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A completely automated, high-throughput biodosimetry workstation has been developed by the Center
for Minimally Invasive Radiation Biodosimetry at Columbia University over the past few years. To process
patients’ blood samples safely and reliably presents a significant challenge in the development of this
biodosimetry tool. In this paper, automated failure recognition methods of robotic manipulation of cap-
illary tubes based on a torque/force sensor are described. The characteristic features of sampled raw sig-
nals are extracted through data preprocessing. The 12-dimensional (12D) feature space is projected onto
a two-dimensional (2D) feature plane by the optimized Principal Component Analysis (PCA) and Fisher
Discrimination Analysis (FDA) feature extraction functions. For the three-class manipulation failure prob-
lem in the cell harvesting module, FDA yields better separability index than that of PCA and produces well
separated classes. Three classification methods, Support Vector Machine (SVM), Fisher Linear Discrimina-
tion (FLD) and Quadratic Discrimination Analysis (QDA), are employed for real-time recognition. Consid-
ering the trade-off between error rate and computation cost, SVM achieves the best overall performance.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

High speed and efficient automation of biodosimetric assays for
triage is becoming a top priority for homeland security (Pellmar &
Rockwell, 2009). A robotically-based Rapid Biodosimetry Tool
(RABiT) has been developed (Chen et al., 2010), which automates
two mature assays (micronucleus and c-H2AX assay) for triage fol-
lowing radiation exposure and is able to process 6000 samples/
day. Robust mechanical and electrical designs are introduced to
improve the RABiT’s reliability to avoid process failures as many
as possible. However, there still exists 0.5–1.0% manipulation-re-
lated failure rate because plastic (PVC) capillaries are easily dis-
torted. Therefore, it is necessary to develop effective fault
diagnosis capability to recover the RABiT from failures and bring
the process back to an in-control state. It is also helpful for the RA-
BiT to take immediate remedial actions to save samples, such as
blood, lymphocytes, etc. in the capillary tubes. Otherwise lost or
damaged samples may lead to a delay in treatment of severely
irradiated patients.

Explicit model-based expert systems in a complex robot system
(Chandrababu & Christensen, 2009) need more elaborate models
for probability elicitation to improve quantitative modeling and
ll rights reserved.
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better intelligent diagnosis, while the failure recognition methods
proposed in this paper are based on experimental raw data from
sensors. The first step is to search for the most characteristic fea-
tures from available large amount of historical data (training data)
(Venkatasubramanian et al., 2003). Many statistic techniques for
analyzing these massive datasets have been developed including
Principal Component Analysis (PCA) and Fisher Discriminant Anal-
ysis (FDA) (Cho, 2007). A methodology to extract features combin-
ing PCA with wavelet analysis was proposed (Akbaryan & Bishnoi,
2001). FDA provides an optimal lower dimensional representation
in terms of discriminating among classes of data (Theodoridis &
Koutroumbas, 2006), where for fault diagnosis, each class corre-
sponds to data collected during a specific known fault. Although
FDA has been heavily studied in the pattern classification literature
and is only slightly more complex than PCA, its use for analyzing
biodosimetry assay process is not reported. It is expected that
FDA should outperform PCA when the primary goal is to discrimi-
nate among faults.

The following step after obtaining the characteristic features is
to search for optimized classifiers to discriminate feature data. The
Bayesian decision rule assigns a pattern to the class with the
maximal posterior probability. Commonly used parametric models
are multivariate Gaussian distributions for continuous features,
binomial distributions for binary features, and multi-normal distri-
butions for integer-valued (and categorical) features. For Gaussian
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Fig. 2. Prototype and processing sequence of the cell harvesting module (r: pick
up a capillary; s: detect separation band, read barcode, cut the capillary; t:
dispense lymphocytes; u: dispose the empty capillary).
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distributions, if the covariance matrices for different classes are as-
sumed to be identical, then the Bayesian rule provides a linear
decision boundary. On the other hand, if the covariance matrices
are different, the resulting Bayesian rule provides a quadratic deci-
sion boundary. Another category of classifiers is to construct deci-
sion boundaries directly by optimizing certain error criterion. A
classical example of this type of classifier is Fisher Linear Discrim-
ination (FLD) that minimizes the mean squared error (MSE) be-
tween the classifier output and the desired labels. Support Vector
Machine (SVM) is among the most robust and successful classifica-
tion algorithms (Burges, 1998) by maximizing the margin (distance
from the separating hyperplane to the nearest example). SVM per-
forms well when applied to problems which have a small sample,
are nonlinear and high dimensional. In particular, SVM exhibits the
maximum generalization ability even when the samples are few. It
is with this advantage that SVM has been successfully applied to
many fields including classification recognition, regression analysis
and forecast (Chapelle et al., 2002). The basic SVM supports only
binary classification, but extensions have been proposed to handle
the multiclass classification case as well (Bredensteiner & Bennett,
1999).

