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Review

The link between low-LET dose-response relations and the
underlying kinetics of damage production/repair/misrepair
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Abstract.

Purpose: 'To review current opinion on the production and
temporal evolution of low-LET radiobiological damage.

M ethods: ~ Standard cell survival models which model
repair/misrepair kinetics in order to quantify dose-response
relations and dose-protraction effects are reviewed and interre-
lated. Extensions of the models to endpoints other than cell
survival, to multiple or compound damage processing pathways,
and to stochastic intercellular damage fluctuations are surveyed.
Various molecular mechanisms are considered, including double
strand breaks restitution and binary misrepair.

Conclusions: (1) Linking dose-response curves to the underlying
damage production/processing kinetics allows mechanistic biolo-
gical interpretations of observed curve parameters. (2) Various
damage processing pathways, with different kinetics, occur. (3)
Almost every current kinetic model, whether based on binary
misrepair or saturable repair, leads at low or intermediate doses
to the LQ (linear-quadratic) formalism, including the standard
(generalized Lea-Catcheside) dependence on dose protraction.
(4) Two-track (B) lethal damage is largely due to dicentric
chromosome aberrations, but one-track (o) lethal damage is
largely caused by other mechanisms, such as point mutations in
a vital gene, small deletions, residual chromosome breaks,
induced apoptosis, etc. (5) A major payoff for 50 years of
radiobiological modelling is identifying molecular mechanisms
which underly the broadly applicable LQ formalism.

1. Introduction

When ionizing radiation strikes a cell, DSB (DNA
double strand breaks) and other lesions are produced
within less than a millisecond. Thereafter some of
the damage is processed more slowly, in enzymatic
repair or misrepair reactions, whose outcome often
determines the fate of the cell. This review is con-
cerned with damage production, with damage kinetics
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(i.e. time-evolution), and with the implications of the
kinetics for biological endpoints such as clonogenic
cell survival or chromosome aberrations. As was
originally shown by Lea and others (e.g. Lea 1946,
Haynes 1964, Kappos and Pohlit 1972), kinetic models
of radiation damage production and processing can
help unify and quantify radiobiological observations.
The kinetic models give quantitative predictions for
dose-response relations; and they lead to unified
explanations for phenomena which superficially seem
unrelated, for example by using repair/misrepair
kinetics to relate shoulders on acute survival curves
with increased survival when a given dose is protracted
by fractionation and/or low dose-rate delivery. Since
Lea’s time, such unified, kinetically-based quantifi-
cations have been central for radiobiology and for its
main applications, to radiotherapy, carcinogenesis risk
estimates, and biological dosimetry.

Linking dose-response relations to underlying
damage production and processing mechanisms has
been carried out mainly with radiobiological ‘reaction-
rate’ models (Lea 1946), i.e. models which track the
per-cell average number of DSB and other lesions
in time by using the equations of ordinary chemical
kinetics for production, repair, and misrepair rates.
Examples are the RMR (repair-misrepair) model
(Tobias et az. 1980) and the LPL (lethal-potentially-
lethal) model (Curtis 1986), both of which emphasize
binary misrepairs, such as the production of a lethal
dicentric chromosome aberration by the interaction
of two DSB (Figure 1). Other reaction-rate models
(e.g. Kiefer 1988b) consider saturable repair, corres-
ponding to enzyme systems that can be overloaded.
This review will show that radiobiological reaction-
rate models give mechanistic biological interpretations
to measured dose-response relations and dose-response
parameters.

It appears that almost all radiobiological reaction-
rate models lead approximately to linear-quadratic
(LQ) dose-response relations if the dose is not too high
or the dose delivery is sufficiently protracted. The LQ
approximation to these radiobiological reaction-rate
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Figure I. Examples of binary misrepairs. Figure 1A shows
two chromosomes; each has one DSB, shown as a gap.
Centromeres, which are needed for proper transmission
of chromosomes to daughter cells at mitosis, are shown
as black constrictions. Most DSB are restituted, but a
few undergo binary misrepair. As shown in Figure 1B, a
binary misrepair can make a dicentric (Cornforth and
Bedford 1993). Typically this destroys the clonogenic
viability of the cell. The dicentric is accompanied by an
acentric fragment, and the two together are here counted
as one lethal lesion. About half the time, the two DSB
shown in Figure 1A lead to a translocation, shown in 1C.
Translocations involve large scale rearrangements, and
can sometimes cause dangerous alterations in cellular
phenotype, but most do not impair cellular survival.
They are non-lethal binary misrepairs. Both dicentrics
1B and translocations 1C are examples of exchange-type
chromosome aberrations.

models is not merely a power series expansion in dose;
it includes a standard (generalized Lea-Catcheside)
factor for cell sparing by dose-protraction, whose
form is the same among the different radiobiological
reaction-rate models for any kind of fractionation
and/or low dose-rate irradiation. The relation
between the kinetic reaction-rate models and the LQ
formalism is well known for the LPL model (Thames
1985, Curtis 1986, Thames and Hendry 1987). The
relation also holds, as shown in Appendix A.6., for
other binary misrepair reaction-rate models, and,
surprisingly, even for typical saturable repair reaction-
rate models (Appendix A.7.). Apart from its basis
in mechanistic models, the LQ formalism, with its
standard dependence on the time-pattern of dose
delivery, has come into very wide use in the 1990s
for practical reasons. It is frequently applied to survival
or other endpoints in vitro, is especially important for
iso-effect estimates in radiotherapy, and is often
invoked in biodosimetry or risk estimation. The LQ
formalism thus serves as a common meeting ground
for many theories, experiments and applications.
This review will start by discussing production,

restitution and binary misrepair of DSB (Section 2).
Section 3 explains in detail one fairly representative
radiobiological reaction-rate model. The model is
temporarily singled out as an illustrative example,
pending subsequent discussion of other reaction-rate
models. Section 4 analyses survival curves for acute
or protracted irradiation, using this representative
model as an example. Section 5 discusses applications
of radiobiological reaction-rate models to dicentric
chromosome aberrations and discusses the relation
of aberrations to survival. Section 6 briefly describes
some generalizations: to multiple damage pathways;
to additional endpoints; to spatially inhomogeneous
reactions; and to stochastic process models which can
track the temporal evolution of cell-to-cell fluctuations
in damage. Appendices discuss other radiobiological
reaction-rate models, applicable to damage pathways
neglected in the representative model of Section 3.
Sections 2-5 (in contrast to Section 6 and the
Appendices) emphasize the reasoning behind models,
rather than a catalogue of different models. The goal
throughout is to illustrate robust general properties
by selected special cases.

The reader who wants to follow all the derivations
step by step will need some knowledge of ordinary
differential equations and of the Poisson distribution.
However, specifically mathematical arguments and
results have been relegated to the Appendices, and
the main points will be stated in intuitive and bio-
logical terms, so the mathematics can be skimmed
over without essential loss of continuity.

Some related topics are omitted. Damage kinetics
on short time scales, less than a minute or so, is not
analysed. As far as long time scales are concerned,
cell-cycle kinetics can strongly influence, and be
influenced by, the kinetics of damage processing
(e.g. Brenner e at. 1995, Hahnfeldt and Hlatky 1996,
Zaider et al. 1996), but lack of space precludes any
systematic review of this many-sided subject here,
and the main weakness of the models reviewed is
that they do not explicitly consider cell-cycle kinetic
effects. Moreover, it will usually be assumed that a
single radiation track has a negligible probability
of making more than one DSB, and some of the
discussion will not apply to high LET radiation or
to soft X-rays.

The basic viewpoint of the review is that various
damage production and processing pathways occur
in an irradiated cell, so various kinetic reaction-rate
models are required, the key question being which
pathways are dominant for the biologically important
endpoints, and the key simplification being that most
pathways lead to approximately the same dependence
of response on dose and on dose-protraction, given
by the standard LQ formalism.
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2. Double strand breaks
2.1. DsB production

Some of the most important repair and misrepair
reactions involve DSB. Double strand breaks pro-
duction by ionizing radiation is proportional to dose
(Frankenberg-Schwager 1989, Ward 1990, Iliakis 1991).
Probably there are qualitatively different kinds of
DSB (Hagen 1989, Tliakis 1991, Steel 1991, Ward 1994,
Michalik and Frankenberg 1996, Pfeiffer et ai. 1996).
Probably, as will be discussed, only a fraction of
the ~40 DSB/Gy produced participate in reactions
which can lead to lethality. The fraction could
be randomly selected (Lea 1946) or be biologically
defined, e.g. DSB made on linker DNA (Chatterjee
and Holley 1991), and/or DSB which are expressed
as breaks in premature chromosome condensation
experiments (Cornforth and Bedford 1993), and/or
DSB which are particularly ‘severe’ (Sachs and
Brenner 1993), and/or DSB made on geometrically
special stretches of DNA (Cornforth and Bedford
1993), and/or ‘reactive’ DSB with free ends that
have moved apart (Chen e a. 1996, Radivoyevitch
et al. 1997), etc.

2.2. DSB processing

After being produced, most D SB undergo restitution,
where the two free ends of a DSB are rejoined to
restore the overall continuity of a chromosome,
though not necessarily the exact DNA base pair
sequence (surveys in Hagen 1989, Hutchinson 1995).
A small proportion of restitutions are (clonogenically)
lethal (Figure 2B). Instead of being restituted some
DSB undergo illegitimate reunion (Figurel), a
‘binary’, ‘pairwise’ ‘quadratic’, ‘dual’, ‘second order’,
‘cooperative’ misrepair reaction. Binary misrepair of
DSB canbe clonogenically lethal, as when a dicentric
chromosome aberration is formed (Figures 1B and
2C), but need not be (Figures 1C and 2D).

2.3. Restitution kinetics

D SB restitution is sometimes first order (Frankenberg-
Schwager 1989), leading to mono-exponential DSB
decay, i.e.

