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Abstract

When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival
times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of
long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique
insights into human carcinogenesis, since the therapy involves administering well-characterized doses of a well-studied carcinogen,
followed by long-term monitoring.

In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent
cell repopulation by proliferation, can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/
proliferation (ITP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic
cell population dynamics approach. To analyze if radiation-initiated pre-malignant clones become extinct before full repopulation
can occur, we here give a stochastic version of this IIP model. Combining Monte-Carlo simulations with standard solutions
for time-inhomogeneous birth—death equations, we show that repeated cycles of inactivation and repopulation, as occur during
fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance>mean, even when pre-
malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic
model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy
for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: (a) initiated, pre-malignant cells can have a
growth advantage during repopulation, not just during the longer tumor latency period that follows; (b) weekend treatment gaps
during radiotherapy, apart from decreasing the probability of eradicating the primary cancer, substantially increase the risk of later
second cancers.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction tumor, the radiation can cause second cancers, e.g. in
organs adjacent to the tumor (reviewed in Curtis et al.,
2006; Hall, 2006; Little, 2001; Ron, 2003). With screening
resulting in patients being treated at younger ages, and
with increasing patient survival times, second cancers

are becoming of increasing concern (Travis et al., 2006).

Tonizing radiation is a carcinogen as well as an agent for
killing cells. When radiotherapy is used to eradicate a

Abbreviations: Gy, gray; LQ, linear-quadratic; IIP model, initiation/

inactivation/proliferation model; ERR, excess relative risk
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The long time lag between radiotherapy and second
cancer incidence means that few direct data, or none, are
available on second cancers induced by recently introduced
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treatment modalities, so that model-based predictions are
important.

1.1. Models of radiation carcinogenesis used in applied risk
estimation

Radiation carcinogenesis, in this second cancer situation
and in general, is a complex process. But it is important to
have a well defined, consensus, quantitative method to get
some estimate of the cancer risk. In many practical
applications (e.g. Bennett et al., 2004; Brenner et al., 2003;
Land et al., 2003; Preston et al., 2003; Walsh et al., 2004) it is
assumed as an approximation that the year-specific excess
relative radiation risk (ERR) of cancer incidence for a
specified organ, defined conceptually in terms of the ratio of
the relevant hazard functions, has a product form, i.e.

ERR = AB. (1)

Here A depends on radiation parameters (e.g. radiation
type, dose, and dose-timing), while B depends on time since
irradiation and on demographic factors (e.g. age at
irradiation, gender, ethnicity) but not on the dose or dose-
timing. Implicit in Eq. (1) is the idea that there are really two
time scales involved: 4 is determined by processes that occur
during a comparatively short irradiation time; B by
processes that occur subsequently, during a comparatively
long latency period before tumors are incident clinically. An
important implication of Eq. (1) is that various predicted
ERR dose-response curves all have the same shape (i.c.
differ only in vertical scale): one curve for dose-dependence
of damage comparatively soon after irradiation; others for
dose-dependence of ERR during each particular subsequent
year.

“Biologically-based’ radiation carcinogenesis models (e.g.
Hanin et al., 2006; Heidenreich et al., 2004; Moolgavkar and
Luebeck, 2003; Pierce, 2003; Sachs et al., 2005; Yakovlev
and Polig, 1996) analyze the longer-time latency period in
more detail. Such biologically based models usually do
not assume or imply the product form, Eq. (1), for the
ERR; they often do have this product form as an
approximation. They can also be used when radiation is
so protracted it involves times comparable to the latency
time, in which case the two time scale assumption underlying
Eq. (1) does not apply. However, such biologically based
models are as yet less thoroughly explored and less accepted
than the models actually used in current applied risk
estimation, which do assume Eq. (1), as we consequently
also will in the present paper.

For a single dose of magnitude d administered acutely
(i.e. rapidly compared with endogenous cellular times such
as DNA repair times or cell cycle times) the dose-
dependent factor 4 in Eq. (1) has in the past usually been
taken to have the following “‘linear-quadratic-exponential”
form (reviewed in Bennett et al., 2004; Dasu et al., 2005;
Radivoyevitch et al., 2001):

A = (ad + bd*) exp(—od — pd?). ®)

Here a, b, « and f are non-negative parameters. This
form is usually rationalized, in terms of cell initiation and
inactivation, as follows:

(a) Putatively, the first step in carcinogenesis by ionizing
radiation is the “initiation” of target cells to form cells,
that are “‘pre-malignant” in the sense that they may
eventually evolve into a clinically detectable cancer.
The molecular nature of the initiation event and the
biological scenario for subsequent evolution of the
initiated cells are left open in almost all applications of
Eq. (2), the emphasis being instead on the numerical
values of the four parameters and on the resulting dose
dependence. For example, Eq. (2) does not specify
whether the radiation-produced initiation is a single
point mutation, much larger-scale genome damage
such as aneuploidy, or some other kind of event.

(b) The factor exp(—uad—pd?) is the standard linear-
quadratic (LQ) estimate of cell survival—the prob-
ability that a cell is not inactivated by the dose (i.e. is
still capable of originating a clone). The quadratic term
B represents “two-track action” where damage from
two different radiation tracks interacts to inactivate
the cell; the linear term od represents one-track
inactivation (reviewed in Guerrero et al., 2002; Jones
et al., 2001; Sachs and Brenner, 1998; Sachs et al.,
1997). In most environmental or occupational risk
estimation situations, the relevant doses are so low that
exp (—ad—pd*) =1 to good approximation, but for
second cancer scenarios such is by no means the case.

(¢) The factor (ad+bd’) is a standard LQ estimate for the
product pN, where N is the number of target cells and p
is the probability a target cell is initiated to make a pre-
malignant cell. Here p<1 since N, e.g. the number
of stem cells in a normal breast, is believed to be 107 or
more (Clarke, 2005; Paguirigan et al., 2006) whereas, in
the situations of interest here where stochasticity is
important, the number of initiated cells has order of
magnitude unity.

During the last half-century, there have been many
vigorous controversies about which kind of situations can
be usefully approximated by Eq. (2), and about the values
of the four parameters. Current disagreements about the
applicability of this equation are especially heated for the
initiation term (ad+bd’) in situations where the total doses
involved are much lower than those used in radiotherapy,
as illustrated by strongly contradictory views of the US and
French National Academies of Science (NRC, 2005;
Tubiana et al., 2005). However, using, modifying, and/or
generalizing Eqs. (1) and (2) is a basic starting point of
almost all current applied radiation carcinogenesis risk
analyses, and these two equations lead to a useful first
approximation to most more sophisticated models. We
shall here also start with Egs. (1) and (2), emphasizing
modifications needed in the factor A4, particularly at high
doses where our approach differs significantly from older
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approaches, to account for radiotherapy dose-fractiona-
tion and for cell proliferation during or shortly after
radiotherapy. The stochastic aspects of cellular initiation,
inactivation, or proliferation are emphasized. The factor B,
whose evaluation typically involves epidemiological data,
e.g. data on the Japanese atomic-bomb survivors, will be
discussed only briefly.

1.2. Fractionated radiotherapy

Most external beam, fractionated, solid tumor radio-
therapy regimens have the following features:

(a) Dose-fractions lasting less than 30min are adminis-
tered daily (omitting weekends). The number K of
dose-fractions is typically in the range 20-45.

