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One of the fundamental tools in radiation biology is a formal- 
ism describing time-dose relationships. For example, there is a 
need for reliable predictions of radiotherapeutic isoeffect doses 
when the temporal exposure pattern is changed. The most com- 
monly used tool is now the linear-quadratic (LQ) formalism, 
which describes fractionation and dose-protraction effects through 
a particular functional form, the generalized Lea-Catcheside 
time factor, G. We investigate the relationship of the LQ formal- 
ism to those describing other commonly discussed radiobiological 
models in terms of their predicted time-dose relationships. We 
show that a broad range of radiobiological models are described 
by formalisms in which a perturbation calculation produces the 
standard LQ relationship for dose fractionationlprotraction, 
including the same generalized time factor, G. This approximate 
equivalence holds not only for the formalisms describing binary 
misrepair models, which are conceptually similar to LQ, but also 
for formalisms describing models embodying a very different 
explanation for time-dose effects, namely saturation of repair 
capacity. In terms of applications to radiotherapy, we show that 
a typical saturable repair formalism predicts practically the same 
dependences for protraction effects as does the LQ formalism, at 
clinically relevant doses per fraction. For low-dose-rate exposure, 
the same equivalence between predictions holds for early- 
responding end points such as tumor control, but less so for late- 
responding end points. Overall, use of the LQ formalism to pre- 
dict dose-time relationships is a notably robust procedure, 
depending less than previously thought on knowledge of detailed 
biophysical mechanisms, since various conceptually different 
biophysical models lead, in a reasonable approximation, to the 
LQ relationship including the standard form of the generalized 
time factor, G. 1998 by Radiation Research Society 

INTRODUCTION 

The rationale for much quantitative radiation biology is 
the need to predict both dose-response and time-dose rela- 
tionships. As an example, many of the developments in 
modern radiotherapy have been driven by the possibility of 

predicting isoeffect relationships for alternate fractionated 
or protracted regimens, i.e. when the temporal pattern of 
the exposure is changed. Such predictions require a mathe- 
matical formalism, often, but not always, based on some 
underlying biophysical model. 

The tool most commonly used for such quantitative pre- 
dictions of time-dose dependences is the linear-quadratic 
(LQ) formalism (1-9). In radiotherapy, the LQ formalism is 
now used almost universally for calculating isoeffect doses 
for different fractionation/protraction schemes (4-8). In 
contrast to earlier methodologies, such as NSD or TDF 
(lo), which were essentially empirical descriptions of past 
clinical data, the LQ formalism has become the preferred 
tool largely because it describes a mechanistically based 
model, with tumor control and normal-tissue complications 
attributed specifically to cell killing, The rationale here is 
that a formalism with a mechanistic underpinning is less 
likely to be subject to catastrophic failure, as had occasion- 
ally happened with empirically based models (11). 

The LQ model stems from the curvilinear nature of 
dose-response curves for the log of cell survival-this curva-
ture ultimately being the basis of time-dose effects (6,12). 
In most expositions of the LQ approach, the curvature is 
assumed to be related to the production of pairs of pri- 
mary lesions [often, though not necessarily, associated 
with DNA double-strand breaks (DSBs) or a subset of 
DSBs] by two different radiation tracks-two such DSBs 
being needed to produce a lethal lesion, such as a dicentric 
chromosome aberration, through binary misrepair. Pro- 
tracting the exposure time potentially allows the first 
lesion to be repaired before the second is produced, and 
the LQ approach quantifies this effect (6, 9, 12). This 
binary misrepair model is the most common mechanistic 
rationale for the standard LQ formalism, but different 
biological rationales for the same formalism have also 
been given (see review in ref. 9). 