This paper begins with the classification of the failures of
manipulating PVC capillaries. Two feature extraction methods:
PCA and FDA are implemented and compared to construct two-
dimensional (2D) feature planes from 12-dimensional (12D) fea-
tures. FDA yields a better separability index than that of PCA and
produces well separated classes. SVM, FLD and QDA are employed
to search for optimal classifiers offline and online fault recognition.
Considering the trade-off between error rate and computation cost,
SVM achieves the best overall performance.
2. Description of a high-throughput biodosimetry tool

Fig. 1 presents the layout and the sample flow direction of the
biodosimetry workstation (Chen et al., 2010). Patients’ blood is col-
lected in PVC capillaries and fed into the RABiT at the input stage.
After a five-minute centrifugation, lymphocytes are separated from
Red Blood Cells (RBC). In the cell harvesting module, lymphocytes
are extracted from individual capillaries and dispensed into a mi-
cro-well plate with membrane at the bottom of each well. The
Fig. 1. Layout of the rapi
plate is transferred to a liquid/plate handling system (including
an incubator) where filter reagents specific for each assay are
sequentially dispensed. Following the completion of the assays,
the underdrains are removed from the plate and the membranes
are peeled off and sealed between two adhesive transparent sheets
(substrate) at the Transfer to Substrate (TTS) module. Finally, the
substrate is delivered to the substrate imaging module, where ded-
icated imaging hardware and software measure yields of micronu-
clei or c-H2AX, which are already well-characterized quantifiers
for radiation exposure.

Most of robotic manipulation actions are taken place in the
cell harvesting module (Fig. 2). Initially the service robot transfers
centrifuged buckets from the centrifuge to the bucket holders,
and then loads an empty micro-well plate from the plate stack
to the plate holder. The service robot repeats the same sequence
of manipulating actions by 96 times till 96 wells of the micro-
well plate are filled with lymphocytes. In each of the manipulat-
ing sequences, the capillary gripper mounted on the end arm of
d biodosimetry tool.



Fig. 3. Force/torque sensor mounting and its Cartesian coordinates.
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the service robot is to pick up individual capillaries first and then
carry the capillary to the cutting position where the laser beam is
fired to cut the tube. At the cutting position, a CCD camera is used
to identify the cutting position and a barcode reader is used to
identify the ID of the sample. Then the bottom part of the capil-
lary containing the RBC pellet is disposed, while the upper part is
moved above the micro-well plate to dispense the lymphocytes in
the micro-well plate pneumatically. Finally, the empty upper part
Fig. 4. Failure modes on manipulating capillaries (A: failure because of last capillary n
failure because of big position misalignment (class3)).
of the tube is pulled out from the collet of the capillary gripper by
the tube disposing gripper. When the micro-well plate is full, the
service robot will transfer the plate to the liquid/plate handling
module.

All failure recognition and recovery in this paper are based on
the data from a force/torque sensor with the setup shown in
Fig. 3. The top surface of the sensor is attached to the end arm of
the service robot. Its bottom is connected with a gripper junction,
where the capillary gripper is mounted. The sensor measures the
forces and torques in the Cartesian coordinates denoted as
(Fx,Fy,Fz,Tx,Ty,Tz).
3. Overall scheme of recognition and recovery

While the paper is focused on the recognition aspect, its con-
nection with the monitoring aspect and recovery aspect are also
briefly described below.

The maximum force on the Z axis (Fzmax) during picking up a
capillary is used to monitor if the robotic manipulation is success-
ful or failed. In the normal operation, Fzmax has the range from
5.43 N to 6.13 N. While in the failed operation, a spike of force is
sensed. Fig. 4 shows three typical failures of picking up capillaries
and their manipulation steps (approaching to the picking position
for a new capillary, leaving from the picking position). In the first
failure class, the last capillary is not disposed successfully, and
when the gripper moves to the picking position for a new capillary,
the old capillary crashed onto the new one and the already occu-
pied gripper cannot grasp the new capillary. The second and third
ot disposed (class1); B: failure because of small position misalignment (class2); C:



Fig. 5. Sampled raw force/torque data from the force/torque sensor in the Cartesian coordinates (force: Fx, Fy, Fz; torque: Tx, Ty, Tz).