(b) The total prescribed dose D to the tumor is in the range
45-85 Gray (Gy) (1 Gy = 1J/kg); nearby regions of the
body are unavoidably also irradiated; in some proximal
regions the dose is comparable to the prescribed dose.

(c) Dose-fractions are usually equal, in which case the dose
d for each fraction is d = D/K.

For fractionated radiotherapy under these conditions,
the standard extension of Eq. (2), re-derived in Appendix B
in order to display explicitly the assumptions involved, is

= [aD + (bD*/K)]exp[—aD — (BD*/K)]. (3)

Eq. (3) is an “initiation/inactivation” equation, with the
LQ factor [aD+(hD?/K)] representing initiation and the LQ
factor exp[—aD—(BD’/K)] representing inactivation. The
factors (1/K) arise basically because two-track action does
not occur if the two radiation tracks are separated by more
than a few hours (i.e. occur in different dose-fractions),

repairable damage from the first track being almost wholly
repaired before the second track arrives (review: Sachs
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et al., 1997). Egs. (1) and (3) have been the main formalism
for estimating radiogenic second cancer risks (recent
examples include Bennett et al., 2004; Dasu et al., 2005).

1.3. Weaknesses of the initiation/inactivation equation,
Eq. (3)

In Eq. (3), radiation plays a dual role, initiating some
normal cells but also inactivating some initiated cells. For
realistic values of the parameters, the exponential (inacti-
vation) factor exp [—aD—(SD?/K)] in Eq. (3) is so small at
total doses above about 15 Gy that the predicted number of
second cancers is negligible—essentially, the prediction is
that there is no carcinogenesis because no pre-malignant
cells survive. However, recent data indicates that in fact
substantial second carcinogenesis can occur at high total
doses, such as those used in radiotherapy (reviewed in
Sachs and Brenner, 2005; Schneider and Kaser-Hotz,
2005). A likely source of this discrepancy is that Eq. (3),
as shown explicitly by its derivation (Appendix B), neglects
cell proliferation between dose-fractions and during the
recovery period following the last fraction. Wheldon and
co-workers (e.g. Lindsay et al., 2001) pointed out that, to
the contrary, repopulation by cell proliferation, which is a
very well-known adverse factor for radiotherapeutic
eradication of primary tumors (reviewed in McAneney
and O’Rourke, 2007), almost certainly also influences
second cancer induction. Symmetric proliferation of
normal and of pre-malignant stem cells is expected to
increase carcinogenesis (Fig. 1).

1.4. Deterministic and stochastic initiation/inactivation/
proliferation (IIP) models

To explain epidemiological data on solid second tumors,
cellular repopulation by proliferation was added to the
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Fig. 1. Influences on carcinogenesis risks: initiation, inactivation, and proliferation. Radiation carcinogenesis involves radiation initiation that makes

normal cells pre-malignant (Panel A). In radiotherapy, because of the high doses used, a significant fraction of the pre-malignant cells initiated by previous
fractions in nearby tissue, and of the normal cells at risk for initiation in subsequent dose-fractions, are inactivated by radiation (Panel B). After cell
inactivation, repopulation via symmetric proliferation occurs (Panel C). Repopulation tends to increase second cancer risks for two reasons: (a) among the
proliferating cells are some pre-malignant ones and (b) proliferation replenishes the pool of normal cells at risk for initiation in subsequent fractions. The
classic initiation/inactivation model for second tumors, given by Egs. (1) and (3), does not take proliferation into account; it predicts very low
carcinogenesis risk at sufficiently high doses, due to inactivation. However, initiation/inactivation/proliferation (IIP) models for second tumors take
repopulation into account and predict substantial carcinogenesis risks at high doses, due to proliferation counteracting inactivation.
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initiation/inactivation model given by Eqgs. (1) and (3). The
resulting initiation/inactivation/proliferation (IIP) model
(Sachs and Brenner, 2005) was based on the following
equations: (a) Eq. (2) to describe initiation in each dose-
fraction; (b) standard LQ equations to describe inactiva-
tion of normal and of radiation-initiated pre-malignant
stem cells in each dose-fraction (Appendix B); and (¢) a
system of two non-linear ordinary differential equations to
describe cell repopulation dynamics between dose-fractions
or after the last dose-fraction (Appendix B). This model
gave results consistent with data on radiation-induced
breast or lung cancers following radiotherapy treatment for
Hodgkin disease. However, the model neglected stochastic
fluctuations of the pre-malignant cell number.

Such fluctuations may play a key role. For a related
problem—tumor eradication by fractionated external-
beam radiotherapy—stochastics have been studied in detail
for some time (Tucker et al., 1990). An explicit analytic
solution for a relevant time-inhomogeneous birth—death
process with additional fractionated cell killing has been
found (Zaider and Minerbo, 2000; Hanin, 2004 and
references therein). Our calculation here differs, mainly
because we include initiation, but it is known (Little, 2007;
Sachs and Brenner, 2005; Shuryak et al., 2006; Tucker and
Taylor, 1996) that in either situation, for fractionated
radiation with large total doses, repeated cycles of
inactivation and proliferation can lead to statistical
distributions of cell numbers where the ratio of variance
to mean is much larger than the value 1 that a Poisson
distribution would imply (“overdispersion”; compare
Boucher et al., 1998). Correspondingly, the zero-class
probability, interpreted in our setting as the fraction of
patients who do not have any radiation-initiated, pre-
malignant cells, can be much larger than anticipated from
the mean number of radiation-initiated cells per patient.
These considerations correspond to a typical eradication
scenario: if, just after the last dose-fraction, every cell in
every radiation-initiated pre-malignant clone has been
inactivated, by radiation or other mechanisms, then
subsequent cellular repopulation does not add any radia-
tion risk.

1.5. Preview

The present paper concerns carcinogenesis in second
cancer scenarios, taking into account stochastic inter-
patient fluctuations in pre-malignant cell number for
patients who are otherwise identical. We shall first review
the deterministic initiation/inactivation/proliferation mod-
el (ITP model). Then we describe and apply a stochastic
version of the model. In the stochastic model we analyze
clones initiated by the radiation during a particular dose-
fraction and the distribution of cell numbers for such a
clone. A clone can ultimately lead to cancer incidence with
some probability, with different clones presumably acting
independently since they will typically originate at different
random locations in an organ. In principle the way the

probability of ultimate cancer incidence depends on the
number of cells in a clone would need to be specified. Here
we consider a limiting case which is the opposite extreme of
the deterministic case—i.e. corresponds to the most
pronounced stochastic effects. Specifically we assume that
any clone which is present after repopulation has run its
full course ultimately gives rise to a second cancer. This
limiting case is assumed, explicitly or implicitly, in many
biological analyses of ‘“‘cancer stem cells” (reviewed in
Lynch et al, 2006). It is considered here because it
minimizes the number of adjustable parameters and the
actual situation is expected to be intermediate between the
situation predicted by the deterministic model and this
limiting case stochastic model.

