A practical target system for accelerator-based BNCT which may
effectively double the dose rate
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A dose-limiting component of a proton accelerator-based source of epithermal neutrons is the
neutron production target. Possible targets are lithium, producing high yield but having low melting
point and thermal conductivity, and beryllium, presenting less engineering problems but a much
smaller neutron yield. We propose that a hybrid Be-Li target would provide the best of both worlds,
with the upstream beryllium component producing neutrons and providing containment to the
lithium, and the downstream liquid lithium in turn producing further neutrons as well as cooling the
beryllium. The engineering considerations associated with such a target system are within the range
of current technology. Calculations suggest a yield of such a practical target that is at least double
that from pure beryllium. ©1998 American Association of Physicists in Medicine.
[S0094-240828)01506-3
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If boron neutron capture therapBNCT) is to become a plus lithium could provide the best of both worlds. Specifi-
practical option, accelerator-based sources of high fluxes afally, we proposéFig. 2) a 3 to 4 MeV proton beam incident
epithermal neutrons are essentid.Much work has been on a thin beryllium target which is cooled on the downstream
performed on development of high-flux compact protonside by a moving pool of liquid lithium, which would itself
accelerators;’ but a dose-limiting component remains de- act as a second neutron production target. Lithium is, of
sign of the neutron production tardet. course, an extremely efficient coolditin turn, the beryl-

Engineering considerations apatrt, it is clear that the bedtum acts as a containment device for the lithium on the
low-energy neutron production target for a proton acceleratoupstream side, providing a barrier between the lithium and
would be pure lithiun?. Figure 1 shows that the neutrons the accelerator beam tube.
yields are high and, additionally, the kinetics are such that Depending on the beam current, and thus the target cool-
the secondary neutron spectrum is relatively low energy. Being requirements, the liquid lithium would either be in the
cause of these advantages, early designs for acceleratdorm of a stirred pool or a flowing lithium jet. Lithium jets
based BNCT systems focused on lithium targétd®'?  have been under development for some yéadrsas targets
However, when such systems began to be built, the engineefor the d-Li reaction in fusion research systems, though this
ing problems of using a pure lithium target proved difficult latter requires far larger beam currents and cooling capabili-
to overcome. Specifically, lithium has a low melting point ties than the current application. Static liquid metal targets
(180 °C) and low thermal conductivity (44 W/m °C), and is have also been usé@’
also chemically reactive with air. Figure 3 shows calculated yieldstegrated over angle

Because of these difficulties, several groups chose insteathd energy of neutrons produced by 4.1-MeV protons inci-
to use beryllium as the neutron production tafgfétWhilst  dent on such a hybrid Be-Li target, as a function of the
the yield at a given proton energy is much lowsee Fig. ],  thickness of the beryllium component; the lithium compo-
beryllium has a much higher melting point and thermal con-nent is sufficiently thick as to degrade the incident protons at
ductivity, and is less reactive with air. Thus it has been realeast to the neutron production threshold. Comparison with
soned that by increasing the proton energy to around 4 MeWig. 1 shows that, for example, 4.1-MeV protons incident on
(compared to~2.5MeV which had been proposed for a 50.um beryllium target cooled by lithium would produce a
lithium target$, a comparable neutron yield could be ob- neutron yield about twice that of a pure beryllium thick tar-
tained, but with a much simpler target configuratfofihe  get.
disadvantage of such a scenario relate to the increased costFigure 4 shows calculated yields for different combina-
and complexity of a~4-MeV vs a 2.5-MeV accelerator. tions of incident proton energy and beryllium target thick-
Although the kinematics for thp+ Be reaction are less fa- ness. Overall, from the neutronics standpoint, it would be
vorable in terms of the highest energy neutrons emittedadvantageous to use the thinnest practical beryllium compo-
seeming to require a larger and more expensive moderatonent within the overall hybrid target. With a 50m beryl-
Wang and Moor&suggest, and Howaret al1? confirm, that  lium component, the hybrid Be-Li target would probably be
the main bulk of the neutrons are produced through multi-advantageou&onsidering only neutron yieldor proton en-
particle reactions that result in softer spectrum. ergies above about 3.5 MeV; with a 28n beryllium com-

In this note, we propose that a hybrid target of berylliumponent, the hybrid target would be advantageous for proton
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lithium and beryllium targets, as a function of incident proton energy.
Curves were calculated based on cross sections from Liskien and Paulsen
(Ref. 23 for lithium, and Gibbons and MacklifRef. 22 for beryllium.
Direct measurements of total neutrons yields from thick beryllium targets
by Cambell and ScottRef. 23 (squaresand Porgest al. (Ref. 29 (tri-
angles are also shown.
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Fic. 3. Calculated total neutron yield after 4.1-MeV proton bombardment of
‘hybrid Be-Li targets, as a function of thickness of the beryllium component.
E,; refers to the energy of the proton beam as it exits the beryllium compo-
nent, and enters the lithium part of the target.

beams above about 3 MeV. Selection of the optimum desigiyell as in power generation systems for space traVel;

will follow from Monte Carlo mOdeling of moderator assem- Variety of different types of pumps have been assessed in
blies for each possible beam energy and beryllium thicknesghese application¥'° These reactor-related liquid lithium
Combination, along with consideration of the cost and reli'coonng and heat_exchange systems are used to cool consid-

ability of the accelerator. . _ _ erably larger power loads than in the current proposed appli-
The engineering considerations associated with such a tagztion.

get system are within the range of current technology. Liquid Because of the good thermal conductivity of beryllium,
lithium cooling systems have been used in a variety of apthe temperature differential through the target in the direc-
plications, particularly in fusion reactor research where, liketion of the proton beam will be small. The heat transfer

the current system, the cooling must take placeacua®as  through the boundary layer of the flowing lithium will, how-
ever, require careful analysis, as a suboptimal configuration
at the Be-Li interface could lead to substantial local tempera-

Be Li ture differentials. In the direction of the lithium flow, there
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Fic. 2. Schematic of proposed Be-Li hybrid neutron production taffpet
clarity the horizontal and vertical scales are diffejefthe beryllium com- Ep (MeV)

ponent consists of a thin beryllium film attached to a beryllium support

structure; the lithium component, which serves both as coolant and as BG. 4. Calculated total neutron yield after proton bombardment of hybrid
further source of neutrons, consists of either a jet or a stirred pool of liquidBe-Li targets, as a function of incident proton energy), for three differ-
lithium. The two sides of the target are in vacuum systems which areent thicknesses of the beryllium part of the target. Corresponding yields for
coupled to one another. thick lithium-only and beryllium-only targets are also shown.
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