(A)du/dt= —JU=(B)U=U(0) exp/—2r] (1)

where U(:) denotes the average number of DSB per
cell at time ¢ after irradiation and A is the first order
restitution rate constant (i.e. A =1In 2/z,,,, where 7,

is the DSB half-life, so that 1/A is the mean lifetime

of a DSB). The interpretation of equation (1A) is

that during a short time s the average number of
restituted DSB is AU (1 )dt, proportional to the average

viable A) No Lethal Damage
one restitution
o 1 DSB
lethal B) Lethal Damage
restitution
LOW
LET lethal binary _ icentri i
RADIATION | two | |- cp | Misrepair > O Dieenic orRine
> s| . 3
tracks viable bina D) e.g. Translocation
misrepair
one track, direct » E)Lethal Damage

Figure 2. Some damage processing pathways. In the figure,
‘track’ refers to the subpicosecond deposition of energy
caused by the passage of a charged or uncharged primary
high energy particle (e.g. a gamma-ray photon) as well
as all resulting secondary particles. Two different tracks
are statistically independent, i.e. a ‘track’ is an ‘event’, in
the terminology of microdosimetry. One-track or two-
track action lead to different kinds of dose-response
(Subsection 4.4). Most DSB are viably restituted (Figure 2A).
In Figure 2B, the (clonogenically) lethal damage could
be, for example, a small deletion within a vital gene.
The molecular structure of a dicentric 2C was shown in
Figure 1; some chromosome aberrations are rings, which
for present purposes can be considered as two-track lethal
binary misrepairs on exactly the same footing as dicentrics
(Savage 1995). Binary misrepair can also be viable as
shown in Figure 2D. Radiation damage is complex and,
as discussed in Appendix A.l, there are different kinds of
one-track lethal damage, shown generically in Figure 2E,
in addition to lethal DSB restitution.

number present and to dr. Often the observed decay
of DSB number is not well approximated by the
mono-exponential form equation (1B), being instead
bi-exponential (reviews in Frankenberg-Schwager
1989, Iliakis 1991, Bryant 1995) with a fast com-
ponent, and with a slower component corresponding
approximately to A =17h"", or even being multi-
exponential (Foray e a2 1996). Such more complex
behaviours suggest the presence of two or more
different types of DSB and multiple or compound
damage pathways, as analysed mathematically in
Subsection 6.1 below.

Equation (2A) is the simplest of all radiobiological
reaction-rate models; the other kinetic models to be
discussed all involve modifications of equation (1)
to take into account, for example, binary misrepair
contributing to the decay rate for DSB number
(Subsection 3.1), and/or the temporal evolution of
U if irradiation is protracted (Subsections 3.1 and
4.1), or saturated repair situations where the effective
value of 1, instead of being constant, decreases with
increasing U (Appendix A.7.), etc.

3. Repair and misrepair rates:
a representative model

Throughout Sections 3 and 4 the endpoint is
(clonogenic) cell survival but other endpoints are
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considered in later sections. Many radiobiological
models analyse the rate of cell killing for acute or
protracted irradiation by using the differential equation
methods of chemical kinetics. In Sections 3-5
one representative example is explained in detail,
with representative applications. This model, whose
equations are a special case of the RMR equations
[Tobias et at. 1980], analyse first-order D SB restitution
competing kinetically with binary DSB misrepair
(Figure 2). These particular molecular mechanisms
and the corresponding reaction-rate equations are
here singled out for illustrative purposes, in order to
analyse in depth specific examples of several features,
such as kinetic competition between some kind of
misrepair and some kind of repair, common to many
different damage processing pathways. Other reaction-
rate models, as well as interrelations among models,
are surveyed later (Section 6; Appendices A.l. and
A3.-A7.).

3.1. Reaction-rate equations

Assume a uniform population of many non-cycling
cells which is irradiated with total dose D, delivered
acutely or in a protracted regimen. Denote the dose
rate at time ¢ by D(s). Some simple examples of D
are given in Appendix A.2. By choosing D appro-
priately one can describe any regimen, consisting of
any number of acute doses, separated by any pattern
of time intervals, and/or any continuous irradiation,
at constant or variable dose-rate. It is assumed that
cell sparing via different kinds of protraction, e.g.
via low dose-rate irradiation or split dose irradiation,
is due to essentially the same repair/misrepair
phenomena, so that, barring cell-cycle kinetic com-
plications beyond the scope of the present review,
the basic formalism and parameters are the same,
no matter what the form of the dose-rate function D.

The representative model uses the per-cell average
rates of DSB production, restitution, and binary mis-
repair to estimate the per-cell average rate of lethal
lesion production and the surviving fraction of cells.
The model starts by tracking DSB in time, using
a generalization of the exponential decay equations
(equation (1)). Denote the average number of DSB
formed per unit dose by &; for example one would
expect =40 DSB per Gy (as a rough estimate) if
all kinds of DSB are relevant to killing and expect §
to be smaller if only a subset of DSB is relevant
(Section 2). The time rate of change of average DSB
number U (r) is taken as the sum of a DSB production
term, a DSB repair term, and a DSB misrepair term,
as follows (Tobias et az. 1980):

dU/dt= 8D — AU — kU* (2)

Here the three terms on the right are interpreted as
follows. First, the dose delivered in the short time
interval dr is D(t)dt, so, in view of the definition of
5, the average per-cell number of DSB produced
by irradiation during d¢ is 8Ddr. Secondly, AU(t) is
a DSB restitution rate, explained in detail under
equation (1). Finally, the term xU”(¢) is a binary DSB
removal rate, i.e. the average rate at which binary
misrepairs remove DSB by using them in lethal
lesions or in harmless rearrangements, with x a rate
constant (Lea 1946). For U(s)>>1, this U*dependence
simply amounts to a reaction rate proportional to
the square of the concentration, as in ordinary mass-
action chemical kinetics for binary reactions (Erdi and
Toth 1989). However, as shown in Appendix B.5.,
the appropriate rate is still xU” even if U is small,
provided the statistical distribution of DSB from cell
to cell is Poisson. At low LET this Poisson assumption
is appropriate (Appendices B.5.-B.7.), though at high
LET it can fail (Kellerer 1985, Goodhead 1987,
Harder 1988, Albright 1989, Sachs et at. 1992).

Having specified the rate at which DSB are pro-
duced and disappear, the representative model next
considers the rate at which cells acquire lethal lesions.
Denote by L(r) the average number of lethal lesions
per cell. Then the per-cell average rate of forming
lethal lesions is taken to be a sum of two terms,
corresponding respectively to lethal restitution and
lethal binary misrepair, as follows:

dL/dt= (1 — ¢)AU+ (1/4)kU* (3)

Here ¢ is defined as the proportion of restitutions
which are viable (Tobias 1985; compare Figure 2A),
so that, of the AUd: restitutions occurring during
dr according to equation (2), (1 — ¢)AUdr are lethal
(Figure 2B); typically 1 — ¢<<1. Assuming (as will be
argued in Section 5) that lethal binary misrepair
is predominantly dicentric formation, the factor of
1/4 in equation (3) can be motivated as follows. It
takes two DSB, not just one, to make one dicentric
(understood to be accompanied by an acentric frag-
ment, Figure 1B). Moreover, on average binary mis-
repairs make about as many non-lethal translocations
(Figure 1C) as they make lethal dicentrics (Sachs et at.
1997). Together these two factors correspond to the
factor 1/4 for the xU*term in equation (3) compared

to equation (2). This argument also works for rings
as lethal binary misrepair products. The argument
motivating the factor 1/4 ignores aberrations which

are complex, an approximation which is appropriate
at low and intermediate doses of low LET radiation,
though not at high doses (Dutrillaux e az. 1985,
Simpson and Savage 1996). At high doses, when
complex aberrations are significant, the only way to
handle the aberration kinetics, or to keep track of
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what fraction is lethal (Savage 1995), is to use more
detailed models, such as Monte-Carlo computer
simulations (Subsection 6.5; Chen e az. 1996, 1997).
Thus the factor of (1/4) is the best one can do within
the framework of a simple reaction-rate model, but
must be regarded with caution at high doses.

Conspicuously absent in equation (3) is a term
proportional to D, which would (Curtis 1986) reflect
lethal lesions produced directly (Figure 2E). Such
extra damage pathways are neglected in the present
illustrative example but are extensively discussed
later.

Equations (2) and (3) are differential equations
which must be supplemented by initial conditions
(Boyce and Diprima 1997). It is assumed that back-
ground DSB or lethal lesions are negligible and then
appropriate initial conditions are either:

or (B)u)=0=1L(0)

(4)

(A) is appropriate for an acute dose D applied just
before =0 (Appendix A.4.) and (B) is appropriate
if all irradiation takes place after r=0.

Equations (2)-(4) completely determine the per-
cell average number L(¢) of lethal lesions at any time
1=0 (Boyce and Diprima 1997). However, L(1) is
not directly measured in a cell survival experiment.
What is measured instead is the fraction, which will
here be denoted by S(z), of cells which have no lethal
lesions whatsoever at time . S(7) can be approximated
if one makes the assumption, appropriate at low
LET, that the lethal lesions created during a short
time dr, whose average number is (di/dt)dr, are
randomly distributed among cells, without regard for
which cells already have lethal lesions. In that case,
each hitherto surviving cell has (whether it likes it or
not) a fair chance at getting one of the newly formed
lethal lesions, i.e. dS/dt= — (dl/dt)S. Since S=1
before radiation starts, the solution of this differential
equation is (Boyce and Diprima 1997)

S(t)=exp[—L(t)] (5)

An alternative derivation of equation (5) is to use
Poisson statistics for the lethal lesions (Appendices
B.1.and B.5.). At high LET or for very high doses at
low LET the relation between average per-cell lethal
lesion number Land the fraction S of cells free from
lethal lesions is more complicated than equation (5)
(Appendices B.6. and B.7.).

(A)U(0)=6D, L(0) =0,

3.2. Fully developed endpoints

In equations like equation (5) it is often convenient
to take the limit 1 — o (e.g. Tobias 1985). This limit
corresponds to a fully developed endpoint, i.e. repair

and misrepair have run their full course. For example
suppose that cells are irradiated during G,, and that
the G, phase of the cell cycle is long compared to the
characteristic repair time 1/A. Then cell survival is a
prototype of a fully developed endpoint (as is assaying
chromosome aberrations at the next metaphase) and
one can write the surviving fraction § as

S=S(o) (6)

On the other hand, if, for example, damage fixation
(Appendix A.5.) occurs within a short time after
irradiation, then the endpoint is not fully developed.

3.3. A representative model

Equations (2)-(5) constitute a useful model, which
illustrates the main features of radiobiological reaction-
rate models in general. Explicit analytic solutions of
these equations were given by Tobias et a. (1980) for
the special cases of an acute dose or constant dose
rate (Appendix A.3.); the equations can be solved
numerically given any dose-rate function D. There
are many other radiobiological reaction-rate models
(Section 6; Appendices A.l., A.3., A4, and A.7.),
but the model 3.1.1-3.1.4 is rather typical in its use
of per-cell averages, its use of more than one lesion
type, its assumption of lesion production linear in
dose for arbitrary dose rates, its use of several reaction
rates, etc. It will thus serve as a representative
example. Its applications will now be discussed,
emphasizing those features which it shares with other
radiobiological reaction-rate models.

4. Survival curves

As shall be discussed, most radiobiological reaction-
rate models predict virtually identical dose-response
relations and dose-protraction effects at low and
intermediate doses, given approximately by linear-
quadratic (LQ) equations. At higher doses, different
reaction-rate models make different predictions. Some
details are now given on survival curves, using the
representative model of Section 3 as an example.

