3.879X
that is, 

Predicted Selling Price = 18.354 + (3.879 ( House Size).

If you predict the selling price of a house of 1,650 square feet, you simply plug in the value 16.50 (1,650 translated to 100s of square feet) in the regression equation: 

Predicted Selling Price = 18.354 + 3.879 (16.50) = 82.357.

Then translate your answer to a dollar amount, i.e., $82,357. This is the best estimate you have of the selling price of this house, that is, without any further information about the house (e.g., neighborhood, number of rooms, lot size, age, etc.).

Interpreting the Coefficients

The coefficient 
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 = 3.879 (in $1,000s) means that for each additional 100 square feet of house, the estimated price increases by $3,879. So each square foot adds 

3,879/100 = $38.79

to the estimated price of the house. To see this, consider two houses: one of 2000 square feet and one of 2001 square feet. Then the difference in price predicted by the model is:

	[18.354+3.879(20.01)] - [18.354 + 3.879(20.00)]
	= 3.879(0.01) 

	
	= 0.03879(in $1000s) 

	
	= $38.79


The intercept is 
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 =18.354. Technically, this means that a house with 0 square feet should sell for $18,354. That is, the plot of land is worth $18,354 on average. This is not necessarily true and may be quite inaccurate. In many models, the intercept 
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 does not necessarily have any meaning. As a general rule, we should not attempt to determine the value of Y for a value of X that is far outside the observed range of the values of X. In this case the range of X, that is, the range of house sizes is 12.3 ( X ( 27.5. Since 0 is far outside this range, we cannot safely interpret the value of Y when X = 0.

Analyzing a Regression

Method I: Estimating the Standard Error

From our assumptions about the error, the magnitude of (( should be a good guide to the accuracy of a prediction. The number (( is a population parameter, so we cannot know for certain what its value is. We therefore use an estimate s( that is provided in the regression output under the name “standard error of the estimate” or just “standard error.”

To understand how this number is calculated, let Xi be the size of the ith house and Yi be the actual selling price of the ith house. Define the predicted selling price for house i to be:


[image: image35.wmf]i

Y

ˆ

 = 
[image: image36.wmf]0

b

ˆ

 + 
[image: image37.wmf]1

b

ˆ

Xi
Here are the values along with the errors (residuals) and squared errors:

	House Number
	Selling Price ($1,000s)


	House Size (100s ft2)

	Predicted Selling Price ($1,000s)
	Residuals


	Squared Residuals
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	1
	89.5
	20.0
	95.92
	-6.42
	41.28

	2
	79.9
	14.8
	75.76
	4.14
	17.17

	3
	83.1
	20.5
	97.86
	-14.76
	217.98

	4
	56.9
	12.5
	66.84
	-9.94
	98.72

	5
	66.6
	18.0
	88.17
	-21.57
	465.17

	6
	82.5
	14.3
	73.82
	8.68
	75.39

	7
	126.3
	27.5
	125.01
	1.29
	1.65

	8
	79.3
	16.5
	82.35
	-3.05
	9.30

	9
	119.9
	24.3
	112.60
	7.30
	53.25

	10
	87.6
	20.2
	96.70
	-9.10
	82.82

	11
	112.6
	22.0
	103.68
	8.92
	79.53

	12
	120.8
	19.0
	92.05
	28.75
	826.78

	13
	78.5
	12.3
	66.06
	12.44
	154.75

	14
	74.3
	14.0
	72.65
	1.65
	2.71

	15
	74.8
	16.7
	83.13
	-8.33
	69.32

	Sum
	
	
	
	
	2195.82

	Average
	88.84
	18.17
	88.84
	0.0
	146.39


The number SSE is defined as the total residual sum of squares, or the sum of squares of the errors. (The number 2195.82 in the above table.) This number is:
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It is also provided in the "ANOVA" (analysis of variance) section of the regression output under the heading “SS” and next to the word “Residual.”

Our estimate of ((, or s( , should be roughly 
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 (think of a standard deviation calculation). Unfortunately, we must make one adjustment. The estimate s( is calculated as follows: 

s( = 
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The reason why we divide by n - 2 and not n - 1 has to do with the degrees of freedom issue. (We used n - 1 before because we were trying to estimate one parameter, the population mean (, from a sample. In simple regression, we are trying to estimate 2 parameters, namely (0 and (1.) In this case, since SSE = 2195.822 and n = 15, so s( = 12.997. You can see that this is also provided in the "Regression Statistics" section of the regression output next to the word “standard error.”

The value of s( gives us some idea of the standard deviation of the errors if the model is used to estimate selling prices. In addition, we will make use of the normality assumption to help us make assessments of a prediction.

Making Predictions

Consider using the regression line to predict and estimate values of selling price (Y). Suppose a house occupies 2,000 square feet, what do we predict as the selling price?
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 = 18.354 + 3.879X = 18.354 + 3.879(20) = 95.94 = $95,940.