2. Methods
2.1. Deterministic IIP model

The deterministic ITP equations (Appendix B) deal with
time-dependent average numbers, n(f) and m(t), of normal
and initiated stem cells, respectively, for a specified organ.
As will be discussed later, these equations are implied by
the equations of the stochastic IIP model, and the
deterministic model gives considerable insight into the
stochastic one. In the models it is assumed that the excess
absolute risk in any one year is much less than unity.
Instead of using Eq. (3), for the deterministic model the
factor 4 in Eq. (1) is taken to be proportional to mg,,, the
value of radiation-induced pre-malignant cell number ()
at the “final” time, i.e. the time when the normal cell
number n(f) has effectively returned to its set point and
post irradiation repopulation has effectively run its full
course (Fig. 2). By Eq. (1) the dose-dependence of my,,
determines the shape of the predicted ERR dose-response
curve. The deterministic IIP model is a special case of a
somewhat more general model (Appendix A).

To calculate my;,,; we previously assumed that, when m is
negligible compared to n, repopulation between dose-
fractions (or during the recovery period following the last
dose fraction) is described by the following differential
equations (Sachs and Brenner, 2005):

dn/dt = F(n)n, where F(n) = A[1 — (n/N)], 4

dm/dt = rF(n)ym. (5)

In Egs. (4) and (5) the following hold: A is a constant
representing the maximum per-cell proliferation rate;
F(n)=J[1—(n/N)] is a standard logistic factor with the
constant N representing a set point number of normal stem
cells at risk; r is a constant, the “relative fitness”, describing
any growth advantage or disadvantage pre-malignant cells
may have compared to their normal counterparts; and in
our applications m<n at all times. The equations
incorporate the idea that, with m <n, the “density” effects
described by F are effectively determined by the size of n(t).
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Fig. 2. Deterministic cell repopulation dynamics and the compensation
theorem. Normal, and radiation-initiated pre-malignant, average stem cell
numbers, n(f) and m(t), respectively, rescaled for convenience, are shown
as a function of time since the start of radiotherapy. Calculations were
done using the deterministic IIP model (Appendix B) with the following
parameters: fraction number K = 20 acute dose-fractions, starting on a
Monday and continuing daily except for Saturdays and Sundays; dose per
fraction to a nearby organ d = 1 Gy; initiation constants a = 0.75Gy ',
b = 0; relative fitness of pre-malignant cells r = 1; inactivation constants
2=03Gy ! and f=0.025Gy""; and repopulation maximum-rate
constant A = 0.3day”". In this deterministic IIP model the numerical
value of «a is not needed for estimates of ERR (due to renormalizing by
referring to atom bomb survivor data, as discussed in the text), but the
value of @ does matter to the numerical value of m, and we here chose an
illustrative value of a. A numerical estimate of the set point number N is
not needed because the only way n(¢) and N appear in the calculations is
via the ratio v = n/N (Appendix B); presumably N~ 10 or more in most
cases. It is seen that according to the model some normal stem cells (7, red
curve) are inactivated in each dose-fraction; then symmetric proliferation
causes some repopulation between fractions, especially on weekends. After
radiotherapy stops, n grows back to the setpoint number N. Predictions
for the average pre-malignant cell number (m, black curve) are the
following: at first m grows due to initiation and symmetric proliferation; as
m grows, inactivation increases proportionately and starts to overpower
initiation; at that point the only effect that tends to increase m is
symmetric proliferation, especially during a weekend; finally, after
treatment stops, m resumes growth. It is seen that by 7= 60 days,
repopulation has essentially run its full course. In the text we refer to this
time as the “final” time and identify m(60 days) with m;,,,. In the formal
calculations, the difference between m(60) and m(oo) is negligible.
However, in this context “final” refers to the comparatively short,
radiotherapy time scale only. For the long (multiyear) time scale latency
period during which a pre-malignant clone progresses into a clinical
cancer, 60 days would actually count as the initial time instead. We do not
model such progression mechanistically here, circumventing such model-
ing by the use of the factor B in Eq. (1), and will thus use the word “‘final”
as specified above. The blue curve, for pre-malignant cell number m*,
shows a hypothetical situation in which only initiation occurs at each dose
fraction, with & = 0 = f§ so that no inactivation occurs (and thus there is
also no subsequent repopulation). Then m* simply grows in 20 equal steps.
It is seen that ultimately m and m* reach exactly the same value
Myinq = Kad, illustrating in this special case the result that, whenever
r =1, repopulation exactly compensates for inactivation (Appendix A,
Theorem 1). For r#l, however, the interplay between initiation,
inactivation, and proliferation means computer algorithms are needed to
evaluate 1, even in the deterministic IIP model.

Because they take advantage of n>m, our equations are
quasi-linear in the following sense: the non-linear equations
for normal cell number n(¢) do not involve m(z), and can be
solved first. Then the equations for m(¢) are linear in m(¢),
with coefficients that depend on n(?).

2.2. Stochastic initiation/inactivation/proliferation (IIP)
model

A corresponding stochastic model is given in Appendix
C. For computational speed, normal stem cells are
described only via their average number—the equations
for n(r) are taken over without change from the determi-
nistic ITP model. The number of initiated cells, however, is
described by an integer-valued random function m(¢), using
the following assumptions:

(a) Inactivation by one dose-fraction of a preexisting pre-
malignant cell is described by a Bernoulli distribution
with parameter exp (—od-pd>).

(b) During a dose-fraction, some cells are newly initiated
and survive the fraction; these have a Poisson distribu-
tion with parameter (ad+bd*)(n"|N) exp(—ud—pd>),
where n~ is the number of normal cells present just
before the dose-fraction; here the factor (1/N), which
could have been absorbed in the adjustable parameters
a and b, is inserted for later convenience.

(c) Between dose-fractions, and after the last fraction,
initiated cells undergo a time-inhomogeneous Fell-
er—Arley birth—death process whose parameters
depend on the density of normal cells; specifically,
the birth rate minus the death rate at any instant
is taken to be the deterministic proliferation rate,
ri{1—=[n(t)/ N1}

(d) Standard assumptions hold on independence of the
random variables involved.

(e) ERRs are calculated by assuming that the factor A4 is
proportional to the average number of patients who
have at least one radiation-produced pre-malignant cell
at the “final” time defined in the caption to Fig. 2. Thus
it is the presence or absence of pre-malignant cells at
the “final” time, not their average number as in the
deterministic ITP model, that is assumed to determine
radiogenic excess risk.

As in the deterministic IIP model (Sachs and Brenner,
2005), the ERR is calculated for comparatively low doses
using atomic-bomb survivor data and standard methods
for “translating” the results from a Japanese to a Western
cohort (Land et al., 2003). Because B is dose-independent
and all our final estimates involve the product AB, not
either factor separately, the following steps then suffice to
give ERRs at higher doses.

Using a mixture of Monte Carlo and analytic methods,
we follow a clone of cells whose most recent common
ancestor is a cell initiated in the kth fraction (k =0, 1, ...
K; here k=0 refers to any pre-malignant cells that
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may have been present before treatment starts). Using
assumptions (a) and (c¢) above, and iterating over the
remaining dose-fractions, we calculate the probability
distribution for the number of cells in such a clone at
the final time. In particular this distribution gives
the probability that a clone will become extinct by the
final time, and gives the mean number of cells per clone
at the final time. From these two quantities, we calculate,
by conditioning on fraction number k as discussed in
detail in Appendix C, the three quantities of main interest:
the mean number of pre-malignant clones per patient
at the final time; the mean number of pre-malignant
cells per patient at the final time (due to quasi-linearity
this number turns out to be the same as the number
predicted by a deterministic IIP model with the same
parameters); and the ‘‘zero-class” probability, i.e. the
fraction of patients who have no radiation-initiated clones
in the relevant organ at the final time. This procedure
gives A at any dose, and calculating AB at low doses from
the atomic-bomb survivor data gives B, completing the
estimate.