It is important to stress here that the standard LQ for- 
malism, as applied to time-dose relationships, is not merely 
a truncated power series in dose. Its key feature here is a 
specific functional form for the time factor, usually desig- 
nated by G, which takes into account dose protraction or 
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fractionation. Expressions for special cases of the time 
factor, G, were derived by Lea and Catcheside (1,2); a gen- 
eral form was subsequently suggested (13) and has since 
been rederived from several different points of view (9). 
We refer to this general form of the time factor, given 
explicitly in Eq. (3) below, as the generalized Lea-Catche- 
side time factor, G. 

It has been known for some time that the formalisms 
describing various other binary misrepair models (e.g. refs. 
14,15) also lead to the same generalized Lea-Catcheside 
time factor, G, in an appropriate approximation, and thus 
predict virtually the same time-dose relationships as does 
the LQ approach. This result was demonstrated by several 
authors (15-18) for the repair-misrepair (RMR) model 
(14), the lethal-potentially lethal (LPL) model (15) and 
more general binary misrepair models. The conditions for 
equivalence are that the dose or dose rate not be too large, 
and that survival is determined after repair and misrepair 
have been completed. In light of the conceptual similarities 
between the LQ model and other binary misrepair models, 
the fact that the corresponding formalisms make virtually 
equivalent predictions for dose-time relationships is not, in 
retrospect, particularly surprising. 

The LQ approach, in its general form relating to 
time-dose effects, has been investigated extensively over 
several decades and has now received a substantial level of 
general acceptance. However, debate has continued as to 
whether the explanation of dose-response curvature and 
dose protraction effects in terms of binary misrepair is, in 
fact, correct. Specifically, there has remained a persistent 
school of thought that the curvature of dose-response rela- 
tionships, and thus the major effects of dose protraction, 
might be due to an entirely different biochemical mechan- 
ism, "saturable repair", in which the per-lesion repair rate is 
decreased as the dose-and the production of initial dam- 
age-increases (19-30). Such a saturable repair mechanism 
can produce curvilinear dose-response curves, because of 
decreased repair efficiency with increasing dose, and could 
also be responsible for dose-protraction effects, through 
increased repair efficiency when damage arrives piecemeal 
over the protracted irradiation period. 

While binary misrepair models, such as LQ, remain the 
most plausible basis for the majority of the repair-related 
dose-protraction effects of relevance in radiotherapy, the 
alternative, saturable repair approach has not been ruled 
out definitively. This observation should be of some con- 
cern, considering that the LQ formalism is now widely used 
for applications in radiotherapy. Since saturable repair 
models appear, prima facie, to be quite different from the 
LQ model, there is the possibility that saturable repair for- 
malisms could make significantly different predictions of 
fractionation/protraction effects, casting doubt on the valid- 
ity of current LQ-based isoeffect dose calculations. 

In this paper we use analytical techniques to show that, 
remarkably, the formalisms describing most saturable 
repair models also lead, in an appropriate approximation, 

to the same time-dose relationships as does the LQ formal- 
ism. This comes about because, as we shall show, these sat- 
urable repair formalisms reduce to the specific form of the 
generalized Lea-Catcheside time factor, G, which describes 
protraction effects in the LQ approach. Numerical esti- 
mates are then given to show that a typical saturable repair 
formalism makes similar predictions of dose-fractionation 
effects as does the LQ formalism, at doses relevant to 
radiotherapy. Specifically, in a comparison of any two prac- 
tical fractionated external-beam radiotherapy regimens, the 
predicted isoeffect doses are very similar using either the 
LQ or the saturable repair formalism. This equivalence of 
isoeffect doses also holds for calculations aimed at matching 
tumor control in low-dose-rate brachytherapy, though less 
so for calculation of isoeffect doses for late effects in 
brachytherapy. 

METHODS 

The Effects of Time in the LQ Formalism 

Suppose a uniform population of many cells is irradiated with total 
dose D ,  delivered acutely or in a fractionatedlprotracted regimen. We 
assume here that the cells are not cycling-though the effects of redistri- 
bution of cells in the phases of the cell cycle, as well as proliferation, can 
be considered in extensions to the LQ model (31,,32). The overall regi- 
men can be described by a dose-rate function D(t), which tracks the 
change in dose rate as a function of time into the treatment, and so can 
represent any possible protracted exposure regimen: acute, fractionated, 
constant low dose rate, variable low dose rate or a mixture of these. 