4.1. The LQ formalism

The LQ formalism (Dale 1985, Thames 1985) is
the simplest way to analyse acute and protracted
dose delivery regimens systematically. It expresses
surviving fraction S in terms of a damage coefficient
o for lethal lesions made by one-track action (Figures
2B and/or 2E), a damage coefficient g for lethal
lesions made by two-track action (e.g. Figure 2C),
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and a repair rate A similar to the DSB restitution
rate in equations (1) or (2), as follows.

In S= — ab — BGD? (7)

where G, the generalized Lea-Catcheside dose-
protraction factor, is given by

o0 t

G=(2/DQ)J D(t)dtj e_x([_l')D(t')dt' (8)

This expression for G can be derived in various ways
(Lea 1946, Kellerer and Rossi 1972, Chadwick and
Leenhouts 1981, Dale 1985, Curtis 1986, Bedford
and Cornforth 1987, Thames and Hendry 1987,
Harder 1988, Nelson e ai. 1989, Brenner e 2. 1991).
Appendix A.6. shows how equation (8) follows
from the representative kinetic reaction-rate model
of Section 3. G systematically accounts for the effects
of protracting dose delivery in any way. A special
case, which illustrates the general expression, equa-
tion (8), is for split-dose irradiation consisting of two
acute doses D; and D, separated by time interval T.
Then (Lea 1946)

Di+ D} 2D Dye M
2

G= where D =D;+ D,

D

(9)

This special case, and two other simple special cases,
are shown graphically in Figure 3. In general, as in
these examples, G<1, with ¢=1 for a single acute
dose. A small value of G corresponds to a large
surviving fraction by equation (7) and the inter-
pretation of G<<1 is cell sparing due to repair which
occurs during continuous low dose-rate irradiation
and/or between acute fractions. For example, the
term 2D,Dyexp(—AT ) in equation (9) decreases as

the time T between the two fractions increases, due
to extra repair between fractions, quantified by the
factor exp(—AT ).

During the last 15 years, the LQ formalism, defined
by equations (7) and (8) has been applied to an
extraordinarily broad spectrum of in vitro experiments
on cell survival, using acute doses, split doses, or
continuous low dose-rates; and it is currently very
much the formalism of choice for calculating iso-
effect doses in radiotherapy (Fowler 1989, Withers
1992). One of its main advantages is that there are
only three adjustable parameters, in contrast to other
models, whose use of four (or even more) adjustable
parameters can easily lead to serious confusion.

4.2, The LQ formalism as an approximation

The model of Section 3 reduces to the LQ
formalism providing that two restrictions hold: first,

1.0

o
th

Lea-Catcheside Factor G

o

/A I 3 i
Time T

Figure 3. Examples of the generalized Lea-Catcheside dose-
protraction factor G. G specifies how repair during any
regimen of protracted irradiation decreases the effects of
lethal misrepair. (A) is for an acute dose b, followed after
time T by acute dose 20, (Equation (9) with py=2D,).
(B) Is for long-term irradiation by a decaying radioactive
source with half-life 7. The curve was obtained by inserting
equation (A.2B) into equation (8) and integrating. (C) is
for constant dose-rate irradiation, i.e. p=Dpn/r for
0</<T1, where integrating equation (8) gives (Lea 1946)

(=]

G=[2/(AT )*)jje » — 1+ AT

Each kind of dose-protraction has its own pattern of cell
sparing, but in all cases ¢<<I, with ¢=1 for a single
acute dose.

a large majority of DSB are removed by restitution
rather than by binary misrepair; and secondly, sur-
vival is determined after misrepair has run its full
course. More specifically, take surviving fraction S to
be the fraction of cells without lethal lesions at large
times, so that S=exp [—L(®) /; now suppose that in
equation (2) DSB restitution dominates DSB mis-
repair at all times, i.e. AU (t)>kU%(t); and finally
define the LQ parameters o, 8, A using the parameters
8. ¢. k., 2 of the representative model in Section 3 by

B=(¢— 3/4)x5°/21, A=A
(10)

Then, as shown in Appendix A.6., the equations
(2)-(5) of the representative model can be integrated
to give the LQ equations (7) and (8). Appendix A.6.
also shows that conditions for the LQ approximation
to hold are that either the total dose or the dose rate
be sufficiently small, specifically,

a=056(1—9¢),

o ¢— 3/
either (A) D<K —— — ~17 Gy,
B2(1—¢)
(11)
a b—
or (B)p<&a — ¢ ~8 Gy/h
B2(1—¢)
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Here the numerical values are rough, generic estimates,
using the parameter values in the next subsection.
The case of large doses with dose-rate small enough
that equation (11B) holds must be treated with
caution, since then irradiation time is typically so
long that cell-cycle kinetic complications, neglected
in all the models analysed here, can easily come
into play.

The relation, equation (10), between the two
models is of interest in both directions: the represent-
ative model supplies detailed molecular interpreta-
tions for the LQ formalism; and the LQ formalism
covers the most important applications of this (and
other) kinetic reaction-rate models. LQ equations
can similarly be derived (Appendices A.6. and A.7.)
from almost all common radiobiological reaction-
rate models, including even models of saturable
repair pathways rather than binary misrepair path-
ways. The form of the dose-protraction factor G is
the same in all cases. Limitations on dose or dose-
rate are needed, equation (11) being a typical
example.

4.3. Parameter values

For detailed analyses specific parameter values are
needed in the representative model. According to
equation (10) three combinations of the four para-
meters can be obtained from the LQ parameters, c.
B. and 2, which are comparatively well characterized
because the LQ formalism has been applied so
extensively. These parameters vary with cell type,
cell-cycle kinetic status, and cell microenvironment,
such as oxygenation status (e.g. Deschavanne e al
1990, Steel 1991). Representative values for human
cells are

2=05h""!
(12)

Two-fold, or even larger, deviations from these
values are not unusual for particular cell lines and/or
particular experimental conditions (Deschavanne
et al. 1990). For the fourth parameter it is convenient
to focus on the number, &, of relevant DSB pro-
duced per Gy. §~2-40 Gy ' covers many detailed
estimates obtained by using the RMR and similar
models (e.g. Tobias e az. 1980, Tobias 1985, Curtis
1986, Sontag 1990, Hawkins 1996), often by com-
parisons to fixation time experiments (Appendix A.5.).
A rough, generic estimate of &, based specifically on
the RMR model, is (Appendix A.3.):

S~8Gy ! (13)

a=03Gy B=1005Gy ™

The interpretation is that only a subset of the

~40 DSB formed per Gy is relevant to survival
(Subsection 3.1).

4.4. Cellular radiosensitivity one-track (&) and two- track

(B) action

Subsection 4.2 gives a kinetic interpretation to the
LQ formalism. In particular, equation (10) exemplifies
a very general feature of ionizing radiation damage,
that the LQ coefficient « corresponds to damage
inflicted by individual radiation tracks, while g
corresponds to damage inflicted by two different,
independent radiation tracks.

Assuming the representative model, the fact that «
corresponds to one-track action can be seen as follows.
The coefficient § which enters into a (equation (10))
corresponds to the production of DSB, with each
DSB made by a single track, not by any cooperative
action between tracks (see Subsection 3.1). The other
factor in a, 1-¢, is the probability a restituted DSB
undergoes lethal restitution (Subsection 3.1), a pro-
cess independent of other DSB according to the
model. Thus o« refers to lethal lesions made by
individual tracks. In general, other one-track lethality
mechanisms contribute to «, and other models are
also relevant. But in all cases o is associated with
one-track mechanisms (Figure 2, Appendices A.l.,
A.6.,and A.7.), not two-track mechanisms, and one-
track mechanisms contribute only to «, not to .
Presumably the fact that cells have significantly
different radiosensitivities at clinically relevant doses
per fraction (Deschavanne e o 1990, Steel 1991,
West 1995) is due in large part to differences in one
or more of these one-track mechanisms.

For the case of the representative model, the fact
that B is associated with two-track action can be seen
most easily from the fact that g is linearly pro-
portional to x equation (10), where « is the rate
coefficient for two-DSB binary misrepair (compare
Figure 2 and Subsection 3.1). Two-DSB action
corresponds to two-track action in the representative
model because the Poisson assumptions of that model
require that no track make more than one DSB
(Appendix A.6.). Two-track action is also associated
with B, rather than with «, in other binary misrepair
models (Appendix A.6.) and in saturable repair
models (Appendix A.7.); this association holds even
at high LET, though the arguments then justifying
it will not be given in the present review of low LET
damage.

Equation (7) shows that a dominates the response
to acute irradiation at very low doses (because D is
so small) and also the response to very low dose-
rates (because G is so small; compare Figure 3C).
The underlying reason is that in both cases only one-
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track action is operative: at very low acute doses few
cells have more than one DSB; and at very low dose
rates, damage from any one track is almost fully
repaired before the further damage from another
track arrives. Thus (Steel 1991, Peacock er ar. 1992)
the low-dose response can be determined from the
more readily measured low dose-rate response.

4.5. High doses

Most kinetic reaction rate models differ signifi-
cantly from each other only for high doses or for
endpoints determined before misrepair has run its
full course. As an example of predictions for high
doses, using the parameters in Subsection 4.3 and
the explicit solution given in Appendix A.3., a curve
for survival S=exp[—L(®)] as a function, S(D), of
acute dose can be plotted for the representative
model of Section 3 (Figure 4). It is seen that for doses
greater than about 5 Gy, the LQ approximation
begins to deviate noticeably, consistent with the
estimate in equation (I1).

For sufficiently high acute doses, the model predicts
a nearly linear, rather than a quadratic, dependence
of —In s on dose (Figure 4). Differentiating the explicit

Log-Survival

-5 1 1 \‘- ]
0 5 10 15

Dose D (Gy)

Figure 4. Dose-response curves. The solid line is an acute-dose
survival curve for the representative RMR model of
Subsection 3.1 with the parameters in equations (12) and
(13). The lowest, dash-dot, line is the LQ approximation
with o and B determined by the general relation, equation
(10), between the parameters of the two models. At 5 Gy
or less the differences are small. The same relation,
equation (10), also gives a close correspondence between
survival curves for arbitrary continuous low dose-rate
irradiation and/or fractionation. The dotted line shows
the very small corrections that are needed to the RMR
curve if the Markov RMR model (Section B.7) is used to
compute the number of cells without lethal lesions.

solution (Subsection A.3) shows that as D gets large,

the survival curve slope dlIn /D approaches the

constant value — &/4. Almost all radiobiological reac-

tion-rate models also show a nearly linear behaviour
at large doses (Kiefer 1988a). For binary misrepair
models, the intuitive reason is well known (Rossi and
Zaider 1988, Brenner 1990). At sufficiently high
doses, most DSB disappear via binary misrepair
reactions, rather than via restitution. For example, for
the representative model the rate xU’ of DSB

removal via binary misrepair in equation (2) domin-
ates the rate AU(r) of DSB removal via restitution,
rather than vice- versa (as can be seen by a counterpart
of the argument in Appendix A.6.). But when binary
misrepair dominates restitution, the number of lethal
lesions produced is, approximately, some fixed frac-
tion of the initial number U(0) of DSB (e.g. is
approximately U(0)/4 in the representative model of
Section 3); since U(0) is linear in dose (Section 2),

average lethal lesion number is then approximately
linear in dose.