2.3. Data sets and analysis

We analyzed two data sets, chosen mainly because
dosimetry information was more detailed than in other
studies, in the literature on breast cancer incidence in
women who had received radiotherapy for Hodgkin
disease. One (Travis et al., 2003) was a matched case-
control study within a cohort of 3817 female I-year
survivors of Hodgkin disease diagnosed at age 30 years
or younger, between January 1, 1965, and December 31,
1994, and within 6 population-based cancer registries.
Record-linkage techniques were used to identify women
who developed a second primary breast cancer. For
each documented case, at least two controls were
selected by stratified random sampling from the cohort.
Matching factors were registry, calendar year of Hodgkin
disease diagnosis, age at Hodgkin disease diagnosis,
and length of survival without a second cancer at least as
long as the interval between the diagnoses of Hodgkin
disease and breast cancer in the case. Using dose
reconstruction techniques, doses were estimated both
to the specific location in the breast where cancer
developed for each case, and to the corresponding
anatomical site in matched controls. Conditional regres-
sion analysis was conducted to obtain maximum likelihood
estimates of the relative risk of breast cancer associated
with specific treatments by comparing the exposure
histories of the cases with those of individually matched
controls.

The other data set (van Leecuwen et al., 2003) was a
nested case-control study for a cohort of 770 female
patients who had been diagnosed with Hodgkin disecase
before age 41 between 1965 and 1988. Detailed treatment
information and data on reproductive factors were
collected for 48 case patients who developed histologically

confirmed breast cancer 5 or more years after diagnosis of
Hodgkin disease and 175 matched control subjects. The
radiation dose was estimated to the area of the breast
where the case patient’s tumor had developed and to a
comparable location in matched control subjects. Relative
risks of breast cancer were calculated by conditional
logistic regression. Follow-up as to the recent medical
status of the patients was estimated to be complete for 91%
of the cohort members. Six hundred and fifty of those
patients survived 5 or more years.

Results of the stochastic IIP model were fitted to both
data sets simultaneously. For the present, proof of
principle, calculations we held all relevant parameters
except r, o and f fixed at the deterministic values; for
selected values of o and 5, r was determined using a least-
squares algorithm weighted with inverse estimated var-
iance.

3. Results
3.1. Rescaling

The IIP equations (Appendices B and C) describe
inactivation and initiation by an acute dose, followed by
partial repopulation, followed by another acute dose,
followed by more repopulation, etc. (Figs. 1 and 2). In all
essential calculations, normal cell number n(¢) and set point
number N always appear only in the ratio defining the
rescaled normal cell number, v = n/N, never separately or
in any other combination.

3.2. Superposition principles for initiated cell numbers

Due to quasi-linearity as defined below Eq. (5), typical
superposition results hold for the average pre-malignant
cell number m(f) and the corresponding random variable
m(t). For example, the final average number of pre-
malignant cells is a sum of two terms. One term is due to
cells which were present before treatment started and were
then subject to all the cycles of inactivation and repopula-
tion; the other term is due to cells that were initiated by one
of the dose-fractions.

3.3. Theorem on proliferation compensating for inactivation

In the deterministic IIP model consider the case where
r = 1, so that normal and pre-malignant cells have identical
repopulation dynamics; then the predicted dose-depen-
dence of second cancer ERR is the same as if neither
inactivation nor proliferation occurred at all. Specifically
Theorem 1 in Appendix A implies that for the special case
r=1

Mfinal = K(ad + bdz) (6)

Here my,,; is the average number of radiation-induced
pre-malignant cells at the “final” time (Fig. 2); and
(ad+bd?)/N is the probability of initiating one normal cell
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in the kth dose-fraction to make one pre-malignant cell just
after the fraction, without regard for the fact that actually
some of the newly initiated cells are also inactivated by the
same dose or that some of the target cells may have been
inactivated by previous dose-fractions—such inactivation
is canceled out by subsequent proliferation. If » = 0, then
Mgnq s just proportional to total dose D = Kd. Fig. 2
shows a special case illustrating the theorem. For r#l
however, no simple formula such as Eq. (6) for my,, is
known and presumably none exists; numerical methods are
used to obtain mg,,,.

2 p——
Models
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Fig. 3. Different models of ERR. Four models of ERR are shown. We
show the case where all four agree at low doses, i.e. the slopes of all four
curves are the same at the origin, because all four models use
renormalization (based on atomic bomb survivor data) at low doses.
When extrapolated to higher doses, the models give different results. The
parameters used are: K = 25 acute dose-fractions, starting on a Monday
and continuing daily except for Saturdays and Sundays; initiation factors
a= 0.004Gy_', b = 0; relative fitness r = 1.2; inactivation constants
«=0.1Gy " and f = 0; rate constant 4 = 0.3day""; and ratio of death
rate to birth rate ¢=0.2. Only the stochastic initiation/inactivation/
proliferation (IIP) model requires all of these parameters; for example Eq.
(3) contains only a, b, o, and f. To show qualitative trends, the figure here
compares different models holding common parameters fixed. If any one
of the models is used in fitting data, some parameters are adjusted to fit the
situation, and the adjustments would usually lead to different parameters
for different models fitting the same data (see Fig. 5 for an example).
Reading from top to bottom, the deterministic IIP model (blue curve),
using mean pre-malignant cell number, shows an increase in ERR at high
doses. This is attributed to a growth advantage that the pre-malignant
cells have (> 1), which comes into play especially at high doses. The linear
model (dashed red line) just extrapolates the low-dose slope to high doses.
According to the compensation theorem proved in Appendix A, a
deterministic IIP model with r = 1 (instead of r = 1.2) and any values for
its other parameters would give this linear curve. The stochastic ITP model
(black solid curve), based on presence or absence of pre-malignant cells,
has slope decreasing as dose increases, despite the growth advantage.
Finally, the older model (dotted blue curve), given by Eq. (3), predicts
almost no ERR at high doses, putatively due to inactivation of pre-
malignant cells wholly uncompensated by proliferation (Fig. 1).
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Fig. 4. Predicted properties of clones. The figure shows predictions of the
stochastic ITP model with the same parameters as those used for Fig. 3.
The average number of radiation-initiated pre-malignant clones per
patient is shown (rescaled for convenience in graphing, the actual
maximum is ~0.04 pre-malignant clones per patient). It is seen that at
high doses the predicted number of pre-malignant clones per patient does
not increase, clones made in earlier dose-fractions being eradicated by
later dose-fractions. However, the average number of radiation-initiated,
pre-malignant cells per patient continues to increase, as the average
number of cells in those clones that do happen to survive increases due to
repopulation (i.e. to proliferation following inactivation).