Fig. 6. Recognition procedure of robotic manipulation failures.
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failure classes are caused by position misalignments. In the second
class (small misalignment), the capillary is squashed by the spring-
loaded collet of the gripper (Chen et al., 2010). With the third class
(large misalignment), the capillary is pressed by the outer solid
body of the gripper.

For the three failure classes identified below, Fzmax varies
respectively from 23.15 N to 47.88 N (class 1), from 22.62 N to
26.51 N (class 2), and from 35.08 N to 42.16 N (class 3). Therefore,
the mean value of the lowest Fzmax of failure classes (22.62 N) and
the highest Fzmax of the normal operation (6.13 N) is set as a thresh-
old to label the current manipulation successful or not. Since this
threshold is significantly away from either normal or abnormal
scenarios, the probability of ‘‘false positive’’ is negligible.

Each failure class has different forces and duration time of the
crashing between capillaries or the capillary and the gripper. This
information is helpful to label manipulation failures and take cor-
responding recovery actions. Fig. 5 shows typical sampled force/
torque data knowing the first failure class. Obviously, Fz and Tx

show the most significant changes when manipulation failures
happen because the service robot moves vertically while picking
up a capillary, and bent tubes cause torques around a horizontal
axis. The duration time is around one second, which is used as
the sampling window.

Fig. 6 illustrates the procedure of failure recognition. The offline
classifier training is to search for optimized classifiers for a given
training data set (force/torque data of repeated experimental fail-
ures). The online fault recognition is to make a classification deci-
sion with the trained classifiers when manipulation failures
happen in the RABiT. All of raw sampling data are passed through
a low-pass filter to reduce noises. Characteristic features, such as
peak value, duration time, and signal energy, are calculated for
the following recognition steps.
After the failure diagnosis, different recovery schemes are em-
ployed. When the class 1 failure occurs, the RABiT must stop the
movement of the robot immediately, and send an emergency alert
to the operator. Then the operator manually removes the undis-
posed capillary, and restarts the robot. As to the class 2 failure,
automated recovery is implemented because the current capillary
is not destroyed. The RABiT identifies the arm length (ratio of
torque and force) and then calculate the corresponding position
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offset in 3D Cartesian coordinates to negate the arm length. The
service robot will adjust the picking position of the desired new
capillary accordingly and try to pick it up again. As to the failure
of class 3, a semi-automated recovery is implemented. Although
the current capillary is destroyed, the position offset can be known
through the automated analysis of force/torque information. A log-
ical and efficient sequence is to pass over this bent capillary, move
onto next one with a position adjustment to account for the large
misalignment.
4. Methods of failure recognition

Recognition algorithms for feature extraction and classification
are briefly summarized below for the self-containment of the
paper.

4.1. Feature extraction

Two linear methods of feature extraction: PCA and FDA, are em-
ployed to reduce the dimension of a characteristic feature space.
The critical evaluation criterion is the separability of the resultant
classes.

The feature extraction is identical to an optimization problem
that given a training data set, find the best linear transformation
function:

z ¼WT xþ b ð1Þ

where original feature vector x e Rn, extracted feature vector z e Rm,
transformation matrix W e Rn�m, and the threshold b e Rm. After
transformation, the corresponding scatter matrices are (Duda
et al., 2001):

S�w ¼WT SwW; S�b ¼WT SbW; S�t ¼WT StW ð2Þ

where Sw is within-class scatter matrix, Sb is between-class scatter
matrix and St is total-class scatter matrix.