There is some experimental evidence, though not
robust support, for high-dose linearity in survival
data (e.g. Schneider and Whitmore 1963), chromo-
some aberration data (e.g. Lloyd and Edwards
1983, Simpson and Savage 1996), and pulsed field
gel electrophoresis data on misrejoining of DNA
fragments after very high doses (Lobrich e az. 1995).

The overall behaviour of the survival curve for
acute irradiation given by typical kinetic reaction-
rate models might thus be described as LQL, with a
high dose nearly linear portion (Sachs and Brenner
1993, Radivoyevitch 1997). The change from near
quadratic behaviour at intermediate doses to near
linear behaviour at high doses is sometimes referred
to as ‘saturation’ (Rossi and Zaider 1988), though
that term is also used for different phenomena.

5. Dicentric chromosome aberrations

Radiobiological reaction-rate models are also used
for endpoints other than survival, in particular the
per-cell frequency of dicentric chromosome aberrations
(Figure 1) produced during the G,/G, phase of the
cell cycle and assayed at the next metaphase. Such
aberrations are of interest in connection with
biodosimetry (Bauchinger 1995) and analysing the
mechanisms of carcinogenesis (Hall 1994); they also
provide direct information on the molecular mech-
anisms and kinetic pathways responsible for binary
misrepair lethality (Figure 2). When the model of
Section 3 is used for dicentrics, L() specifies the
dicentric frequency per cell. If cell-by-cell data is
scored, rather than just per-cell averages, the dicentric
endpoint probes the Poisson statistical distribution
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(e.g. Lloyd e az. 1987) in a way cell survival assays
cannot, for example by checking if the Poisson
relation, equation (5) actually does hold for the
experimental values of dicentric frequency L(%) and
the fraction, S(), of cells free of dicentrics.

5.1. LQ approximation

In most experiments the LQ formalism for average
dicentric number,

L(©) = oD + GBD* (14)

should be applicable (Subsection 4.2). A long series
of observations on human peripheral blood lympho-
cytes (e.g. Lloyd and Edwards 1983, Edwards e at.
1996) have generally given, for low LET, roughly
the parameter values

B=~0.06 Gy,  i=~0.5h""

(15)

with o larger for X-rays than for y-rays. The estimates
for p are more robust than those for 2 or «, despite
rather heroic efforts, scoring large numbers of cells,
to characterize o (Lloyd et az. 1992, Bauchinger 1995),
which dominates the response at sufficiently low
doses, and is therefore important for applications to
biodosimetry and to carcinogenesis risk estimation.
Measurements for other human cell types generally
give the same order of magnitude as the lymphocyte
values in equation (15) (Cornforth and Bedford 1993).
a is sometimes estimated not by scoring very large
numbers of cells at low acute doses, but by applying
continuous low dose-rate radiation (e.g. Pandita and
Geard 1996), as discussed in Subsection 4.4.

Lethal DSB restitution, which contributes to o
for cell killing (Subsection 4.4), does not produce
dicentrics (Figures 1 and 2; Appendix A.l.). There
are two main kinetic mechanisms which could pro-
duce the small but non-zero observed low LET value
of a for dicentrics (equation (15)). The first possibility
is that some dicentrics are created by a one-DSB
kinetic pathway, whereby a single DSB can invade
other chromatin not directly harmed by the radiation
and then mimic a binary DSB interaction, making a
dicentric (Goodhead et «. 1993). This mechanism
can be quantified by using a non-zero value of 1-¢
for dicentrics in the representative reaction-rate
model of Section 3. The second possible explanation
is that dicentric-producing binary interactions may
occur between DSB made by the same primary
radiation track (Appendices A.9. and B.6.; compare
Durante et al. 1996, Michalik and Frankenberg 1996,
Moiseenko e al. 1996), perhaps with some kinetic
advantage over interactions between D SB pairs made
by different tracks (Greinert et a2 1995). The LPL

am003 Gy,

model, Appendix A.4., can quantify such a one-track,
two-D SB dicentric formation pathway.

Comparing equations (12) and (15), a striking fact
is that B is rather similar for cell killing and for
dicentric aberration production, as is A, whereas the
value of « is markedly smaller for dicentrics. In
retrospect this pattern can be rationalized. Suppose
most lethal binary misrepair consists of two-track
dicentric chromosome aberrations (Figure 1) and rings,
but there are also other one-track lethal molecular
mechanisms (Figure 2, Appendix A.l.). Then the
observed aberration/survival pattern of smaller «
and approximately equal B, 1 is exactly what one
would expect (Subsection 4.4). It has often been
suggested that chromosome aberrations may be
the main contributors to cell lethality at low LET
(e.g. Tliakis 1991, Schwartz 1992, Cornforth and
Bedford 1993, Durante et at. 1995). Here it is being
suggested that this relation applies mainly to the g
(i.e. two-track) portion of the damage, with chromo-
some aberrations (including dicentrics, rings, and
residual unrejoined breaks) being only one of several
contributions to o (i.e. one-track) lethality.

5.2. High doses

At doses too high for the LQ approximation to
be applicable, observations (Norman and Sasaki
1966) and a kinetic Monte-Carlo computer simulation
model (Chen e . 1996) show that the increase of
dicentric frequency with dose is slower than would
be predicted by the LQ formalism; eventually a
levelling off and then a decrease occurs. This dose-
response pattern is due to two effects: the saturation
discussed in Subsection 4.5; and kinetic competition
of dicentrics with other kinds of aberrations for a
limited number of chromosome centromeres (i.e. 46
in a human cell).

6. Generalizations

The ideas in Sections 3-5 have been extended
to analyse several additional aspects of radiation
damage: multiple damage processing pathways
operating simultaneously; a variety of other effects
or endpoints; damage observed while repair and
misrepair are underway; and cell-to-cell fluctuations
in damage. A few recent results will now be reviewed.

6.1. M ultiple lesion types, pathways and rates

There are many damage processing pathways
that occur in a cell; each can have its own kinetics
and dose-response relation. Evidence for multiple
pathways comes from various directions: evidence
that there are different types of DSB (Subsection 2.1);
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bi-exponential or multi-exponential repair curves
for excess chromosome fragments (e.g. Iliakis 1991,
Foray et al. 1996, Greinert et ai. 1995); analysis of
pulsed field gel electrophoresis data (Radivoyevitch
et al. 1997); and multiple repair times indicated by
split dose or low dose-rate survival data (e.g. Nelson
et al. 1989, Steel 1991, van Rongen et at. 1995).

From the molecular point of view, multiple or
compound pathways are not surprising. For example,
in Section 3, it could be more realistic to assume
DSB free ends, rather than DSB, are the reactive
units (Cornforth and Bedford 1993, Chen es 2. 1996).
Then a systematic kinetic theory would have to track
averages for two different types of free ends: those
whose partners have not yet participated in illegitimate
reunions, so that restitution is still an option; and
those which have in effect been divorced. Other
plausible molecular scenarios also indicate multiple
or compound pathways (Hahnfeldt e a2 1992,
Radivoyevitch 1997).

A reaction-rate model for a multiple pathway can
be constructed as follows. Suppose there are two
kinds of DSB, each restituted with first order kinetics
but with different time constants, each subject to
lethal restitution, and each capable of binary mis-
repair, either independently or synergistically. Then,
extending the arguments in Section 3 and in
Appendix A.3., the rate equations would be

(A)dUJdt=8D — MU, — k,U?

—KUlUQ (l.=1;2)

2
(B)dl/dt= X [(1— ¢;)2. U+ (1 — W,);@U?] >

i=1

+ (11— y)xkU, U,

(16)
where x =0 if there is no synergism.

If k.U kU, U,<2,U, for i=1,2, a calculation
very similar to that in Appendix A.6. shows that a
‘two-time’ LQ formalism is equivalent, at sufficiently
low doses dose or dose-rates, to equation (16):

—In S=ab+ (G,B,+ G,B,) D* (17)

Here G; and G, are generalized Lea-Catcheside
dose-protraction factors with different repair rate
constants, i.e.

o0

Gj=(2/1)2)J D(t)dt

t

XJ exp/—A.(t—1')D({")dt' i=1or 2

(18)

The following parameter identifications are required

a=38(1—¢;)+ 5(1 — ¢y);

_(p—w)K.s
7 22,
+ + K5152
( —1— ) 3 i=1,2
1T ¢y 174 PRy

(19)

Evaluating total DSB number U=U,+ U, after a
single acute dose gives approximately bi-exponential
decay, i.e.

U(t)=U(0) exp[— At ]+ Uy(0) exp[— Ayt ]
(20)

Equations (17) and (20) correspond to the experi-
mental evidence discussed above for two repair times.
There are other possible reaction-rate patterns for
multiple or compound pathways, which have been
discussed systematically by Hahnfeldt e a2 (1992)
and by Radivoyevitch (1997). Thus the experimental
evidence for multiple pathways can be modelled by
straightforward extensions of standard reaction-rate
equations. In the LQ approximation the o terms
typically add and the g terms reveal multiple repair
times, as in equation (17).

6.2. Some other generaliz ations

There are many aspects of cellular response to
radiation in addition to survival or chromosome
aberrations for non-cycling cell populations. Aspects
which have been analysed using kinetic reaction-rate
equations include the following: proliferation during
or after irradiation (e.g. Tucker and Travis 1990);
cell-cycle redistribution effects (e.g. Yakovlev and
Zorin 1988, Brenner et at. 1995, Hlatky et at. 1995,
Hahnfeldt and Hlatky 1996); radiation-induced growth
delays (e.g. Zaider et a. 1996); and the endpoints
of cell transformation (e.g. Tobias e . 1980) or
mutation per surviving cell (e.g. Brenner et az. 1996).

6.3. Assays at intermediate times

One other way in which kinetic reaction-rate
models are more general than the LQ formalism is
that the latter really applies only to endpoints which
are fully developed (Subsections 3.2 and 4.2). PCC
(premature chromosome condensation) experiments
(reviewed by Iliakis 1991, Cornforth and Bedford
1993) involve tracking lesions at intermediate times,
during repair and misrepair. Then U(s) in Section 3
is to be read as average number of breaks expressed
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in the PCC assay and L(s) is the average per-cell
number of exchange-type chromosome abberations
(such as those shown in Figures 1B and 1C). Assuming
a PCC experiment where the dose is low enough
that xU*—0 is an adequate approximation in
equation (2), and assuming a single acute dose given
just before =0, equations (2) and (3) with ¢ =1 can
be integrated to give

L(t)=U(0) k(1 —e "N )/8A
(21)

U(t)=U(0)e

The significant feature here is that the rate constant
for L (which characterizes the gradual build-up of
exchange-type aberrations) is 24, twice the DSB
decay rate constant 1. Moiseenko e a. (1996) point
out this difference in time constants; they discuss
models which may explain why several data sets
show a build-up of exchange-type aberrations at the
same rate, or more slowly than, the decay of breaks
(e.g. Durante e at. 1996, Evans e al. 1996, Greinert
et al. 1996, Wu et al. 1996), contrary to equation (21).