3.4. Stochastic vs. deterministic results

Fig. 3 shows some representative results for the stochastic
ITP model, compared to the deterministic ITP model having
the same parameters and to two other models that are often
used. The models differ in the way that they extrapolate
lower dose estimates, based on Japanese atomic-bomb
survivor data, to the higher doses also relevant in second
cancer scenarios. A key point in Fig. 3 is that, even assuming
initiated, pre-malignant stem cells have a growth advantage
over normal stem cells during repopulation (i.e. r>1), the
ERR curve for the stochastic IIP model here has mono-
tonically decreasing slope. On the other hand, when r>1,
the predicted curves of the deterministic ITP model always
have a slope that increases as dose increases. Increasing
slope contradicts epidemiological estimates, so that in the
deterministic model r<1 has previously been assumed
(Sachs and Brenner, 2005).

Fig. 4 shows a reason for the difference between the
deterministic and stochastic estimates. Calculations using
the stochastic ITP model predict that as the dose increases,
what increases is not so much the number of patients
having surviving clones of initiated, pre-malignant cells but
the number of pre-malignant cells per clone. This leads to
situations where only a few patients have any radiation-
induced pre-malignant cells, but those patients have many
pre-malignant cells, corresponding to “overdispersion’ in
pre-malignant cell number, i.e. a variance much larger than
the mean.

3.5. Modeling second cancers in Hodgkin disease patients

We previously considered data on patients treated
with radiotherapy for Hodgkin disease, some of whom
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Fig. 5. Comparing different models with data on second breast cancers.
The data sets used, set 1 (Travis et al., 2003) and set 2 (van Leeuwen et al.,
2003), are described in the Methods section. The figure shows predictions,
all of which use K = 25 acute dose-fractions, starting on a Monday and
continuing daily except for Saturdays and Sundays. For the deterministic
IIP model (dotted blue curve), the relative fitness for initiated, and thus pre-
malignant, cells is » = 0.825; the initiation constants are « = 0.004 Gy ! and
b =0; the linear inactivation constant is o =0.18Gy™'; the quadratic
inactivation constant is = 0; and the proliferation rate constant is
A =0.4day"'. By the theorem in Appendix A, the linear model (dashed
brown curve) would result from r = 1 in the deterministic ITP model with
the given initial slope. For the stochastic IIP model (solid black curve)
values used are r=2 (i.e. pre-malignant cells have a strong growth
advantage), initiation constants a =0.004Gy~' and =0 as before,
2=0.075Gy"" and f=0 (ie. low radiation sensitivity), 4= 1.5 day™!
(i.e. rapid repopulation), and a ratio ¢ = 0.2 of death rate parameter to birth
rate parameter for pre-malignant cells. For all three curves, the slope at the
origin is determined using data on atomic bomb survivors (see text).

subsequently developed second breast cancer (Sachs and
Brenner, 2005). Fig. 5 shows that, with selected parameter
choices, the stochastic IIP model can fit this data as well as
the previously used deterministic IIP model. Because the
stochastic model has additional adjustable parameters,
the fact that it can be forced to fit the data approximately
was not surprising. However, it is of interest to note
that only for small values of the inactivation constants o
and f is an acceptable fit of the stochastic model available.
For values of « and/or f markedly larger than those
shown in the figure caption, high doses merely lead
to a few pre-malignant clones having a very large number
of cells per clone. For still lower values of the radiation
sensitivity to inactivation, less extreme values of the other
parameters can be used in the stochastic IIP model; for
example a roughly comparable fit (not shown in Fig. 5) is
obtained with o =0.04Gy™ ', f=0, 1=0.3day"' (ie.
less rapid repopulation), r = 1.5, a =0.004Gy ™', b =0,
c=0.1.

Note that the stochastic IIP model curve in Fig. 5
incorporates a growth advantage for the pre-malignant
cells during the repopulation period (i.e. ¥>1). Unless such

a growth advantage is assumed, the stochastic model gives
predicted high-dose values too small to match the pattern
of the data.

4. Discussion
4.1. Summary

We have reviewed the deterministic IIP model and
presented a stochastic version. The most important new
conclusion from the stochastic IIP model is that a growth
advantage for initiated and thus pre-malignant cells (r>1)
is compatible with ERRs that increase less rapidly than
linearly at high doses (e.g. Fig. 5). In all cases thus far
analyzed in sufficient detail to make parameter estimates,
the deterministic IIP model gave values r<1 (Sachs and
Brenner, 2005; additional data analysis not shown). That
is, during the radiotherapy and subsequent repopulation
periods pre-malignant cells apparently, according to the
deterministic calculations, do not have a growth advantage
over their normal counterparts, whatever may happen on a
longer-time scale. This result from the deterministic model
was somewhat puzzling. That initiated, pre-malignant cells
do have a growth advantage even on short time scales
following radiation inactivation was suggested earlier
(Crawford-Brown and Hofmann, 1990), found with para-
meter estimates using the two-stage clonal expansion model
(e.g. Heidenreich, 2002), and seems plausible since on long
time scales hyperplasia is a common feature of pre-
malignant cells. We found that with the stochastic model
this puzzling feature of the IIP model, i.e. the estimate that
pre-malignant cells have no growth advantage during
repopulation, is removed.

This and some other features of the stochastic model
correspond to overdispersion, where the number of pre-
malignant cells per patient has a variance much larger than
its mean (although the number of clones per patient is
Poisson-distributed, as discussed in Appendix C). This
overdispersion result is consistent with previous estimates
(Sachs and Brenner, 2005) and with findings of over-
dispersion in models, incorporating cell migration, applic-
able to second cancers that are leukemias (Little, 2007;
Shuryak et al., 20006).

The low values of the inactivation parameters needed to
bring about a fit between the stochastic IIP model and the
data were a surprise. This result may point to extra
radioresistance on the part of breast stem cells, as has
indeed been directly observed (Phillips et al., 2006).
Possibly however, the result points to the fact that the
current model, where even one radiation-initiated pre-
malignant cell ultimately leads to cancer, is only a limiting
case where stochasticity has maximum influence. The
deterministic model gives an acceptable fit for more typical
values of the inactivation parameters (Sachs and Brenner,
2005) so a model intermediate between the limiting case
and deterministic models would not necessarily require
small values.
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One interesting point emerged concerning treatment
on weekends. It is often argued that, implementation
difficulties apart, treating at least 6 days a week would
lead to significant improvements in tumor control prob-
abilities. Our analysis shows that weekend treatment
gaps likewise adversely affect the risk of second
cancers: repopulation during weekends tends to increase
the number of pre-malignant cells right after the end
of the last dose-fraction, which is the key time for
extinction.

4.2. Some weaknesses of the IIP models

The models presented here, and more specifically the
stochastic IIP model, have various weaknesses, including
the following:

(a) The product estimate for ERR, Eq. (1), is only a
phenomenological way to model tumor progression
during the comparatively long latency period which
follows irradiation.

(b) Even given the product assumption, taking the
corresponding dose-dependent factor A4 in the stochas-
tic model to be, in effect, a binary variable, with value
zero or one according as a patient has no pre-malignant
cells or any number of pre-malignant cells, respectively,
gives only the limiting case where stochastic effects are
maximal.

(c) The effects of radiation on pre-existing pre-malignant
cells are neglected in the analysis. For high ERRs
at doses high enough for significant cell killing per
dose fraction, as in the data of Fig. 5, this is a
reasonable approximation; for situations where the
sensitivity to radiation-induced cancer is less, the
effects would have to be taken into account and,
in the stochastic IIP model, would lower the ERR
prediction somewhat.

