nursing home patients are dual eligible, can incentivize these transfers.\(^5\) Evidence\(^6\) has shown that reducing these potentially preventable visits has the potential to generate significant savings for public insurance programs.

Julia Brownell, BA
Joseph Wang, BS
Alexander Smith, MD, MS, MPH
Caroline Stephens, PhD, MSN, APRN, BC

Risk and Risk Reduction of Major Coronary Events Associated With Contemporary Breast Radiotherapy

Long-term breast cancer survival rates have improved markedly over recent decades, so minimization of long-term treatment-related complications is increasingly important. Several reports have suggested links between breast cancer radiotherapy and long-term cardiovascular mortality.\(^1\) A recent analysis by Darby et al\(^2\) of patients treated with breast radiotherapy between 1958 and 2001 revealed a statistically significant linear dependence of the risk of major coronary events on mean cardiac dose. We use these historical data to estimate risks of major coronary events induced by modern breast radiotherapy. Our motivation is to quantify contemporary risks and also to guide efforts to minimize radiotherapy-induced cardiovascular risks.

Methods
The risk estimates derived here were based on contemporary patient-specific radiation doses averaged over the cardiac volume (hereafter, mean cardiac dose). These were derived from breast radiotherapy treatment plans for 48 patients with stage 0 through IIA breast cancer who were treated after 2005 at New York University Department of Radiation Oncology.\(^3\) Two treatment plans, for supine and for prone treatment positions, were generated for each patient. This was a prospective trial and received institutional review board approval. Informed consent was obtained from all participants.

Excess absolute risks (\(R\)) of radiotherapy-induced major coronary events (defined, as in Darby et al,\(^2\) as myocardial infarction, coronary revascularization, or death from ischemic heart disease) were calculated for each patient, on the basis of patient-specific mean cardiac doses and using the dose-response relationship reported by Darby et al for these end points:

\[
R = 0.074 \times D \times B.
\]

Here, \(D\) is the mean cardiac dose (in grays) and \(B\) is the baseline risk for a major coronary event, as defined in the previous paragraph. Because the radiation-associated risk depends on the baseline risk, we report risk estimates for typical low-risk, medium-risk, and high-risk patients, with baseline risks (\(B\)) estimated (Table) on the basis of the standard Reynolds algorithm.\(^4\) Cardiac risks were calculated over 20 years after radiotherapy, the approximate mean life expectancy after early-stage breast cancer.

Results
For standard supine-positioned radiotherapy, the patient-averaged mean cardiac dose was 1.37 Gy (95% CI, 1.12-1.61) (to convert to rad, multiply by 100), less than one-third of the average mean cardiac dose reported\(^2\) for breast radiotherapy from 1958 to 2001. As expected,\(^3\) mean cardiac doses were significantly lower for right-sided than for left-sided breast radiotherapy (2-tailed \(P = .001\) for supine positioning and <.001 for prone positioning). For left-sided (but not right-sided) radiotherapy, treating in a prone position resulted in a halving of the mean cardiac dose.

Table

<table>
<thead>
<tr>
<th>Risk Estimate</th>
<th>Low Risk</th>
<th>Medium Risk</th>
<th>High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Risk Dose (Gy)</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Cardiac Risk (R)</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Related article page 160
Table. Patient-Averaged Mean Cardiac Doses and Estimated Patient-Averaged Lifetime Excess Risks of Major Coronary Events Associated With Contemporary Breast Cancer Radiotherapy

<table>
<thead>
<tr>
<th>Treatment Side</th>
<th>Radiotherapy Position</th>
<th>Cardiac Dose, Mean (95% CI), Gy</th>
<th>Low Baseline Risk Patients</th>
<th>Medium Baseline Risk Patients</th>
<th>High Baseline Risk Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Supine</td>
<td>2.17 (1.36-2.98)</td>
<td>0.22 (0.08-0.36)</td>
<td>0.42 (0.14-0.70)</td>
<td>3.52 (1.47-5.85)</td>
</tr>
<tr>
<td></td>
<td>Prone</td>
<td>1.03 (0.87-1.19)</td>
<td>0.09 (0.05-0.13)</td>
<td>0.17 (0.09-0.25)</td>
<td>1.31 (0.86-1.86)</td>
</tr>
<tr>
<td>Right</td>
<td>Supine</td>
<td>0.62 (0.54-0.71)</td>
<td>0.05 (0.03-0.07)</td>
<td>0.10 (0.06-0.14)</td>
<td>0.79 (0.57-1.06)</td>
</tr>
<tr>
<td></td>
<td>Prone</td>
<td>0.64 (0.56-0.72)</td>
<td>0.06 (0.03-0.08)</td>
<td>0.11 (0.05-0.16)</td>
<td>0.84 (0.57-1.18)</td>
</tr>
</tbody>
</table>

Excess Risk (95% CI), %

- **Low Baseline Risk Patients**: 0.22 (0.08-0.36) for supine positioning vs 1.03 (0.87-1.19) for prone positioning.
- **Medium Baseline Risk Patients**: 0.42 (0.14-0.70) for supine positioning vs 0.09 (0.05-0.13) for prone positioning.
- **High Baseline Risk Patients**: 3.52 (1.47-5.85) for supine positioning vs 1.31 (0.86-1.86) for prone positioning.