If we want to determine the error (the plus or minus amount) associated with this prediction, we need to distinguish between the following types of predictions: 

· prediction interval: This is used if our goal is to determine a 95% confidence interval on the actual selling price of the house. This is sometimes called a prediction interval. A 95% prediction interval for the actual selling price is given by: 
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· confidence interval: This is used if our goal is to determine a 95% confidence interval on the mean selling price of all houses of this size (2,000 square feet). It is:
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Note: the above examples use the t distribution with n - 2 degrees of freedom. If n - 2 ( 30 then the standard normal distribution can be used instead.

Example: If a house occupies 2,000 square feet, a 95% prediction interval for the actual selling price is given by:

95.94 ( 2.160 (12.997) = 95.94 ( 28.07.

Or put another way, the interval is $95,940 ( $28,070. This is ($67,870, $124,010).

Example: A 95% confidence interval for average selling price of all houses of 2,000 square feet is:

95.94 ( 2.160 
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 = 95.94 ( 7.25 ( 88.69, 103.19).

Method II: Making Inferences about Coefficients

Another method of assessing the accuracy of the model involves determining whether a particular variable like house size has any effect on the selling price. Suppose we could figure out the true (0 and (1 for this example.

Suppose that when a regression line is drawn it produces a horizontal line. This means the selling price of the house is unaffected by the size of the house. A horizontal line has a slope of 0, so when no linear relationship exists between an independent variable and the dependent variable we should expect to get (1 = 0. But of course, we only observe 
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, which might only be “close” to zero. To systematically determine when (1 might in fact be zero, we will make inferences about it using our estimate 
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, specifically, we will do hypothesis tests and build confidence intervals.

Testing (1 

We can test any of the following:

	H0 : (1 = 0
	
	H0 : (1 ( 0
	
	H0 : (1 ( 0
	

	HA : (1 ( 0
	
	HA : (1 < 0
	
	HA : (1 > 0
	


In each case, we know the null hypothesis can be reduced to H0: (1 = 0. The test statistic in each case is:

T = 
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 and the standard deviation of 
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) is taken directly from the output. In this case 
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 = 0.794. The test statistic T has a t-distribution with n - 2 degrees of freedom and can be approximated by a standard normal when n - 2 ( 30.

Example: Can we conclude at the 1% level of significance that the size of a house is linearly related to its selling price? Test:

H0 : (1 = 0

HA : (1 ( 0

(Note this is a two-sided test, we are interested in whether there is any relationship at all between price and size.) We calculate 

T = (3.879 - 0) / 0.794 = 4.88.

(Note this number appears in the output as well, under "t-stat".)

That is, we are 4.88 standard deviations from 0. So at the 1% level (corresponding to thresholds ( t(13, 0.005) = ( 3.012), we reject H0. There is sufficient evidence to conclude that house size does linearly affect selling price.

To get a p-value on this we would need to look up 4.88 inside the t-table. Unfortunately our table doesn't go beyond three standard deviations,  and thus we conclude that the p-value is very small. The p-value of this test also appears in the output, it is 0.00030 or 0.030%; very small indeed. (See under the word p-value in the output.)

Estimating (1 

We can also give a confidence interval for (1 based on 
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. A 95% confidence interval for (1 is given by:
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Example: A 95% confidence interval for (1 is: 

3.879 ( (2.160)(0.794) = 3.879 ( 1.715.

This interval ranges from 2.164 to 5.594. Using the 15 data points, we are 95% confident that every extra square foot increases the price of the house by anywhere from $21.64 to $55.94.

The various terms and formulas used for confidence intervals in regression can be confusing. This table is intended to help keep things straight: 

	
	Confidence Interval for Y
(expected value of the dependent variable, given a specific value of the independent variable)
	Confidence Interval for β1
(the expected effect on the dependent variable resulting from a one-unit change in the independent variable)

	Individual observation

(prediction interval)
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	N/A

	Population mean of all observations

(confidence interval)
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Possible sources of confusion:

Why is there no confidence interval for the effect of the independent variable on the dependent variable for a single observation?

Why does one “population mean” formula divide the standard error by the square root of n and the other formula doesn’t?

Method III: Measuring the Strength of the Linear Relationship

Consider the following equation:

(Yi -
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Squaring both sides and summing over all data points, and after a little algebra, we get:

(i (Yi - 
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)2 + (i ei2, which we usually rewrite as:

SST = SSR + SSE,
(2)

where

SST = (i (Yi - 
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The interpretation of these terms is as follows:

· SST stands for the “total sum of squares” - this is essentially the total variation in the data set, i.e., the total variation of selling prices.

· SSR stands for “sum of squares due to regression” - this is the squared variation around the mean of the estimated selling prices. This is sometimes called the total variation explained by the regression.

· SSE stands for “sum of squares due to error” - this is simply the sum of the squared residuals, and it is the variation in the Y variable that remains unexplained after taking into account the variable X.