(d) Intercellular interactions are taken into account only in
one way, via a single logistic factor. The actual richness
of intercellular signaling and cellular reaction to
microenvironments is not considered.

(e) No molecular mechanisms are modeled. As far as the
ITP models are concerned, a cell might as well be a very
simple object capable only of proliferation, being
initiated, and being inactivated. The models in their
present form work equally well (or equally badly)
whether initiation is interpreted as a single point
mutation or as any other somatically heritable change.
With minor alterations the models could be applied
even if initiation involves triggering of a multi-cellular
reaction such as angiogenic recruitment to a dormant
tumor.

(f) For solid tumors, no spatial properties are taken into
account. Effects of dose-inhomogeneity can be taken
into account with dose-volume histograms (Koh et al.,
2007) but spatial factors during tumor progression are
more complicated (e.g. Enderling et al., 2007).

(g) Effects of intrinsic inter-patient heterogeneity are not
taken into account.

(h) Many of these weaknesses were previously accepted in
the interests of keeping the number of adjustable
parameters so small that genuine predictions are
possible (Sachs and Brenner, 2005). However, the
stochastic IIP involves additional adjustable para-
meters, so many that it is not presently possible to
determine them all by other data and thereby allow
clear predictions when dealing with second cancers.

4.3. Conclusions

Second cancers after radiotherapy are of increasing
concern. They are influenced by cellular repopulation
during and shortly after treatment. The IIP models are
the first systematic, quantitative approach based on cell
population dynamics including repopulation for realisti-
cally estimating second cancer risk after fractionated
irradiation. Consequently, incrementally improving the
IIP models will be worthwhile. A deeper understanding
of the initiation/inactivation/proliferation process that
apparently underlies radiation-induction of solid tumors
at high doses should lead to additional insights, potentially
suggesting practical improvements in radiotherapy.

Such investigations should also clarify fundamental
carcinogenesis processes in humans. Modeling second
cancers has an important advantage as regards increasing
our basic understanding, compared to analyzing animal,
in vitro, or in silico data: one deals directly with the
endpoint of main interest, human cancer, not surrogate
endpoints requiring difficult extrapolations. Especially
important in improving biologically based second cancer
models will be data on intermediate endpoints such
as the number and size of hyperplastic foci during
the years after radiotherapy. Whether and how modern
high-throughput molecular data can be used remains
to be seen.
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Appendix A. General deterministic formalism

This appendix first presents a deterministic formalism
that generalizes our previous formalism (Sachs and
Brenner, 2005); then we correspondingly generalize a
previous theorem on cellular proliferation compensating
for cellular inactivation.
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A.1. Equations

The general formalism differs as follows from the
deterministic model used previously (Sachs and Brenner,
2005):

(a) Time between fractions is adjustable so that irregularly
timed dosing can be included, and similarly the dose
per dose-fraction is allowed to vary (e.g. extra dose
given during certain dose-fractions).

(b) Radiation cell inactivation for one dose-fraction need
not be LQ, but rather can involve any non-linearities,
e.g. the possible low-dose non-linearities now being
intensively investigated (Hall, 2004).

(c) Radiation cell initiation in one dose-fraction can
depend on the dose in that fraction in any way, not
just via a linear-quadratic-exponential expression as in
Eq. (2).

(d) Repopulation, between doses and after the last dose,
can follow any restorative pattern, not just the logistic
pattern of Eq. (4) or similarly specific patterns that
are often postulated (e.g. Gompertzian as in Wheldon
et al., 2000).

(e) The assumption m<n, made as a separate assumption
in the earlier paper, is incorporated into the basic
equations ab initio.

Thus we consider a population of n(f) normal cells
and m(¢) initiated cells in an organ receiving clinically
significant doses during fractionated external-beam radio-
therapy. We have in mind the interpretation that n refers to
stem cells and m to “pre-malignant stem cells”. Denote the
time of the kth dose-fraction by #(k) and the dose by d(k).
We assume that:

(a) After the kth fractionated dose, the surviving fraction
S(k) for preexisting normal and pre-malignant cells
is the same, i.e. S(k)n (k), respectively, S(k)m (k),
survive the dose; here n™ (k), respectively, m ™ (k), is the
number present just before the Ath dose-fraction and
0<S(k)<1. The dependence of surviving fraction S(k)
on dose d(k) per dose-fraction remains unspecified in
this general model; one could have a typical LQ
surviving fraction S(k) = exp[—ad(k)—pd*(k)] as in
Eq. (2) of the text, or have some more complicated
dose dependence.

(b) Between doses and after the last dose, the per-cell
repopulation rate of pre-malignant cells, corresponding
to symmetric division (compare Shuryak et al., 20006), is
a constant, r, times the per-cell repopulation rate for
normal cells. Here repopulation rates refer to repopu-
lation during comparatively short time periods (e.g. a
day or a weekend between doses, and a number of
weeks after the last dose). Growth during the much
longer latency periods involved in the development of
clinical cancer from pre-malignant cells could in
general have different dynamics.

(c) Because typical situations involve a normal cell number
>10° and a pre-malignant cell number <10°, we
assume that m(f)<n(f) throughout, and that the
fraction of normal cells that is initiated to produce
pre-malignant cells is so small it can be neglected
compared to the total number of normal cells. This
assumption allows us to track the time-evolution of
normal cell number independently of the time-evolu-
tion of initiated cell number (though not vice versa).

(d) Cellular migration, important in leukemogenesis after
partial body high-dose radiation (Shuryak et al., 2006)
but much less important for solid tumors, is neglected.

The idea underlying assumptions (a) and (b) is that the
pre-malignant cell population is derived from the cell
population at risk by an initiating event which need not
affect radiation survival markedly, or drastically affect the
growth characteristics during comparatively short periods
of repopulation in response to cell killing.

Let n" (k) denote the number of normal cells just after
the kth fractionated dose. Then by assumption (a) above:

nt(k) = Ston=(k), 1<k<K. (A.1)

Here we neglect the decrease of n™ (k) due to the very
small fraction of at-risk cells that is initiated by the
radiation (assumption (c¢)). The range 1 <k<K will apply
throughout unless explicitly stated to the contrary.

The number m * (k) of altered cells just after the kth dose
depends, by our assumption (a), on the same factor S(k):

m*t(k) = S(kym™ (k) + T(k)Sk)n™ (k). (A.2)

Here T(k), with T'(k) <1, denotes the fraction of at-risk
cells that are initiated, so 7(k)S(k) is the fraction that are
initiated and also survive the dose-fraction; the condition
T(k) <1 corresponds to our blanket assumption m <n. The
dependence of T(k) on dose d(k) for the kth dose-fraction
need not be specified. For example, for a given normal
number setpoint N, T(k) could have the LQ form

T(k) = 1 — exp{—[ad(k) + bd*(k)]/ N}

in which case, since T'(k)< 1, T(k)~[ad(k)+ bd’(k)]/N and
in this approximation NT(k)S(k) has the form given in
Eq. (2) of the main text if S(k) is LQ. Or the form of the
initiation factor 7(k) could be more general.