The LQ model, in its most usual current version, describes cell killing 
in terms of the following mechanisms: 
1. 	Radiation produces DNA DSBs with a yield proportionate to the 

dose. 
2. 	 These DSBs can be repaired, with first-order rate constant X (equal to 

In 2/T1,,, where TI,>is the repair half-time). In practice, there may be 
more than one class of DSBs which may be repaired with different 
rate constants; the LQ formalism can simply be extended to take this 
into account (32-34). 

3. 	 In competition with DSB repair, binary misrepair of pairs of DSBs 
produced from different radiation tracks (i.e. different X or y rays) 
can produce lethal lesions (often identified as predominantly dicen- 
tric chromosomal aberrations), the yield being proportional to the 
square of the dose (see the quadratic term in Eqs. 1 and 2). The two 
independent radiation tracks can occur at different times during the 
overall regimen, allowing repair of the first DSB to take place before 
it can undergo pairwise misrepair with the second; it is this phe- 
nomenon which is the heart of the fractionationlprotraction depen-
dence in the LQ formalism. 

4. 	 In addition, single radiation tracks can produce various lethal lesions, 
possibly by a variety of mechanisms ( 9 ) ,the yield being proportional 
to the dose (the linear term in Eqs. 1and 2). 
Overall, in the LQ formalism, the yield (Y) of lethal lesions and the 

corresponding survival ( S )equation are 

and 

where G is the generalized Lea-Catcheside time factor, which accounts 
quantitatively for fractionationiprotraction; it is important to note that G 
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acts only on the quadratic component, as described in point 3 above. The 
generalized time factor has the form (5,13) 

Generically, the term after the second integral sign refers to the first of 
a pair of DSBs required to produce a lethal lesion-the exponential 
term describing the reduction in numbers of such DSBs through repair. 
Similarly, the term after the first integral sign refers to the second 
DSB. which can interact with DSBs produced earlier that still remain 
after repair. 

The time factor, G. can be calculated for any fractionationlprotrac- 
tion scheme, and systematically accounts for the effects of protracting 
the dose delivery in any way. G can take values from zero to one, with 
G = 1for a single acute dose. The interpretation of G < 1is a reduc- 
tion in cell killing due to repair which occurs during continuous low- 
dose-rate irradiation andlor between fractions. 

Two special cases, which illustrate the main features of the general 
expression (Eq. 3), are (a) for continuous irradiation consisting of a con- 
stant dose rate DIT for time T; then (2) 

where 0 = exp(-Ar); (b) for irradiation with n short fractions, each sepa 
rated by a time T: then (17) 

More complicated fractionationlprotraction schemes have more compli 
cated time factors, G, any of which can be calculated (5) from Eq. (3). 

Saturable Repair Formalisms 

Various saturable repair models have been considered (e.g. refs. 
19-29). all having in common the notion that the per-lesion repair rate 
decreases as the dose-and the production of initial damage-increases. 
In the following, we consider a representative model proposed by Kiefer 
(23). However, the results we derive hold for most models of this class, 
with one exception which we shall note. 

Saturable repair models generally consider the production of "initial 
lesions", which can be repaired or can undergo misrepair to produce 
lethal lesions. We here denote the average numbers of initial and lethal 
lesions per cell at time t by U(t) and L(t). respectively. In the particular 
saturable repair formalism proposed by Kiefer (23), the average yield of 
these lesions is given by 

where the first term in Eq. (6A) corresponds to the production of initial 
lesions, the second to their repair and the third to the formation of lethal 
lesions from initial lesions. Here 6 ,  A, and E, (i  = 1.2) are adjustable 
parameters interpreted as follows: 6 is the number of initial lesions pro- 
duced per unit dose, and the terms involving E,U in Eq. (6A) correspond 
to saturable repair (technically, Michaelis-Menten) kinetics-as U gets 
large, the average repair rate per repairable lesion [A,/(l + E,U)] 
decreases, corresponding to increasing overloading of the repair system. 
Similar comments apply to the misrepair term producing lethal lesions, 
i.e. involving A, and E,. 