The interpretation of equation (2) is now clear. The total variation in Y (SST) is made up of two parts: the total variation explained by the regression (SSR) and the remaining unexplained variation (SSE). These numbers are also directly in the output: 

SST = 6230.236, SSR = 4034.414 and SSE = 2195.822.

These can be found under the label "SS" in the ANOVA section of the output.

Coefficient of Determination

The coefficient of determination is simply the percentage of the total variation in Y explained by the regression: SSR/SST. That is,

R2 = SSR/SST = 4034.414/6230.236 = 0.648 = 64.8%.

Conveniently this number is also in the output: it is usually labeled R-square or R-sq. This means that 64.8% of the variability in selling price is due to variability in house size. The remaining 35.2% of the price variability remains unexplained. 

To understand R2 more fully, consider the following hypothetical scenario. Two real estate agents play a game predicting the selling prices of houses in a particular area. Agent 1 uses a crude model to estimate the price of a house: for each house he/she simply predicts the average house price 
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 = $88,840. This is very crude model in the sense that he/she makes no use of any specifics about the house. Agent 2 uses the regression model above to estimate the selling price of a house. That is, he/she first calculates square footage then enters the number in the formula: 

Selling Price = 18.354 + 3.879X,

where X is house size. The two agents then drive around the area predicting prices and recording their predictions. 

Eventually, months later, when the actual selling prices are revealed, the two agents compare their performance. If the measure they use to assess their accuracy were the sum of the squares of their errors, then we would expect agent 2 to have a lot smaller sum of squared errors than agent 1 does. To be more specific, if we let agent 1's total error be 100 units, then agent 2 should have 64.8 units less than that, or 35.2 units. To put it another way, agent 2 has about a third of the error that agent 1 has.

Coefficient of Correlation

The (population) coefficient of correlation, denoted ( (rho), measures the strength of the linear relationship between X and Y. Its range is: -1 ( ( ( +1. If (in general) Y increases when X increases, then ( is positive. If Y generally decreases when X increases, then ( is negative. If Y is unaffected by X, then ( = 0. When ( is close to -1 or +1 then the points (X, Y) (of the population) fall very nearly on a straight line.

Because ( is a population parameter, we must estimate its value from the data. We can find the sample coefficient of correlation R by using the formula (e.g. Excel), or (after performing a regression) by taking the square root of R-square. So, in this example, 

R = 
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.

 = 0.805.

This does not give us the sign, however! The sign of 
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gives the sign of R. Therefore, in this case, since 
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 is positive, house size and selling price have a correlation of about +0.805 (but remember this is only an estimate of the true population correlation).

Complete Example: Car dealers across North America use the “Red Book” to help them determine the value of used cars that their customers trade in when purchasing new cars. The book, which is published monthly, lists average trade-in values for all basic models of North American, Japanese and European cars. These averages are determined on the basis of the amounts paid at recent used-car auctions. The book indicates alternative values of each car model according to its condition and optional features, but it does not inform dealers how the odometer reading affects the trade in value. 

In an experiment to determine whether the odometer reading should be included in the Red Book, an interested buyer of used cars randomly selects ten 3-year-old cars of the same make, condition, and optional features. The trade-in value and mileage for each car are shown in the accompanying table.

	
	Odometer Reading
	Trade-in Value

	Car
	(1,000 miles)
	($100s)

	1
	59
	37

	2
	92
	31

	3
	61
	43

	4
	72
	39

	5
	52
	41

	6
	67
	39

	7
	88
	35

	8
	62
	40

	9
	95
	29

	10
	83
	33


We run the regression, with Trade-in Value as the dependent variable (Y) and Odometer Reading as the independent variable (X). The output appears on the following page.

Regression Statistics

	Multiple R
	0.893

	R Square
	0.798

	Adjusted R Square
	0.773

	Standard Error
	2.178

	Observations
	10


Analysis of Variance

	
	 df
	    SS
	    MS
	   F
	 Significance F

	Regression
	1
	150.14
	150.14
	31.64
	0.000

	Residual
	8
	37.96
	4.74
	
	

	Total
	9
	188.10
	
	
	


	
	     Coeff.
	 Stnd Error
	     t-Stat
	    P-value

	Intercept
	56.205
	3.535
	15.90
	0.000

	x
	-0.26682
	0.04743
	-5.63
	0.000


Consider the following questions:

a. What does the regression line tell us about the relationship between the two variables?

b. Can we conclude at the 5% significance level that, for all cars of the type described in the experiment, higher mileage results in a lower trade-in value?

c. Predict with 95% confidence the trade-in value of such a car that has been driven 60,000 miles.

d. A large national courier company has a policy of selling its cars when the odometer reading reaches 75,000 miles. The company is about to sell a large number of 3-year-old cars, each equipped with the same optional features and in the same condition as the 10 cars described in the experiment. The company president would like to know the cars' mean trade-in price. Determine the 95% confidence interval estimate of the expected value of all cars that have been driven 75,000 miles.

Managerial Statistics
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