Another relevant endpoint is measuring DNA frag-
ment sizes after large doses, using pulse field gel
electrophoresis (e.g. Friedl et 2. 1995, Newman et al.
1997). The rejoining and misrejoining of radiation-
produced DNA fragments can be tracked in time
(Lobrich e az. 1995), and modelled by a variant of
the kinetic reaction-rate equations in Section 3
(Radiovoyevitch 1997).

6.4. M arkov models Jor cell- to- cell damage fluctuations

In kinetic reaction-rate models, Poisson distri-
butions for lesions are usually assumed (e.g.
Subsection 3.1). At high LET the distribution of
lesions is not governed by Poisson statistics, and even
at low LET some deviations could occur (Harder
1988, Albright 1989). Analysing what intercellular
distributions do hold involves combining micro-
dosimetry (Kellerer 1985, Goodhead 1987, Rossi
and Zaider 1996) with stochastic chemical kinetics
(Erdi and Toth 1989). One obtains continuous-time
Markov chain models (e.g. Hug and Kellerer 1966,
Curtis 1988, Albright 1989), which track the time
development of all individual probabilities (for
example the probability a cell has exactly v relevant
DSB for v=1,2,..). There are infinitely many
unknown functions, with one differential equation
for each. Standard techniques (Erdi and Toth 1989,
Sachs et al. 1992) often allow explicit integration of
all the equations, and numerical integration to high
accuracy is almost always feasible. For example,
Appendices B.6. and B.7. estimate by how much low

LET lesion distributions can deviate from Poisson
distributions. Figures 4 and 5 show that the influence
of such deviations on typical low LET data is minor.

For a fully developed endpoint (Subsection 3.2)
and a single acute dose, continuous-time Markov
chains are equivalent to discrete-time Markov chains
(Sachs et at. 1992). The essence of such a discrete-time
chain is that damage infliction and processing are
viewed sequentially, in steps. This way of analysing
damage processing is quite useful (Appendix B.7.;
Albright and Tobias 1985, Goodwin and Cornforth
1991, Hlatky « az. 1991) and, contrary to what one
might expect, readily yields numerical or analytical
results (Hahnfeldt e a2. 1992, Radivoyevitch 1997).

The most powerful way of implementing Markov,
sequential, probabilistic calculations of damage pro-
cessing is to use Monte-Carlo computer simulations:
whenever a particular cell has to make a probabilistic
choice, the computer rolls the appropriate dice. Many
cells are simulated and the results then averaged.
Monte-Carlo simulation models are widely applicable
in many areas (Ripley 1987). They are extremely
flexible, and usually all sorts of additional effects
can be incorporated without changes in a basic
approach, the main (and quite serious) danger being
overparametrization.

Ratio
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Figure 5. Stochastic effects. The solid curve shows, for the
Markov version of the model in Section 3 and the same
parameters as in Figure 4, the quantity Z/exp [—L(®)/,
where Z is the fraction of cells without lethal lesions
at large times. The dotted curve shows the cell-to-cell
variance of lethal lesions divided by the mean number of
such lesions. Both quantities would be 1.0 if the cell-to-
cell distribution of lethal lesions were Poisson. Only small
deviations from Poisson behaviour occur, even at large
doses.
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6.5. Kinetics and proximity effects

One aspect of radiobiological damage processing
kinetics which calls for the full power of Monte-
Carlo computer simulations is spatial inhomogeneity.
Equations like (2) tacitly assume that the initial spatial
separation of two DSB does not influence their
probability of undergoing binary misrepair, but it is
known that, on the contrary, ‘proximity’ effects are
important, i.e. if two DSB are formed far apart, their
probability of undergoing binary misrepair is greatly
reduced due to diffusion limitations (reviews in
Savage 1996, Sachs e ol 1997). Simple reaction-
rate models do not incorporate proximity effects.
Calculations using sites (Appendix A.8.) and non-
kinetic calculations (Appendix A.9.) allow some
estimates, but Monte-Carlo computer simulations are
apparently essential for any detailed analysis. Such
simulations have long been used for studying post-
irradiation kinetics on very short time scales (Varma
and Chatterjee 1994). More recently, they have been
applied to the kinetics, on time scales of a minute or
more, discussed in the review. For example, Brenner
(1990) and Edwards et az. (1996) have considered binary
DSB interactions modulated by proximity effects.
Chen et al. (1996, 1997) use sites (Appendix A.8.) to
incorporate chromosome localization and proximity
effects, combined with Monte-Carlo simulations to
track the post-irradiation formation of many different
kinds of simple or complex chromosome aberrations,
involving particular chromosomes of specified lengths.

7. Summary

The kinetics of low-LET damage production,
repair, and misrepair have been discussed. A major
kinetic pathway involves restitution of DSB competing
with binary misrepair of DSB (Sections 2 and 3). other
mechanisms, such as direct infliction of lethal lesions,
are also important for cell killing (Appendix A.1.).
Each pathway can have its own kinetics, and specific
kinetic reaction-rate models have been developed
for particular pathways (Section 3 and Appendices
A.3.-A.7.). Such kinetic reaction-rate models lead to
predictions for survival, as a function of the dose and
of the time-pattern of dose delivery (Section 4). The
kinetic models can also be applied to chromosome
aberrations or various other endpoints (Sections 5
and 6), and can be extended to highly flexible
computer-based models (Section 6).

8. Discussion

Ionizing radiation damages cells by many different
molecular mechanisms. This review analysed reaction

rates for various damage pathways. The kinetics
of such pathways can be linked to dose-response
relations for measurable endpoints, and this linkage
allows a mechanistic interpretation of measured dose-
response parameters. Kinetic models also relate
response to an acute dose with response to a
protracted dose, spread out temporally in any way.

It was shown that, for low or intermediate doses,
almost all of the kinetic reaction-rate models pre-
dict an LQ dose-response relation, with the standard
(generalized Lea-Catcheside) dependence on dose pro-
traction. In fact these models predict LQ behaviour
even at high doses if dose delivery is sufficiently
protracted, though in this case cell-cycle kinetic
effects could require modifications. If more than
one mechanism is operative, a sum of LQ terms is
expected, and there is some experimental evidence
for such compound behaviour. Thus modelling of
the underlying kinetics suggests the LQ formalism is
likely to be appropriate, regardless of the fact that
there is still an incomplete picture of how cells
process ionizing radiation damage.

The kinetic reaction-rate models supply mech-
anistic interpretations for the LQ parameters « and
B. It was argued that B is similar for dicentrics and
cell survival, corresponding to a scenario in which
two-track lethal lesions are predominantly exchange-
type chromosome aberrations, such as dicentrics and
rings. On the other hand, one-track (i.e. linear, dose-
rate-independent, «) lethality probably results mainly
from other mechanisms, such as small deletions,
residual chromosome breaks, or apoptosis.

Like the modelling results described here, experi-
mental results over the last decade tend to validate
the LQ formalism as far as applications to low and
intermediate doses are concerned. No doubt some
caution in accepting the LQ formalism as generally
applicable is needed. For example, if the dominant
influence on survival is inducible repair (Shadley et at.
1987), or delayed death (Hendry and West 1995), or
genomic instability (Morgan and Murnane 1995),
LQ behaviour would not necessarily be expected to
hold, at least not with the standard dependence on
dose-protraction, and these possibilities have not
been robustly excluded. But the theoretical and
experimental evidence for LQ behaviour at low or
moderate doses is, on balance, strong.

Two important applications of the LQ formalism
at very low doses are biodosimetry and extrapolation
of radiation-induced cancer risk estimates to very
low doses. For biodosimetry, where exchange-type
aberrations such as dicentrics or translocations
are often used to reconstruct past exposures, the «
coefficient is usually what is required. The « coefficient
for these endpoints is small and hard to measure.
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The theoretical considerations that have been given
support the idea that the LQ formalism is applicable
and the relevant o coefficient can be estimated by
using low dose rates, in addition to or instead of low
acute doses.

For extrapolation of radiation-induced cancer risks
to very low doses, the situation is more complex in
that while haematopoietic cancers (leukemias and
lymphomas) are typically assoicated with exchange-
type aberrations such as translocations (Nowell 1997),
solid tumours are most often associated with smaller-
scale damage, such as small deletions (Le Beau and
Rowley 1986, Rabbits 1994). Thus while haemato-
poietic cancers might be expected to exhibit an LQ
dose-response relationship, solid tumours might be
expected to exhibit a more linear behaviour; though
not universal, this pattern often does hold, both in
the human studies at Hiroshima and Nagasaki (Pierce
et al. 1996), and in animal studies (e.g. Upton et al.
1970, Shellabarger et ai. 1986). For both groups of
cancer, extrapolation to low doses would require
estimation of the « term, but this may be much easier
for solid cancers than for haematopoietic cancers,
and fractionated or low dose rate exposures could
again be advantageous for the latter estimations.

At the intermediate doses of ~2 Gy relevant to
conventional fractionated radiotherapy, the LQ
formalism, by reference to the underlying kinetic
models, should be applicable. At considerably higher
acute doses, a predominantly linear reponse of log-
survival is predicted by most kinetic reaction-rate
models, and thus the LQ equation begins to fail.
However, insights obtained through analysing under-
lying kinetics as to why the LQ formalism fails—
through saturation effects—may allow appropriate
modifications to be made.

Can one do better? Are there kinetic models
appropriate to single acute doses as high as those
used, for example, in stereotactic radiosurgery? Can
modelling cope with the cell-cycle kinetic com-
plications that arise in many situations, for example
in analysing brachytherapy? Further progress on
quantitative kinetic modelling is possible, and seems
to be needed. Purely phenomenological or statistical
approaches to dose-response relations and dose-
protraction effects have, in our opinion, gone about
as far as they can go. Identification of damage
pathways on the molecular level will be increasingly
important. However, qualitative molecular investi-
gations, despite their current popularity, are not
likely to be very useful either. The question is not
whether a given gene product has some effect or
shows some response to radiation; the question is
what damage pathways are dominantfor the important
biological endpoints. That is a question which

requires quantification, using kinetic models of the
kind discussed here.