Repopulation of normal cells between dose-fractions and
for several weeks after the last fraction will be modeled
using a per-cell repopulation rate F generalizing the logistic
form F = A[1—(n/N)] discussed in connection with Eq. (3)
of the main text. Thus we shall assume

dn/dt = F(n)n = n~(k + 1) = R(k)n™ (k),

t(k+1)
= exp {/t(k) F[n(l)]dl} .

Here #(k) and #(k+1) are the respective times of the
kth and the (k+ 1)th fractions; if £k = K then #(k+1) is
taken as #(k+1)= oo, interpreted as a time some
weeks after the final dose-fraction when repopulation has

where R(k)

(A.3)
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effectively run its full course (compare Fig. 2) and the
slower phase of carcinogenesis, modeled in this paper
only by the factor B in Eq. (1), begins. If F has the
prototype logistic form F = A[1—(n/N)] integration gives
for R(k) in Eq. (A.3) R(k) = N/{n" (k)[1—x]+ Nx}, where
x = exp[—A[t(k+ 1)—t(k)]; then for t(k+1)—> o0, x—>0s0o R
nt (k)= N. Thus in this case R(k) is a repopulation factor
obeying:

(a) R(k)>1if n*(k)<N,

(b) for t(k + 1) — oo, R(ku*(k) — N. (A4)

Generalizing to include many other reasonable growth
patterns (such as Gompertzian), we will leave F general for
the time being but assume throughout that for R(k) as
defined in Eq. (A.3), condition (b) in Eq. (A.4) holds. The
general deterministic model is completed by using Eq. (5)
of the main text verbatim, i.e.

dm/dt = rF(n)m. (A.5)

We showed earlier (Sachs and Brenner, 2005) that
manipulating Eq. (A.5) and the differential equation dn/
dt = F(n) n in Eq. (A.3) implies a simple relation between
the way normal and pre-malignant cells repopulate, namely:

m~(k+ 1) =m*(k)[n (k+ 1)/n* (k)] (A.6)

A.2. General deterministic model: compensation theorem

We now generalize a previous theorem (Sachs and
Brenner, 2005). For generality we include pre-malignant
cells that may have been present before the start of
radiotherapy. In view of the fact that background
carcinogenesis and radiation carcinogenesis produce the
same spectrum of cancer types (Little, 2000) we treat such
pre-existing pre-malignant cells on the same footing as
radiation-induced pre-malignant cells. The theorem states
that if r = 1 then, by the time repopulation has run its full
course, repopulation has completely compensated for cell
inactivation as far as the number of pre-malignant cells is
concerned (Fig. 1). More formally, we have the following:

Theorem 1. Suppose Egs. (A.1)—(A.5) hold and r = 1. Let
myg=m (1) be the number of pre-malignant cells just
before therapy starts. Then

K

m(oo) =mo+N»_ T(k)
k=1

(A.7)

dependent on the initiation factors 7(k), but independent
of the inactivation factors S(k) and the repopulation
factors R(k), and thus equal to the result of a hypothetical
process where neither inactivation nor repopulation occurs.

The proof consists of iterating Eqs. (A.1)-(A.5) to get
the time course for m and n. Just before the first dose-
fraction n has its set point value, i.e. n (1) = N. Just
afterwards we therefore have:

nt(1) = S(HN, m*(1) = S()[mo + T(1)N]. (A.8)

Eq. (A.8) and r = 1 in Eq. (A.6) show that just before the
second fraction

n=(2) = RSN,  m~(2) = R()S(1)[mo + T(1)N].

(A.9)

Eq. (A.9) in turn gives two key results: n'(2) =
S)R(1)S(1)N; and

m*(2) = SQ)R(1)S(M[mo + T(HN]+ T(2)SQ)R()S(1)N
= SQ)R()S(1){mo + [T(1) + T)IN}. (A.10)

The crux of the entire argument is the fact that the
term T(2)N (which refers to initiation by the second
dose-fraction) and the term myg (which refers to pre-
malignant cells present prior to therapy), are both
multiplied by same factor, S(2)R(1)S(1) as is the term
T(1)N. This result was initially somewhat surprising
to us, since the factor R(1)S(1) refers to inactivation
by the first dose-fraction and subsequent repopulation,
which seem at first blush to have no relation to
initiation by the second dose-fraction; there is an
indirect relation because initiation during the second
dose-fraction is proportional to the number of normal
cells present just before that fraction, which is influenced
by inactivation during the first dose-fraction and subse-
quent repopulation.

By a simple induction argument we now get

(a) n"(K) =TIN, (b) m™(K) =TI

k
mo+ N> T(k)
k=1

where TT = {H];:IS(k)} [ i:iR(k)}. (A.11)

Combining n(o0) = N, Eq. (A.6) with r = 1, and Eq. (A.11)
gives  m(o00) = mt(K)[n(co)/n(K)] = mg + NZ,I;I T(k).
In this last relation all the factors involving killing and
repopulation have contrived to cancel out, and the result is
Eq. (A.7), as was to be shown. Eq. (A.7) implies that my
reemerges (Phoenix-like) at the final time despite many
intermediate inactivation/proliferation vicissitudes.

A simple example of the theorem in a special case is
shown graphically in Fig. 2.

Appendix B. The deterministic initiation/inactivation/
proliferation (ITP) model

B.1. Specializations of Appendix A

For m<n, as holds throughout the present analysis, the
formalism used previously (Sachs and Brenner, 2005), is a
special case of Eqs. (A.1)—(A.5). The relevant specializa-
tions are the following:

(a) all dose-fractions are equal so that, for all k, d(k) =
(D/K) (total dose divided by fraction number); we then
write d(k) = d.

(b) inactivation is LQ, so that S(k) = exp[—ud—pd*];
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(c) initiation is LQ so that T(k) = (1/N)(ad+bd’), where a
and b are non-negative adjustable constants and the
factor (1/N) has been inserted for later convenience;

(d) normal cell proliferation is logistic, so that F = A[l—
(n/N)], implying R(k) = 1/{[n" (k)/N][1—x]+ x}, where
x = exp {—A[t(k+ 1)—t(k)]}.

B.2. Rescaling and equations

When we substitute specializations (a)—(d) into
Egs. (A.1)-(A.5) and use the indicated initial condition
n (1) =N, we find that the formalism can be rewritten
in a way that does not involve n(f) and N separately, just
the ratio v(¢) = n/N, which we designate as the rescaled
normal cell number. Specifically, substituting specializa-
tions (a)—(d) gives the following results. The effect of the
kth dose fraction on rescaled normal cell number v(¢) and
on pre-malignant cell number m(¢) are given by

vt (k) = Sv (k) with S = exp[—ad — pd?],

v=n/N, k=1,...K,v (1)=1, (B.1)

m* (k) = Sm™ (k) + [ad + bd*1Sv™ (k). (B.2)

Between dose-fractions and for several weeks after the
last dose-fraction:

dn/dt = A1 —-v)= v (k+1)=1/{vTK)[1 — x] + x},

where x = exp[—A{t(k + 1) — t(k)}], (B.3)
dm/dt =rA(l —vym=>m (k+1)
=m* (k)™ (k + 1)/n" ()] (B.4)

Here, for k = K, #(k+ 1) again refers to the final time
(Fig. 2). Quasi-linearity here shows up via the fact that
Egs. (B.2) and (B.4) contain m(?) linearly. We will refer to
Eqgs. (B.1)(B.4) as the deterministic initiation/inactivation/
proliferation (ITP) model. Thus Egs. (A.1)~(A.5) will be
referred to as a generalization of the deterministic ITP model.