PCA considers the following reconstruction model for feature
vector ~x 2 Rn as:

~x ¼Wðz� bÞ ¼ ~bþ
Xm

i¼1

ziwi ð3Þ

where vector ~b ¼ �Wb 2 Rn;wi is the ith column of W, and zi is the
element of the extracted feature vector. Then minimizing the crite-
rion function:

JðWÞ ¼
Xl

k¼1

~bþ
Xm

i¼1

zkiwi

 !
� x2

k

�����
����� ð4Þ

is to find matrix W ¼ ½w1 w2 � � � wm� where l is the number of
data points. This can be formulated as the following constrained
optimization problem:

max JPCAðWÞ ¼ jW
T StWj

subject to wT
i wi ¼ 1

ð5Þ

where wi is the ith normalized eigenvector of the scatter matrix St

corresponding to the ith eigenvalue.
If the sample class labels were known, FDA is able to be used for

the supervised dimension reduction. FDA seeks the transformation
function (Eq. (1)) that maximizes the ratio of the between-class
scatter matrix to the within-class scatter matrix and the problem
is defined as:

max JFDAðWÞ ¼
jWT SbWj
jWT SwWj

subject to wT
i wi ¼ 1

ð6Þ
The solution matrix W ¼ ½w1;w2; . . . wm� is composed by a set of
generalized eigenvectors corresponding to the m largest eigen-
values fk1; k2; . . . kmg in Sbwi ¼ kiSwwi (Belhumeur, Hespanha, &
Kriegman, 1997). When Sw is nonsingular it can be solved by a con-
ventional eigenvalue problem by S�1

w Sbwi ¼ kiwi. For many small
size problem, S�1

w does not exist and has an upper bound m 6 c � 1
(c is the number of classes) (Martinez & Kak, 2001).

4.2. Classification algorithm

The aim of the SVM classifier is to maximize the margin be-
tween classes as a way to distinguish them (Burges, 1998). Under
the case of linear separability, the decision rule g(x) = wTx + b can
be constructed by solving the optimization problem as:

max JSVMðwÞ ¼
1
2
jjwjj2

subject to yiðwT xþ bÞP 1; i ¼ 1;2; . . . ; l
ð7Þ

where yi is labeled as + 1 or �1. Then for the two-class problem,
SVM has a margin of 2

jjwjj.
The FLD is a linear discriminant classifier g(x) = wTx + b (Fukuna-

ga, 1990), where w is to maximize the class separability. The opti-
mization problem is formulated as:

max JFLDðWÞ ¼
jwT Sbwj
jwT Swwj

subject to wT w ¼ 1
ð8Þ

This can be observed as a generalized Rayleigh quotient, and thus,
for two-class problem, assuming Sw is nonsingular, it is possible
to find an analytics expression w ¼ S�1

w ðl1 � l2Þ, where l1, l2 are
the mean values of two classes. Threshold b is determined by
‘‘Bayesian decision theory’’ or any general classifier.

Different from linear classifiers, the decision rule of the QDA
classifier is a quadratic function like g(x) = xTQx + WTx + b (Wakaki,
1990). The resultant nonlinear classification hyperplane is able to
compass more data points than the linear hyperplane such that
the classification error rate is supposed to be lower.

4.3. Classification error rate analysis

To derive an analytic classification error function for a paramet-
ric recognition problem, all feature data are assumed to be nor-
mally distributed. Based on the extracted feature vectors of the
training data, mean values (expected values), and standard devia-
tions are known. Thus the Gaussian probability density functions
of three failure classes (x1, x2, x3) are derived as:

fiðxÞ ¼
1

ð2pÞ
n
2jRij

1
2

exp �1
2
ðx� liÞ

TR�1
i ðx� liÞ

� �
; i ¼ 1;2;3 ð9Þ

where Ri is the ith covariance matrix. If all classification decisions
are based on the Bayesian decision rule, the classification error
probability of a three-class problem is described as:

Perror ¼
Z
� � �
Z

D12

f2ðxÞPðx2Þdx1 � � �dxnþ
Z
� � �
Z

D13

f3ðxÞPðx3Þdx1 � � �dxn

þ
Z
� � �
Z

D21

f1ðxÞPðx1Þdx1 � � �dxnþ
Z
� � �
Z

D23

f3ðxÞPðx3Þdx1 � � �dxn

þ
Z
� � �
Z

D31

f1ðxÞPðx1Þdx1 � � �dxnþ
Z
� � �
Z

D32

f2ðxÞPðx2Þdx1 � � �dxn�

ð10Þ

where P(xi), i = 1,2,3, is the probability of class i, Dij is the feature
area where points which are belong to class j are classified as class
i because fi(x) > fj(x), i, j = 1,2,3, i – j. Eq. (10) can be solved by
numerical methods for high dimensional data and multiple classes
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and used to evaluate the performance of feature extraction (Table
2).