For now, these models supply a useful con-
nection between molecular mechanisms and the LQ
formalism. Despite all the uncertainties and limitations
involved, this connection is, we would suggest, a
triumph of radiobiology and an appropriate tribute
to the genius of Douglas Lea.
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Appendix A. Radiobiological reaction-rate
models and their interrelations

A.l. Kinetic reaction- rate models

Appendix A describes, interrelates, and relates to
the LQ model additional models which track average
lesion numbers using the differential equation methods
of chemical kinetics: the RMR model (Tobias et al.
1985), the LPL model (Curtis 1986), a saturable
repair model (Kiefer 1988b), and many variants of
these models. Such mechanistic reaction-rate models
have a long history (Steel 1996). Two conference
reports (Kiefer 1988a, Chadwick et az. 1992) give a
fairly comprehensive historical over-view. Recent
comparisons of models have been given by Sontag
(1990), Zackrisson (1992), Kiefer (1993), Fertil et a.
(1994), and Hanin e ar. (1994).

The main reason for the plethora of models is that
there are many damage mechanisms in addition to
the scenario, of viable or lethal DSB restitution com-
peting with lethal or viable binary DSB misrepair,
that motivates the representative radiobiological
reaction-rate model of Section 3. For direct one-
track action as in Figure 2E, there are many possible
lethal outcomes, including the following: point muta-
tions; small deletions without a DSB as intermediate
state (Curtis 1986, Hagen 1989); damage leading to
apoptosis (Dewey e at. 1995, Meyn et at. 1996); DSB
which neither restitute nor undergo binary misrepair
and therefore remain as ‘residual DSB’ (Iliakis 1991,
Steel 1991, Cornforth and Bedford 1993, Obaturov
et al. 1993, Savage 1995); additional lethal lesions
caused by damage fixation (Appendix A.5.); perhaps
DNA-protein crosslinks, base-damage or single strand
breaks (Frankenberg-Schwager 1989, Hagen 1989);
perhaps lesions generated by a single DSB invading
undamaged DNA and mimicking binary misrepair
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(Goodhead et az. 1993); and damage involving binary
misrepair of DSB produced by a single track, as is
important at high LET (Appendix B.6., Kellerer
1985), perhaps for soft X-rays, and perhaps even for
gamma-rays or hard X-rays (Edwards e at. 1996,
Greinert et at. 1996, Michalik and Frankenberg 1996).
Complex chromosome aberrations, involving more
than two DSB, can contribute to lethality (Savage
1995). 1t has been suggested (Preston 1990) that
binary misrepair could involve damaged bases rather
than DSB. It has sometimes been argued that perhaps
DSB are the only kind of lesions which lead to
significant lethality (review in Pfeiffer e az. 1996), but
even if this is true, there appear to be a number of
different pathways involved.

The basic approach of the present review is to
regard various models as appropriate for different
kinetic pathways, with some pathways dominant
while others are minor, and to emphasize that
almost all pathways considered correspond to the
LQ formalism at low and intermediate doses. Many
papers do not share these perspectives.

A.2. Dose rates

To get general results about models, it is useful
to work with an arbitrary time-varying dose-rate
function D(r). Then the total dose is the integral:

o0

1)=J D(t)dt (A.1)

where the lower limit could alternatively be taken
as any time before irradiation starts. Two simple
examples of D are: (A) an acute dose D delivered at
time 7y, by a source operating at a high dose rate p;
or (B) irradiation with total dose D, starting at r=0,
by an exponentially decaying radioactive source with
time constant k =1In 2/T, where T is the half-life. In
both cases the dose rate function D(r) is different
from zero only for certain time intervals, as follows:
(A)D(t)=p fory— DRp<t<ity+ D/2p; (4.2)
(B)D(1)=kpe™™ fori=0 '
More complicated regimens are described by more
complicated functions D. In equation (A.2A)
irradiation time D/p is often much shorter than any
repair time or misrepair time of interest; then it is

permissible and often convenient to use the formal
limit as p becomes infinite (acute irradiation).

A.3. The RMR model

In the RMR model the term ‘uncommitted lesions’
is used for lesions whose per-cell average is U(t);

these are presumably (some subset of ) DSB. The
rate equations for the model are (Tobias 1985)

(A)dU/dt= 8D — AU — kU%
(A.3)
(B )dl/dt = (1 — ¢)AU+ (I — y)xU*

Equation (A.3) was motivated in Subsection 3.1,
except that in (A.3B) the factor 1 — y replaces (1/4).
1 — y is interpreted as the average number of lethal
lesions made for every uncommitted lesion that
disappears via binary misrepair.

Exact analytic solutions of rate equations can often
be found when the dose rate D is zero or has some
special form. As an example, here are the solutions
(Tobias et az. 1980) for the RMR equation (A.3),
assuming a single acute dose just before /=0 so that
D=0 for =0.

U(t)=[U(0)f Je ¥,
L(t)=(y—¢)(A/x)]In [
+(1—y)[Uu)—U(t)] (A.4)

where 1=0, U(0)= 6D,

and f=s(1)=1+ [kU(0)/A](1—e V)

For 1—, 2 and « appear only in the ratio x/2,
not separately. This reduction of parameter numbers
illustrates the principle of repair ratios (Hlatky es at.
1991), that only ratios of repair rate constants, not
the constants themselves, influence the response at
long times after one acute dose. Explicit solutions
like equation (A.4) have only a limited usefulness. It
is often easier and clearer to work with the differential
equations, using numerical integration if numerical
results are needed, and manipulating the equations
themselves in conceptual arguments (e.g. the argument
of the next paragraph).

A simple rescaling can be used to relate the
solutions of the RMR model with w=0, a value
which is often assumed but is not realistic as regards
molecular interpretations (Section 3), to solutions of
the model with y=23/4, i.e. of the representative
model in Section 3. By comparing the rate equations
one shows that the two cases for w can be transformed
into each other as follows.

L—>L U—>4U,

¢—> ¢

Ao A, K — K/4, 85— 46, (A.5)

w=0— y =23/

The interpretation then changes because, for example,
U is not DSB number if 4U is DSB number. But
equation (A.5) can be used to generate the math-
ematical solutions of one case with any initial con-
ditions and any dose-rate function, from the solutions
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of the other case, and used to transfer empirical
parameter estimates between the two cases. The
practical effect of these rescalings for this review is
that the rescaling 6— 45 brings the & estimates
obtained by comparing the RMR model to various
experiments (Tobias 1985) up to approximately
5>8 Gy, the number used in Section 4.

A4, The LPL model

The LPL model deals with ‘potentially lethal’
lesions, having average number #,, (¢ ) and with lethal
lesions, whose average number is denoted by n. (7).
The model’s reaction-rate equations are (Curtis 1986):

(A ) dnp /dt = 6D — Anp, — Kn,?,_,
- (2.6)
(B )dn,/dt = aD-+ cxny, where c=1

For the reasons discussed in Section 3, the model
obtained by setting ¢ = 1/4 (rather than 1) is probably
more realistic; it will be discussed later. The really
distinctive features in equation (A.6), are the presence
in (B) of an ab term and the absence in (B) of a
term linearly proportional to »,.. The oD term in
the LPL equation (A.6B), depending directly on dose,
is appropriate for a directly lethal pathway such as
that shown in Figure 2E; but the LPL model does
not model lethal restitutions, such as those shown in
Figure 2B. Conversely, the RMR model is appro-
priate for the lethal restitution pathway Figure 2B
but not for the directly lethal pathway Figure 2E.
Actually both pathways are occurring in the cell,
which motivates introducing models which com-
bine the RMR and LPL models (Obaturov e a.
1993, Hawkins 1996). Unfortunately, the number of
adjustable parameters then increases.

Intuitively, lethal restitution (e.g. Figure 2B) and
direct creation of lethal lesions (Figure 2E) seem
similar and this similarity is reflected in the math-
ematics: by a mathematical trick any solution of the
LPL rate equations, for any dose rate function D,
can be obtained from a corresponding solution of
the RMR model. Specifically the following theorem,
due to N. Albright (private communication 1991),
holds. Let #n,,n, be a solution of the LPL rate
equations (A.6). Set

U=np,, L=n, — (a/S)np.,

w=1—[c+ (al5)] (A.7)
and ¢ =1— (a/s)

leaving &6, k, and A unchanged. Then U,L is a
solution of the R MR rate equations. The proof consists
of plugging the substitution (A.7) into equation (A.3).
Albright’s theorem does not mean the two models
are identical; it does mean that survival curves cannot

easily distinguish between one-track direct lethality
(LPL, e.g. Figure 2E) and one-track lethal restitution
(RMR, e.g. Figure 2B) pathways.

In analysing the solutions of the LPL or other
reaction-rate models it is often convenient to think
of acute doses, given by themselves or perhaps
during a continuous low dose-rate regimen, as
simply changing the values of quantities like n,., n,
instantaneously. For the LPL model one has the
following rule for how much lesion averages jump
when an acute dose D is applied.

(A) Anp, = np, ( just after) — n,. ( just before)
= 5D, (A.8)
(B )An, = aD

This result can be proved in various ways. For
example, inserting the expression (A.1A) for D into
(A.6A), integrating (A.6A) over the short time interval
D/p, taking the limit p— o gives (A.8A). Similar
results, e.g. equation (4) hold for other models.
According to the arguments of Section 3, it would
be more realistic to modify the LPL model by
choosing ¢ =1/4 in equation (A.6) rather than using
¢=1 (i.e. on average four potentially lethal lesions
disappear for every lethal lesion made by lethal
binary misrepair). Much as in equation (A.5), the
two cases can be transformed into each other by

rescaling as follows.
np— ng, np—> 4np,

85— 46, (A.9)

a—a,
A=A k—> K/4,

c=1—>c=1M

A.5. Damage fixation times

Additional lethal damage formation (e.g. making
DSB into lethal lesions), sometimes occurs via damage
fixation at some specific time prior to the completion
of damage processing, the specific time being dictated
by cell cycle kinetics or by the experimental assay.
Then the endpoint of interest is not fully developed
(Subsection 3.2). For example replating cells shortly
after irradiation can involve damage fixation (Iliakis
1991). Most kinetic reaction-rate models have pro-
visions for a damage fixation mechanism. For example
consider an acute dose given just before =0. Then
in the RMR model it is assumed that at some later
time ¢, set by the cell and regarded as an adjustable
parameter, all the remaining ‘uncommitted lesions’
become lethal, i.e. the surviving fraction is given by
Poisson statistics (Appendices B.1 and B.5) as

S=exp/[—L(t,)—U(1,)] (A.10)
For +>>1/4, U—0, so equation (A.10) becomes
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the relation S=exp[—L(®)] already discussed in
Section 3, and the extra adjustable parameter is not
needed. Many other models analyse damage fixation
similarly (e.g. Curtis 1986, Kiefer 1988b, Sontag 1990,
Obaturov et al. 1993, Ostashevsky 1993, Hawkins
1996). How models which assume damage fixation
at a time set by the cell itself apply to protracted
dose delivery regimens is often not specified.