B.3. Derivation of Eq. (3)

Eq. (3) of the main text is usually derived from Eq. (2) by
assuming that no repopulation occurs. In fact, setting
repopulation to zero in the deterministic ITP model does
imply Eq. (3), as follows. We can set repopulation to zero
by putting 2 =0 in Egs. (B.3) and (B.4). Then, F=0 in
Egs. (A.3) and (A.5); Eq. (A.3) with F =0 implies that
R(k) = 1 for all k; and Eq. (A.5) with F = 0 implies that we
may assume r =1 without essential loss of generality.
Consequently we can use Eq. (A.11), which was based on
r = 1. Substituting into Eq. (A.11) R(k) = 1, D = d/K from
specialization (a) above, S(k) = exp[—ad—pd’] from spe-
cialization (b), and T(k) = [ad+ bd]/N from specialization
(c) gives:

m(oo) = m™(K) = [my + aD + (bD*/K)]

x exp[—aD — B(D*/K)]. (B.5)

Thus if my =0, Eq. (3) follows. Realistically speaking,
however, the no-proliferation assumption F =0 is not
expected to hold, and using Eq. (3) is expected to give
inaccurate results at high doses (compare Fig. 5).

Appendix C. The stochastic IIP model

Customized Fortran programs were used to implement
the following assumptions and equations defining the
stochastic IIP model, which extends the deterministic IIP
model of Appendix B.

C.1. Equations for cell numbers

For the average number of normal cells and for the non-
negative integer-valued random function m(f) describing
initiated cell number we make assumptions corresponding
to the deterministic IIP model:

(a) Normal stem cell number is expected to be far greater
than 1, so in our stochastic model we still analyze this
number deterministically, using Egs. (B.1) and (B.3) for
the rescaled normal cell number v.

(b) Corresponding to Eq. (B.2) it is assumed for m(7) that
at the kth dose fraction:

(i) each cell present before the fraction has proba-
bility 1—-S of being inactivated by the fraction,
independently of the other cells, where again
S = exp [—ad—pd°];

(ii) the probability of producing new, live, pre-malig-
nant cells by initiation during that dose-fraction is
given by a Poisson distribution with average
(ad+ bd)v~(k)S.

(c) Between fractions and after the last fraction m(?) is
assumed to undergo a Feller—Arley time-inhomoge-
neous birth—death process. Such processes have been
reviewed, e.g. by Tan (2002). They were applied to a
related problem, the problem of tumor eradication
by fractionated radiation, by Hanin and coworkers
(Hanin, 2004; Hanin et al., 2006), who obtained exact
solutions of the relevant stochastic equations in that
case. We here assume the per-cell birth rate p(f) and
death rate o0(¢) are given in terms of an adjustable
parameter ¢ with 0<c<1 by

o) = cp(1),  p(1) — 0(1) = Ar[1l — v(1)]. (C.1)

For example, if ¢ is increased the death rate increases,
but the difference between birth and death rates remains
the same as in the deterministic model.

C.2. Calculating statistics for pre-malignant cells

The time dependence of m(t) between dose-fractions and
after the last fraction is then determined by probability
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distributions involving the following time integrals:
t

0= oo~ [ artptr a1},
{09

t(k+1)
g=/‘ dip(D ). (c2)

(k)

Specifically (Tan, 2002, pp. 169-171), the probability
that a clone founded by a pre-malignant cell present just
after the kth dose-fraction will become extinct before the
next fraction is

I— (& +0)7", where & = &tk + 1) (C.3)

and the probability this clone contains exactly j cells just
prior to the next fraction (j = 1,2,...) is

ET G+ G, (C.4)

Here, as before, t(k + 1) for the last dose-fraction (k = K)
is taken formally as infinite and interpreted as a “‘final
time” of roughly 60 days, as described in the caption of
Fig. 2. Using Egs. (C.3) and (C.4) enabled us to avoid
splitting the time between dose-fractions or after the last
dose-fraction into small steps, with Monte-Carlo calcula-
tions at each step; instead we needed just one Monte-Carlo
evaluation for each dose-fraction in any one sample run.

To increase computational speed, algorithms were
designed to minimize the number of Monte-Carlo steps.
Suppose that just after the kth fraction there is exactly one
pre-malignant cell. Here we allow k = 0, referring to pre-
malignant cells present just before treatment starts. The
pre-malignant cell can give rise to a clone. The clone could
grow by proliferation, or it could die out due to radiation
inactivation and/or processes reflected in the death rate
0(t), such as apoptosis. Egs. (C.1)~(C.4), together with
Monte-Carlo calculations for the number of initiated cells
inactivated in each subsequent fraction, allow one to
calculate numerically for the clone the following quantities:

(a) The probability distribution for the number of cells at
the final time (r = oo, interpreted as several weeks after
therapy starts; compare Fig. 2 and its caption for a
discussion of short and long time scales and the ‘““final
time’’). This probability distribution in turn determines
the following two quantities.

(b) The probability e, that such a clone becomes extinct
before the final time. For non-zero death rate in the
Feller—Arley process ¢ is different from zero even for
k = K, i.e. some clones can “‘accidentally’” die out even
after radiation stops.

(c) The average number f} of cells in a non-extinct clone at
time ¢ = 0.

These quantities, ¢, and f, in turn enable us to calculate
the quantities discussed in the main text: the average
number of clones per patient; and the zero-class prob-
ability, i.e. the probability a patient has no pre-malignant
cells at the final time. The results are the following.

By the definition of ¢, the average number of clones per
patient, which we will denote by clones, is

K
clones = Z y(1 —e;), where
k=0

y = (ad + bd*) exp(—od — pd>). (C.5)

The probability that all clones initiated in the kth
fraction have become extinct is the following, using our
Poisson assumption on initiation, conditioning on the
number initiated, and assuming the number of pre-
malignant cells present prior to the start of treatment is
also Poisson-distributed:

exp(—y) Y _(ew)' /1! = exp[—y(1 — ex)] (C.6)
1=0

The zero-class probability, which we will denote by zero,
is the product of these probabilities, i.e.

K
zero = exp{ — Z[y(l - ek)]}.

k=0

(C.7)

We took A4 in Eq. (1) proportional to 1—zero, thereby
obtaining the dose-dependence of 4 apart from an overall
scale factor.

Eq. (C.7) can also be derived from the more general
observation that the number of surviving clones is Poisson-
distributed, proved as follows. The number of clones
initiated by the kth dose is, by assumption, Poisson-
distributed. The number that are not eradicated by the final
time is a random thinning of the number initiated, so it is
also Poisson-distributed. The total number of clones
initiated and surviving is thus a sum (from k& = 0 to K) of
independent Poisson random variables, and is therefore
itself a Poisson random variable. Consequently the
probability of this random variable being zero is the
exponential of the negative mean, i.e. zero = exp(—clones),
which, by Eq. (C.5) and the fact that a patient is free of pre-
malignant cells at the final time iff the patient is free
of surviving pre-malignant clones at the final time, implies
Eq. (C.7), as was to be shown.

Quasi-linearity implies that the average number of pre-
malignant cells per patient is the same as in the
deterministic theory. This implication provided an internal
check on our computer algorithms.
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