5. Experimental conditions

Training data are collected by conducting repeated failure
experiments of manipulating capillaries in the cell harvesting
module of the RABiT system. Failure classes (Fig. 4) are denoted
as class 1 (no disposing), class 2 (small misalignment) and class
3 (big misalignment). In class 1, the previous tube is purposely
not disposed. In class 2, the center line of the gripper is misaligned
to that of the new capillary by half of the diameter of the collet
(2.5 mm). While in class 3, the misalignment is 4.1 mm, half of
the diameter of the outer tubing of the gripper.

The force/torque sensor is from ATI (9105-GAMMA-R-10-U2-
N0, 0.01% full-scale error). The real-time sampling system is based
on MATLAB xPC target and an analogy I/O card (ServoToGo, ISA Bus
Servo I/O Card Model 2). The sampling rate is 1 KHz and the
sampling window is 1.0 s. Before extracting information from the
signals, the raw data from the force sensor is passed through a
low-pass filter (cutoff frequency 100 Hz, order 8) to reduce high
frequency noise.

The experiments of each failure class are repeated 30 times.
Thus the training data set has 90 six-dimensional data vectors.
The force/torque data in the form of {FX,FY,FZ,TX,TY,TZ} is obtained
by multiplying the strain gage data from the sensor by a calibration
matrix. The robot is set to run at half speed (1 m/s). To alleviate
force/torque noise due to the robot’s rapid moving acceleration
and deceleration, the smooth path planning is created with zero
initial/end velocities and accelerations.

6. Results and discussion

6.1. Characteristic feature selection

Two most significantly varying signals FZ and TX (Section 3,
Fig. 5) are chosen for failure recognition. The duration time is cho-
sen to be the time when the signal is above

ffiffi
2
p

2 of the max or the sig-
nal is below

ffiffi
2
p

2 of the min. It turns out to be around 1 s as seen in
Fig. 7.

Fig. 8 shows the extracted feature planes by an optimal FDA
transformation from original high dimensional (12-dimensional,
eight-dimensional, six-dimensional, four-dimensional, respec-
Fig. 7. Time responses of Fz and T
tively) features to two-dimensional (2D) features (x1,x2). The 12D
space is formed when the max/min value, peak to peak value,
mean, standard deviation, energy (curve integration with respect
to time), and kurtosis are chosen as the features of FZ and TX. The
separability index (S�b=S�w) is also indicated in the figure. With de-
creased dimension of original feature space, the class separability
is decreased significantly. For the application presented in the pa-
per, the best class separability for FDA is achieved using the 12D
feature.

The max/min value is the transient pulse force/torque when the
capillary gripper collides with the capillary, which reflects the level
of distortion of the capillary tubes at the picking position. The peak
to peak value also implies the relative magnitude of collision
shock. The mean value describes what type of force/torque is in-
volved during the capillary manipulation. For the continuous
spring contacting force, the mean value is high, like class 2. While,
for the transient collision torque/force (unrecovered elastic force),
like class 1 and class 3, the mean value is low. The standard devi-
ation shows how spread-out the torque/force are, a key point to
describe the vibration of the signals. The energy implies how long
and how much force/torque are engaged on capillaries. Lastly, the
kurtosis refers to signal shape and measures to what degree the
signal has a flat top or sharp peak profile.
6.2. PCA versus FDA

PCA seeks principal directions that best represent the original
data, while FDA seeks directions that are efficient for separating
the data from different classes. Our work is mainly focused on
the separability of the failure classes when choosing feature meth-
ods for the RABiT system. Therefore, FDA seems to be more appro-
priate and yet the separability of the resultant low dimensional
training data is computed to make comparison between PCA and
FDA.

Fig. 9 shows the extracted feature planes of the three failure
classes by PCA and FDA from the same 10-dimensional features.
As seen, the class separability index ðS�b=S�wÞ of FDA is about 96
times higher than that of PCA. For class 1, the extracted feature
space by the PCA is undesirable because it almost spreads the
whole plane area and especially two points near the bottom left
corner are far away from other data points. The PCA is incapable
of clustering these two points closer to the center of the group. An-
other drawback of the PCA is that some points of class 1 are over-
x of the three failure modes.



Fig. 8. Comparison of the feature extraction results of the different original statistical features (A: 12D statistical feature space; B: 8D statistical feature space; C: 6D statistical
feature space; D: 4D statistical feature space). Their separability index (J ¼ S�b=S�wÞ.