A.6. The LQ  formalism as an approximation to binary

misrepair models

Next the LQ formalism is derived, including the
form, equation (8), of the generalized Lea-Catcheside
dose-protraction factor, as an approximation to the
LPL model, assuming low or intermediate doses and
a fully developed endpoint. Related arguments have
been given by Lea (1946), Thames (1985), Curtis
(1986), Thames and Hendry (1987), Obaturov e at.
(1993), Hanin e a. (1994), and Hawkins (1996).
The specific claim here is the following. Suppose the
term &7, is negligible in equation (A.6A) (but not
necessarily in (A.6B)). Then L() is given by the
LQ equation (7), with the generalized Lea Catcheside
factor G duly given for any kind of dose-protraction
by equation (8), and with the following identification

of the parameters:
A=21  (A.11)

The proof starts by integrating equation (A.6A) with
kns— 0 to get (Boyce and Diprima 1997)

a=aqa, B=cx8* /21,

t

NeL(t) =38e Mg(t), where g(1) = J D(t')e%"dt'
—

(A.12)

Next, integration by parts and using the integral
(A.2) for total dose D gives the following auxiliary
formulae for g(7) in equation (A.12):

o0

J\ _7\‘1 D
dte Mg(t)="",
— o A

o0 o0

andj dte_zwg2(t)=zf dte Mg(t)D(t)(A.13)

D2
=—¢
22

where G is the generalized Lea-Catcheside double
integral, equation (8). Inserting (A.12) into (A.6B),
integrating, and using (A.13) gives

o0

clte_27‘/g2 (t)

— 00

N.(©) = oD+ CK‘52J

=aD~+ (cx8*/21)D*G (A.14)

Using the relations (A.11) for the parameters, and
comparing equation (A.14) with (8) shows the
theorem is true for the LPL model.

Now the RMR model will be considered.
Substituting Albright’s relation, equation (A.7), between
the LPL and RMR models, into equation (A.14),
shows that a corresponding LQ approximation, based
on xU’<AU, holds for the RMR model, with the
following identification of parameters:

a=(1—¢)s B=(¢— w)x&/21, 2A=2

(A.15)

Assuming a single acute dose, the condition
xkU*< AU used above is a low/intermediate dose
approximation. This fact can be seen from the
following argument, which is essentially due to Lea
(1946, p.263). Assume the single acute dose D is
given just before =0. Then U(0)=6D (com-
pare equation (4)), so at =0 a comparison in
equation (A.3A) between the rate of DSB removal
by restitution, AU(0)=A16D, and by binary mis-
repair, KU2(0)= K‘(5D)2, strongly favours restitution
whenever
i.e.D<<L= LA

K5 B2(1—¢)

(A.16)

If equation (A.16) holds, then, at times later than

=0, as DSB are removed by restitution and mis-
repair, the discrepancy between AU(s) and kU%(t)
becomes still greater. Thus, for acute doses which

obey (A.16), kU’ AU atall times, and the discussion

above shows that this approximation leads to the LQ

formalism. A corresponding argument shows that,

for prolonged irradiation of any kind, and LQ
formalism with the parameter identification (A.15) is

valid if the dose rate is low enough. A sufficient
condition is

LDk (8D )%

PO
B2(1—¢)
The ratio, a/B, is often characterized more
accurately than « or p separately, mainly because
this ratio plays a key role in iso-effect calculations
(Thames and Hendry 1987). Equations (A.16) and
(A.17) with 1 — ¢<<1, w=3/4 show that whenever
dose D is no larger than ~a/B, or dose-rate D is no
larger than ~Aa/B, one is well within the range
where the LQ approximation to the RMR model is
applicable.
As a cross check on the mathematical mani-
pulations, setting r=o0 in the explicit special case
(A.4) for one acute dose and expanding as a power

(A.17)
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series in the dose gives from the first two terms
the same parameter identification for o and B as
does the general argument applicable to arbitrary
dose-rate functions, namely equation (A.15).

In an overall sense, the RMR acute dose survival
curve (Figure 4) is similar to its LQ approximation.
This can be seen by a useful two-parameter charac-
terization of survival curves, which takes into account
their behaviour at all doses, not just at small doses.
The characterization is given by the mean D and
variance o’ for the probability density p(D) defined
by p(D)=—dS(D)/dDp; D is called the ‘mean
inactivation dose’ and RS=D"/c" is called the
‘relative steepness’ (Hug and Kellerer 1966, Rossi
and Zaider 1996). Using numerical methods to
compute mean inactivation dose and relative steep-
ness for the RMR curve and its LQ approximation
in Figure 4 gives Dpwr=2.21 Gy, D,y =2.13 Gy,
RSpvr=1.58, and RS,,=1.70. The fact that the
RMR and LQ values are within less than 10% of
each other indicates that, taking all doses into account,
the RMR curve and its LQ approximation are similar.

By using first-order non-singular perturbation
theory (Brenner « o 1997) one can show that other
binary misrepair kinetic models, such as the com-
pound model of Subsection 6.1, also have LQ
behaviour (compare Obaturov e . 1993, Hawkins
1996). As will be discussed next, models which use
a quite different approach also lead to the LQ
formalism, including the same generalized Lea-
Catcheside dose-prolongation factor G.

A.7. A saturable repair model

Various saturable repair models have been intro-
duced (e.g. Haynes 1964, Reddy et az. 1990, Sanchez-
Reyes 1992), though the molecular interpretations,
biological consequences, and mathematical impli-
cations of such models have not been worked out as
thoroughly as in the case of binary misrepair models.
The saturable repair model of Kiefer (1988b) is
reasonably typical. It can be written in terms of two
rate equations, for the average number ~ (¢) of ‘initial
lesions’ and average number L(r) of lethal lesions:

dN AN AoN
(A)——=6D— — N
dt I+ N 1+ gN
(A.18)
dL AoN
(B)— =
dt 1 + SQN
A and g, i=1, 2, are adjustable parameters. The

term &N corresponds to saturable repair (specifically,
Michaelis-Menten) kinetics: as N gets large, the repair
rate A,(1+ gN) per unit initial lesion, which is 1,
when ¢ N<<1, becomes smaller, corresponding to

saturating the repair system. Similar comments apply
to the misrepair term involving A,and &,. The model
gives rise to shouldered survival curves if &> ¢
(Kiefer 1988b). Using non-singular first order per-
turbation theory it can be shown (Brenner e az. 1997)
that equation (A.18) also leads to the LQ formalism,
including the generalized Lea-Catcheside dose-
protraction factor, in an appropriate approximation.
The following parameter identifications are required:

)1,=)1,1+)1,2, OC=/'1,25//1,

(A.19)
B=05%9h (6, — £)/27"

For the special case of a single acute dose, this result
was previously obtained by Kiefer and Lobrich
(1992).

Sublesions in the Kiefer saturable repair model
are not repaired with first order kinetics and do not
interact directly in a reaction like lethal binary
misrepair. But there is an indirect interaction: one
sublesion uses the enzyme another needs. For low
and intermediate doses, as has just been proved, the
indirect interaction mimics lethal binary misrepair
competing with non-saturable repair as far as leading
to LQ behaviour is concerned, including even the
details of cell sparing by dose-protraction. The fact
that both binary misrepair and saturated repair
lead at low or intermediate doses to the same, LQ,
formalism for any type of dose protraction partially
explains the otherwise somewhat puzzling similarity
(Goodhead 1987) between the consequences of the
two mechanisms.

For other saturable repair models (e.g. Sontag
1990) a wholly similar theorem can be proved. An
exception is Goodhead’s ‘suicide enzyme’ model
(Goodhead 1985), which does not seem to have the
LQ formalism as an approximation, except in the
trivial sense of a power series for response to a
single acute dose, the reason being that at low doses
Goodhead’s model is based on damage fixation
occurring before repair and misrepair have run their
full course (so that the limit 7 — % is not applicable).

A.8. Site models

The simplest way to incorporate proximity effects
(Subsection 6.5) into radiobiological reaction-rate
models is to partition the cell nucleus into interaction
sites, with binary misrepair allowed only for DSB
formed within the same site (e.g. Chen e o 1996,
Hawkins 1996, Savage 1996, Radivoyevitch et at. 1997).
For per-cell averages of lesions whose fluctuations
are governed by Poisson statistics, assuming more
than one site makes little difference. For example, if
in each site kinetics are governed by the model of
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Section 3, then by simply adding the rate equations
one shows that the total number of DSB or lethal
lesions, as sums of contributions from each site, obey
rate equations of exactly the same form, with some
obvious rescalings of the parameters. Closer con-
sideration of equation (5) shows that the validity of
this trick depends on the assumption that DSB and
lethal lesion numbers in different sites are independent
of each other, with the intersite fluctuations governed
by Poisson statistics (so that the totals are also Poisson,
by the theorem in Appendix B.4 below). In any
situation where there are significant deviations from
Poisson statistics, as can occur for various reasons
(Appendices B.6 and B.7), the site number has a
significant influence (Harder 1988, Brenner and
Sachs 1994).

A.9. Non- kinetic models for dose- response relations

This review emphasized kinetics. A kinetic approach
is clearly indicated for doses which are protracted in
time and for endpoints which are not fully developed.
But kinetic models are informative in any case. It is
often more useful to consider an acute dose arriving
in small increments, and to consider the biological
response gradually developing after irradiation, than
to try to jump directly from total acute dose to final
fully developed damage.

Multi-target, multi-hit models and some of their
generalizations (Hanin e at. 1994) do make such a
jump. So does the Theory of Dual Radiation Action.
This theory can be used for protracted irradiation
regimens (Kellerer and Rossi 1972), and is then very
similar to the LQ formalism, but it avoids detailed
kinetic equations. The resulting simplification often
enables more careful consideration of spatial inhomo-
geneities within the cell nucleus (Subsection 6.5) than
is readily possible in kinetic reaction-rate models
(e.g. Kellerer and Rossi 1978, Brenner et al. 1994).

The Theory of Dual Radiation Interaction assumes
that the dominant contribution to a in the LQ
formalism is the formation of ‘sublesion’ pairs by a
single event (i.e. that « is due to one-track binary
misrepair), which implies a relation between a and
B microdosimetrically (Kellerer 1985). However, at
low LET, unless proximity effects are very important,
this microdosimetric contribution to « is too small to
account for the observed values (Goodhead 1987).
The radiobiological reaction-rate models discussed in
this review all assume that there are also other one-
track lethality mechanisms, e.g. pathways B or E in
Figure 2, which can make additional contributions
to a.