Discussion

Cardiac doses from breast radiotherapy have generally decreased during recent decades (although not for all modern treatment techniques), so typical risks of major cardiac events associated with contemporary radiotherapy are lower than in earlier eras. Estimated lifetime risks of major coronary events for patients who receive radiotherapy for breast cancer are now in the range from 0.05% to 3.5%, with a typical value of 0.3% for a typical scenario. The highest cardiac doses and excess cardiac risks result from supine positioning during left-sided radiotherapy; for left-sided radiotherapy, prone positioning significantly reduces cardiac doses and risks. For right-sided radiotherapy, where the heart is always out of field, cardiac doses and risks are smaller, and prone vs supine positioning has little effect, although prone position radiotherapy does reduce ipsilateral lung doses and thus reduces potential second lung cancer risks.

Because the effects of radiation exposure on cardiac disease risk seem to be multiplicative, the highest absolute radiation exposure risks correspond to the highest baseline cardiac risk. Consequently, radiotherapy-induced risks of major coronary events are likely to be reduced in these patients by targeting baseline cardiac risk factors (cholesterol, smoking, hypertension), by lifestyle modification, and/or by pharmacological treatment.

David J. Brenner, PhD, DSc
Igor Shuryak, MD
Gabor Jozsef, PhD
Keith J. DeWyngaert, PhD
Silvia C. Formenti, MD

Author Affiliations: Center for Radiological Research, Columbia University Medical Center, New York, New York (Brenner, Shuryak); Department of Radiation Oncology, New York University School of Medicine, New York (Jozsef, DeWyngaert, Formenti).

Corresponding Author: David J. Brenner, PhD, DSc, Center for Radiological Research, Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (dj3@columbia.edu).

Conflict of Interest Disclosures: None reported.

Correction: This article was corrected for an error in the Results section on November 15, 2013.

Letters

ashelical tomotherapy, which can deliver approximately 2 to 3 Gy of the left breast. This can occur because the woman's heart receives higher mean cardiac doses, especially in radiotherapy for cancer of the left breast. The study found no evidence of a threshold dose below which no risk occurs, but risks following cardiac doses below approximately 2 Gy could not be estimated precisely, so the possibility of a threshold cannot be excluded. Importantly, it was found that the radiation-related risk approximately multiplied a woman's preexisting ischemic heart disease risk, implying that women with preexisting heart disease or major cardiac risk factors will have much higher absolute risks than other women.

Risk of Ischemic Heart Disease in the Absence of Radiotherapy | Detailed predictions of the risk of an acute coronary event, subdivided according to mean heart dose, presence or absence of preexisting cardiac risk factors, and age at irradiation (which determines a woman's life expectancy assuming that she survives her breast cancer) using baseline rates from western Europe—which do not differ substantially from those for the United States—are available in the online supplementary material of the paper presenting the dose-response relationship. In this issue of JAMA Internal Medicine, Brenner et al3 indicate how the factors included in the Reynolds risk score (age, smoking status, systolic blood pressure, serum cholesterol levels, family history) might influence the radiation-related risk for a woman who is free of cardiovascular disease when her breast cancer is diagnosed and who has a life expectancy of 20 years, for mean cardiac doses of 0.6, 1.0, and 2.2 Gy.

Relevance for Today | In breast cancer radiotherapy today, there is considerable variability in the dose received by the heart and in the extent of preexisting risk of ischemic heart disease. Thus, there is likely to be considerable variability in the cardiac risks of radiotherapy. Our dose-response relationship3 can be used to provide reassurance for the majority of women that their absolute risk of ischemic heart disease from breast cancer radiotherapy is likely to be small compared with the likely absolute benefit from radiotherapy.4 It can also be used to identify the minority of women for whom the benefits of radiotherapy do not clearly outweigh the risks, including those for whom adequate coverage of the target tissue cannot be achieved without a high heart dose.

Further Work | In the future, studies based on radiation dosimetry that is able to take account of the distribution of dose within the heart (rather than just the mean heart dose) may provide further insight into which parts of the heart are damaged in breast cancer radiotherapy. Studies are also needed to quantify the risks of other types of heart disease such as valvular heart disease and heart failure and the risks of breast cancer radiotherapy in women who also receive chemotherapy, which can itself be cardiotoxic.

Carolyn Taylor, DPhil, FRCR
Sarah C. Darby, PhD

Author Affiliations: Clinical Trial Service Unit, University of Oxford, Oxford, England (Taylor, Darby).

Corresponding Author: Carolyn Taylor, DPhil, FRCR, Clinical Trial Service Unit, University of Oxford, Richard Doll Bldg, Old Rd Campus, Oxford OX3 7LF, England (carolyn.taylor@ctsu.ox.ac.uk).