Fig. 9. Comparison of the feature extraction methods between PCA (A) and FDA (B). Their separability index (J ¼ S�b=S�wÞ.
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Table 1
Class separability index after feature extraction.

Dimension of original feature PCA FDA

12 1226.7 177510.0
10 949.7801 91086.0

8 839.2027 36334.0
6 796.8680 12555.0
4 1050.4 8764.5

Table 2
Estimated classification error on the extracted feature plane.

Dimension of original feature PCA error rate (%) FDA error rate (%)

12 2.5467 0.0056
10 3.0456 0.0850

8 3.1267 1.0154
6 3.2281 2.2281
4 2.8190 2.3349
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lapped with those of class 2 and class 3. The overlapped region is
likely to lead to large classification error. On the other hand, the
FDA is limited in computing the inverse of matrix Sw. If the dimen-
sion of feature vectors is high, the matrix Sw is close to be singular
and thus it is impossible to be solved directly (Mika et al., 1999).

Table 1 presents the separability index after feature extraction
by PCA and FDA from 12D feature to 2D feature. The class separa-
bility of the FDA increases with the dimensions of original features.
Higher dimension of original features allows more space for the
FDA to search for the transformation function and thus achieve
better performance. For the PCA, although to minimize the feature
reconstruction error may be a good criterion, in many cases it does
not necessarily lead to maximum class separability in lower
dimensional feature spaces. So the separability of the PCA for four
dimensions in Table 1 turns out be to larger than that of six dimen-
sions, although its reconstruction error is worse. Fig. 10 shows an
example of a two-class feature extraction from 2D to 1D where fea-
ture vectors in the two classes follow the Gaussian distribution
with the same covariance matrix. The eigenvectors of the scatter
matrix are computed and the resultant largest eigenvector are
visually presented as a PCA projection direction line. Obviously
the PCA direction is worse with respect to the separability because
Fig. 10. PCA is not always best for pattern recognition. Projection on PCA direction
makes the two classes coincide. While, projection on FDA direction keeps the
classes separated.
the two classes coincide after the features are projected on the PCA
direction.

Because the main aim of feature extraction problems for the
manipulation failure recognition presented in this paper is the sep-
arability of the resulting failure classes, FDA achieves better sepa-
rability index than PCA. The subsequent classifiers are computed
based on the training data whose features are extracted by FDA.

6.3. Classification error rate

To solve the classification error rate by analytic error probabil-
ity functions (Eq. (8)), the following assumptions are made: the
probabilities of failures for each failure class are normal distrib-
uted; the mean and covariance of the training data are very close
to expected values; classification decisions comply with the Bayes-
ian decision rule. For the problem on a 2D extracted feature plane,
instead of integrating over an infinite plan, the numerical result of
Eq. (8) is achieved by integrating over a large enough area (10
times covariance on each side of the mean).

Fig. 11 shows normal Gaussian distribution probability density
for the extracted features presented in Fig. 9B. To solve the analytic
classification error probability function, each probability distribu-
tion density function is characterized by an ellipse on the feature
plane (Fig. 11B). The covariance matrices of class 1 and class 2
are close to be diagonal because the major and minor axes of their
distribution ellipses (Fig. 11B) are nearly parallel to the feature
axes each other. Therefore the 2D probability density function of
class 1 and class 2 are able to be decoupled into two one-dimen-
sional (1D) probability density functions. Since the major axes of
class 3 distribution ellipses are significantly sloped, the off diago-
nal elements of the covariance matrix of class 3 are non-negligible.
Its probability density function has to be coupled two dimensions.

Table 2 shows the estimated classification error rate of the
three-class problem on the 2D extracted feature plane. Estimated
error rate of PCA is bigger than that of FDA. It is consistent with
the class separability shown in Table 1. The lower classification er-
ror rate for four dimensions for PCA means is an exception and it
perhaps means that the derived PCA extraction function (projec-
tion direction) happens to improve the class separability, although
it minimizes the reconstruction error.

6.4. Classifier comparison

Three typical classifiers: SVM, FLD, and QDA are tested for the
failure recognition of the robotic manipulations in the RABiT.
Fig. 9B shows that the three failure classes in the extracted feature
plane are separated well. Thus simple classification methods are
good adequate. In addition, these classifiers incur lower computa-
tion costs as their computing time is relatively low, which is help-
ful for online fault recognition in a high throughput automation
system.