Appendix B. The Poisson distribution
B.1. D efinition of the Poisson distribution

The Poisson distribution describes whole-number
fluctuations. It is used for many different radio-
biological quantities: the number of cells per tumour;
the number of radiation tracks per cell; the number
of DSB per chromosome arm; etc. Because the Poisson
distribution is virtually ubiquitous it is important to
distinguish its various uses; for example, at high LET
it is usually reasonable to suppose that the number
of radiation tracks per cell nucleus is Poisson-
distributed, but often unreasonable to assume that the
number of DSB per cell nucleus is Poisson-distributed
(Virsik and Harder 1981).

For concreteness, consider specifically the number
of lethal lesions per cell after an acute dose of low
LET radiation. Denote the average number of lethal
lesions per cell at a given time by L Lethal lesion
number is said to be Poisson (or Poisson-distributed
from cell to cell) if the probability a cell has no
lethal lesions is exp [—1], and, more generally, the
probability P, that a cell has m lethal lesions is

m

P,=(L"/ml)e ", m=0,12 ..(0/=1)

(B.1)

Note here that m, in contrast to its average L, is
an integer.

To illustrate manipulations with the Poisson distri-
bution, here is the way to check from equation (B.1)
the claim, made above, that the average over cells
of the lethal lesion number m is L This average is
0X Py+1X P,+2XPy+ ... Therefore, with {... )
denoting averages

© o "
p= ¥ mp,=e" %
=0 w=0 m!
o i
=" m =l =1L (B.2)
m=1 - :

where the Taylor expansion of exp[Z] was used.
Comparing the start and finish of equation (B.2)
shows the claimed result on averages is correct.
Despite the infinite sums involved in manipulations
like (B.2) the Poisson distribution is user friendly,
having many other useful properties whose proofs
are only slightly harder than (B.2). Three basic
properties will now be illustrated by examples in lieu
of mathematically precise formulations or proofs.

B.2. The sum of independent Poisson quantities is Poisson

For example, suppose one kind of lethal lesion is
made directly; suppose the number fluctuates a bit
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from cell to cell and the lesions are Poisson-distributed
with average number L;; suppose other lethal lesions
are made, independently of the first kind, by binary
misrepair of DSB, are also Poisson, and have average
number L; then, adding within each cell, one finds
the total lethal lesion number is also Poisson, with
average L, + I,. Additivity also holds for more sum-

mands (Breimann 1969, p. 95). Poisson distributions
(and Gaussians)are among the very few distributions
which have this useful additivity property.

B.3. A random thinning of a Poisson quantity is Poisson

To illustrate what is meant here, suppose that,
at +=0, DSB are Poisson-distributed, with some
average, say U. Suppose then each DSB undergoes
a transition, either being repaired (with probability
p) or left unrepaired (with probability 1 —p), the
transitions of different DSB being independent of
each other. For this process repaired DSB per cell
turn out to be Poisson (with average number Up),
and unrepaired DSB are Poisson with average
number U(/ —p), both being ‘random thinnings’ of
the original DSB. For the proof, see Breimann (1969,
pp- 139-140).

B.4. The sum of many small, independent Bernoulli

quantities is Poisson

To illustrate what is meant by this formidable-
sounding but very useful statement, suppose a cell
receives 1 Gy of low LET radiation. Divide the
genome into stretches of 1 kbp each. Then in each
stretch there is a probability, denote it by p, of no
DSB, a very small probability ~1 —p of one DSB,
and a wholly negligible probability of more than one
DSB. The number of DSB in one kbp stretch is
effectively a Bernoulli quantity (i.e. can only be zero
or one); there are many stretches (about 6 X 100 of
them); the Bernoulli quantity is small (1 — p is some-
thing like 04000005); and the probabilty for one DSB
in a given stretch is, at low LET, independent of the
behaviour of all the other stretches. The relevant
theorem (Breimann 1969, pp. 32-34) says that under
these circumstances the sum, i.e. the total number
of DSB per cell, is Poisson-distributed. It is this
‘sum of many independent improbable quantities’
property which, perhaps more than anything else,
accounts for the widespread applicability of the
Poisson distribution.

B.5. The Poisson assumptions for the representative model

In this review, one main application of the Poisson
distribution is in Subsection 3.1. There it is assumed

that DSB and lethal lesions are Poisson-distributed
from cell to cell. These assumptions can be motivated
roughly as follows. Consider a single acute dose just
before t+=0. Then, at low LET, DSB at r=0 will
be approximately Poisson (property B.4). Moreover,
as the number of DSB in each cell decreases by
first order restitution, one has essentially a random
thinning so the DSB will remain Poisson as time goes
on (property B.3). The lethal lesions made by binary
misrepair correspond roughly to having each of many
DSB pairs with a very small probability of making a
lethal lesion, so the lethal lesions produced should
also be Poisson (property B.4). Lethal lesions made
by lethal restitution (i.e. by the pathway shown in
Figure 2B) are Poisson by property B.4, so the total
lethal lesions, as the sum of two independent Poisson
quantities, are then also Poisson (property B.2).

This argument that lethal lesions are Poisson distri-
buted only works if, as here, a dicentric and its
acentric fragment taken together (Figure 1B) are
counted as one lethal lesion, not as two lethal lesions
as is done in other treatments (e.g. Albright and
Tobias 1985). Poisson statistics are robustly observed
for dicentrics at low LET (e.g. Lloyd et a. 1987), and
are essential to the theory (equation (5)).

Given that DSB are Poisson distributed at all
times, it is possible to derive the misrepair reaction
rate term xU”in equation (2) by an argument which
does not rely on U>>1 (Albright 1989). For U small,
the fluctuations of the DSB number from cell to cell
can be important, so denote by v the number of DSB
in a particular cell at time s, with per-cell average
<v>=U(t). In each cell, v is an integer, but the
average over cells, U(z), is normally not an integer.
For each cell, the number of DSB pairs is the integer
v(v—1)/2. If «k is the per-pair rate of binary mis-
repair and two DSB are removed in each binary
misrepair (Figure 1) the average rate of removing
DSB by binary misrepair is {2xv(v—1)/2), i.e.

viv—1)>=xlv)’=«kU%1) (B.3)

as assumed in equation (2). In equation (B.3) a
Poisson distribution was used to calculate the average,
much as in equation (B.2).

The argument given above for Poisson statistics is
not exact, and there can be deviations from Poisson
distributions for DSB and/or lethal lesions. In typical
low LET experiments, the corrections are minor
(Harder 1988, Albright 1989, Sachs e ai. 1992). But
to see that they are minor, to handle those low LET
situations where they are not minor, and to indicate
why many of the arguments of this review fail at
high LET, a slightly closer look is worthwhile. There
are two main reasons for deviations from Poisson
distributions: if the incoming radiation makes a non-
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Poisson distribution of DSB; or if damage processing
causes DSB and/or lethal lesions to gradually deviate
from Poisson behaviour.

B.6. M icrodosimetrically determined deviations from Poisson

distributions

To analyse the first possibility, suppose an acute
dose D is delivered just before 1= 0. Each track (i.e.
‘event’, compare the caption to Figure 2) has certain
probabilities of making no DSB, one DSB, two DSB,
etc. Attempting to find those probabilities (from the
physics of the radiation and the chemistry of the
cell, or experimentally), has been the subject of an
enormous, long-term effort, which involves micro-
dosimetry heavily (Goodhead 1987, Brenner and
Ward 1992, Varma and Chatterjee 1994). Here we
need only two facts: (A) gives the probabilities, one
can calculate quantities like the average DSB number
per track, the average number of DSB pairs per
track, etc; (B), at low LET the probability one track
makes more than one DSB is often negligible.

Suppose the tracks are Poisson distributed from
cell to cell. For identical cell nuclei which present
identical cross sections to the radiation, this is
essentially just property B.4 one more time. As above,
denote by v the number or DSB in a particular cell
atr=0, the average of vbeing U(0). Using a variance
calculation, not too different from the mani-
pulations in equation (B.2), one can prove the follow-
ing generalization of equation (B.3) (Hug and
Kellerer 1966):

(1/4)2xleo(v—1)/2)=(k/4)U%0)+ Y,  (B.4)
where
Y= (x/4) X (average # of DSB pairs in one track)
X (average # of tracks/cell)

If the probability of making two or more DSB
by one track is negligible and the distribution of
DSB is Poisson by property B.4, then the average
number of DSB pairs per track is negligible, so Yin
equation (B.4) is negligible, and equation (B.4) is
merely the familiar term xU*/4 in equation (3) for
lethal lesion creation rate at r=0. In that case
(Subsection 4.4) lethal binary misrepairs contribute
only to the g term in the LQ approximation, not to
the a term. However, if some tracks make more than
one DSB, the average number of DSB pairs per
track is non-zero, and therefore in equation (B.4)
Y#0. Then Y contributes extra terms in equations
(2) and (3). The contribution is proportional to dose
and thus corresponds to « in LQ approximation,
since the average number of tracks per cell nucleus
is proportional to dose. In short, if a significant

fraction of tracks makes more than one DSB, as
occurs at high LET but probably not at low LET,
the Poisson approximation for DSB per cell does
not hold and there is an extra contribution to «
in the LQ formalism, i.e. an extra effect directly
proportional to dose and independent of dose
protraction.

B.7. D eviations from Poisson distributions caused by

damage processing

Even if an acute dose makes Poisson-distributed
DSB, damage processing will cause deviations from
Poisson distributions for DSB, and for lethal lesions,
at subsequent times. The magnitude of this effect
can be estimated by Markov damage processing
models which keep track of the details of the statistical
distribution of lesions from cell to cell (Albright 1989,
Hahnfeldt ¢ a2 1992, Sachs et a. 1992), and turns
out to be quite small in most situations. For example,
the Markov analogue of the model in Section 3 can
be used to calculate, for the parameters used in
Figure 4, the average number of lethal lesions L(),
the zero class Z for lethal lesions (i.e. the fraction of
cells which at large times have no lethal lesions), and
the variance 7 for cell-to-cell fluctuations of lethal
lesions. The result of the calculation for the doses
of 0-15 Gy which were used in Figure 4, are the
following: L deviates very slightly from the L calcu-
lated with the averaged equations (2)-(6) but for
practical purposes is identical; for large doses Z is
somewhat smaller than exp[—L(%)/, as shown in
Figure 5, so that, for example, at 15 Gy the Poisson
approximation used in the main text (Section 3)
overestimates survival by about 20%; and for large
doses, ¥/, which would be 1:0 for a Poisson distri-
bution gradually becomes less than 1 (Figure 5). These
are not large effects, and in a model which has sites
(Appendix A.8), the effects of deviations from the
Poisson distribution are even smaller (Harder 1988,
Hawkins 1996). Overall, for low LET the standard
Poisson assumptions are excellent approximations
at all times in most relevant situations. Significant
deviations usually occur only at doses so high that
the kinetic reaction-rate models also have other
problems (discussed in Subsection 3.1).
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