When supplemented by initial conditions, the differential equations 
(6A and 6B) uniquely determine U(t) and L(t). It is assumed that the 
surviving fraction S is 

where the use o f t  = a reflects the assumption that survival is determined 
after repair and misrepair have run their full course. The use of the expo- 
nential, common to all these formalisms as well as to the LQ formalism, 
corresponds to the assumption that lethal lesions are Poisson-distributed 
from cell to cell, which is appropriate for low-LET radiation, though not 
at high LET (9,35). 

RESULTS 

Fractionation/Protractionin Saturable Repair Formalisms: 
Analytical Results 
In this section we discuss how the LQ formalism, includ- 

ing the G factor describing the effects of fractionationlpro- 
traction (see Eqs. 2 and 3), approximates saturable repair 
formalisms at clinically relevant doses and dose rates. 

In the case of the particular saturable repair formalism 
described above, we show in Appendix I that, for low doses 
or dose rates, this can be written in the form of the LQ 
equation, S = exp(-aD - GPD,), where G is the generalized 
Lea-Catcheside factor calculated from Eq. (3). Specifically, 
survival can be written in terms of the parameters of the 
saturable repair formalism as 

where G is calculated from Eq. (3) using the sum A = A, + h,. 
In other words, at appropriate doses and dose rates (which 
we now discuss), this saturable repair formalism reduces to 
the LQ formalism, with the same dependences on fractiona- 
tionlprotraction. For the special case of a single acute dose, 
this result was pointed out by Kiefer and Lobrich (24). 

In Appendix I, approximate inequalities are derived for 
the doses and dose rates that are small enough that the LQ 
form of the saturable repair formalism, Eq. (7), is equiva- 
lent to the saturable repair equations (6A and 6B). For a 
single acute dose fraction, a dose condition is 

and for a continuous low-dose-rate exposure, a sufficient 
dose-rate condition is 

In these inequalities, typically XI + X,, so X1 is close to the ob- 
served repair rate, A. Both inequalities involve the ratio dP. 

Fractionation/Protractionin Saturable Repair Formalisms: 
Numerical Results 
In this section, we generate numerical estimates com- 

paring the saturable repair formalism of Eqs. (6) with its 
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Acute dose (Gy) 

FIG. 1. Single acute dose fraction: percentage relative difference 
[lOO(SSR- SLQ)/SSR]between survival calculated exactly using the sat- 
urable repair formalism (Eqs. 6A and 6B) and calculated using the corre- 
sponding LQ approximation (Eq. 7). The parameters used, based (see 
text) on those from Kiefer and Lobrich (24),are 6 = 14.3 G ~ - ' ,  8,= 0.016, 
e2= 0, XI = 1.983 h-'. and X, + X2= 2 h-'. The corresponding equivalent LQ 
parameters (see Eq. A12) are a = 0.12 G~- ' ,dP = 8.8 Gy, and TI, = 0.35 h, 
which are appropriate for early-responding effects such as tumor control. 