Fig. 12 shows that the decision boundaries (red and blue lines)
and the testing data (three classes, 30 points per class) of three de-
rived classifiers (SVM, FLD and QDA). The testing data is already
projected on 2D plan from 12D feature space by a FDA transforma-
tion function.

Although the classification error rate is calculated based on the
analytic probability function (Table 2), the results are limited due
to the assumptions made in deriving the analytic probability func-
tion (Eq. (8)). To directly evaluate the classification error for classi-
fiers SVM, FLD and QDA, classification is run on a set of testing data
whose class labels are already known. Comparing resultant classi-
fied labels with correct class labels, the confusion matrix and the
error rate are calculated. As to the testing data shown in Fig. 12,
the classification error of SVM, FLD, and QDA is 1.1%, 4.4%, and
0.0%, respectively. Because the derived quadratic classifier follows



Fig. 11. Gaussian probability distribution of the three failure classes (A: normalized 2D probability density function, B: multivariable distribution ellipses in the 2D feature
plane).

Fig. 12. Classification for the testing data (A: SVM classifier, B: fisher linear classifier, C: quadratic classifier).
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Table 3
Computation time cost.

2D (s) 1D (s)

FDA 0.0680 0.0618
PCA 0.0750 0.0722
SVM 0.0698 0.0642
FLD 0.1216 0.1136
Quadratic 0.1330 0.1303
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up the distribution shape, such as ellipses in Fig. 11B, it leads to the
lowest classification error. SVM searches for the classifier while
concerning about the small distance space between the classifier
and nearest data point. This tolerant space allows the classifier to
cover more points if some testing points go further away from
the nearest data point of the training data. Therefore, the classifica-
tion error of SVM lies between QDA and FLD.

6.5. Computation time

In a high throughput system, like the RABiT, the computation
time is a valuable criterion to evaluate the performance of the clas-
sifiers because the short interval between each processing action
requires a rapid recognition response including logging sensor
data, extracting features and making decision. In the RABiT, the
service robot moves with a maximum speed 2 m/s. The interval
time between the end of picking up a capillary and laser cutting
is only 0.45 s within which the failure diagnosis engine must finish
the online processing (Fig. 6). For rapid response when failures oc-
cur, it is critical to shut down the laser beam immediately before
the operator could go in the system to rescue blood samples. Since
the computation is programmed in MATLAB, a relative comparison
of computation cost is needed among different classifiers and fea-
ture extraction methods.

The total computation time is the sum of the time consumption
of feature extraction and classification. The feature extraction and
classification problems discussed above are in 2D spaces. Obvi-
ously the corresponding 1D problem should have less computation
but worse performance because of distortions occured during pro-
cessing data. Table 3 shows the relative comparison of computa-
tion time between 2D and 1D problems. The computation
difference between the 2D problem and the 1D problem is less
than 0.015 s, which is not worth to switch from 2D to 1D. As to fea-
ture extraction, the computation cost of PCA is 10.3% larger than
that of FLD. It supports the conclusion that FDA is better than
PCA for the feature extraction of the force/torque signals in the RA-
BiT (Section 6.2). While as to classification methods, the computa-
tion cost of QDA is 90.5% larger than that of SVM, although QDA has
smaller classification error. It is a trade-off between classification
error and response time while choosing SVM or QDA as the
classifier.

7. Conclusions

The proposed automated diagnosis scheme aims to detect and
isolate three faults in the cell harvesting, from which three reme-
dial actions: manual recovery, fully automated recovery, and
semi-automated recovery, can be taken. The force on Z axis (Fz)
and the torque on X axis (Tx) are the most significant varying sig-
nals when the failures happen. Their max/min value, peak to peak
value, mean, standard deviation, energy, and kurtosis are calcu-
lated from raw sampled data to construct a 12D feature space.
The feature transformation functions of PCA and FDA are derived
by solving optimization problems as to the failure training data
set (three classes, 30 points per class). FDA has the better separa-
bility performance and minimal estimated classification error than
those of PCA when projecting 12D feature space to 2D feature
plane. While PCA spends 10.3% more computing time than FDA.

Three classifiers: SVM, FLD and QDA are implemented and com-
pared. They are solved off-line based on the training data set. Their
online fault diagnosis performances are evaluated through the
testing data set (three classes, 30 points per class). QDA incurs
the minimal classification error, while SVM takes the minimal
computation time. Considering the tradeoff between classification
error and response time, the SVM is chosen for fault recognition
under the current configuration of the RABiT.
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