LQ form (Eq. 7). We compare predictions of the effect of 
fractionation and protraction in terms of both comparisons 
of effect at a given dose and comparisons of dose to produce 
a given effect. To accomplish these comparisons, it is neces- 
sary to consider reasonable values for the parameter set 
[ti,E,, s2,Al, A,] describing the saturable repair formalism of 
Eqs. (6). We show in Figs. 1-3 some comparisons generated 
with the parameter set based on that described by Kiefer and 
Lobrich (24),who used the saturable repair formalism (Eqs. 6) 
to analyze data for survival of mammalian cells (36). Their 
parameter values were 6 = 14.3G~- ' ,E, = 0.016, E> = 0, and 
[A, + A,]IA, = 119. These parameters were supplemented with 
an overall repair constant [A1 + A,] of 2 h-l, corresponding to 
a repair half-time of about 21 min (37).Based on this param- 
eter set, the equivalent LQ parameter set (i.e. the linear and 
quadratic dose coefficients in Eq. 7) are (see Eq. A12) a = 
0.12 ~ y - ' ,P = 0.0137 ~ y - ~  = 8.8 Gy), and TI,  = 0.35 h- (a/@ 
which are typical values for early-responding tissues (37-39). 

For the special case of a single acute dose, Fig. 1com-
pares survival as calculated numerically with the saturable 
repair formalism (Eqs. 6) and with its LQ form (Eq. 7). 
Here the agreement is good up to large acute doses, as 
would be expected from Eq. (8) and the results of Kiefer 
and Lobrich (24). 

For a fractionated regimen (in this case, daily 2-Gy frac- 
tions), Fig. 2 shows a comparison of survival as calculated 

Number of 2 Gy fractions 

FIG. 2. Multiple daily 2-Gy fractions: percentage relative difference 
[lOO(SSR- SLQ)/SsR] between survival as calculated exactly using the sat- 
urable repair formalism (Eqs. 6A and 6B) and using the corresponding 
LQ approximation (Eq. 7). Parameters of the formalisms as in Fig. 1. 

numerically with the saturable repair formalism of Eqs. (6) 
and with its LQ form, Eq. (7). Over the clinically relevant 
dose range, the LQ form of the saturable repair formalism 
shows good agreement with the saturable repair model of 
Eqs. (6), with differences of less than 1%in calculated sur- 
vival at relevant doses. The corresponding differences in 
calculated isoeffect doses are very small; for example, doses 
per fraction calculated to produce isoeffect after 30 frac- 
tions are 2 Gy (Eqs. 6) and 1.9993 Gy (Eq. 7). A difference 
in isoeffect doses that might be clinically significant is prob- 
ably in the range of 1-3% or more (e.g, one dose fraction in 
a 35-fraction regimen), so this difference in isoeffect dose of 
less than 0.05% is insignificant. 

Figure 3 compares isoeffect doses for the LQ and sat- 
urable repair formalisms calculated at different dose rates 
to produce the same effect as 35 Gy given at a low dose rate 
of 0.55 Gylh (a common practical problem). For example, 
using the parameter set described above (which is typical 
for an early-responding end point such as tumor control), 
the saturable repair formalism predicts the isoeffect dose at 
1.5 Gylh to be 31.2 Gy, while the LQ form of the saturable 
repair formalism predicts 31.8 Gy. 

We have performed similar calculations for a variety of 
reasonable parameter sets. In all cases, good agreement was 
found for comparisons of practical fractionated external- 
beam regimens. For protocols of relevance to brachytherapy, 
the parameters which most affect the agreement between the 
saturable repair formalism and its LQ form are the repair 
constant, A (or, equivalently, the repair half-time, TI,,), and 
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Dose rate (Gylh) 

FIG. 3. Continuous low-dose-rate irradiation: isoeffect doses calcu- 
lated to be equivalent to 35 Gy delivered at 0.55 Gyih. Percentage rela- 
tive difference [lOO(DLQ- DsR)iDLQ]between isoeffect doses calculated 
exactly using the saturable repair formalism (Eqs. 6A and 6B) and calcu- 
lated using the corresponding LQ approximation (Eq. 7). Parameters of 
the formalisms as in Fig. 1. 

the dP ratio. As would be expected from Eqs. (8) and (9), the 
agreement decreases with decreasing h (increasing TI,,) and 
with decreasing values of dP.Consequently the agreement 
will decrease for late-responding tissues, which exhibit smaller 
d P  ratios (6,38),and possibly also longer repair times, TI,, 
[Brenner et al. (40), but see Fowler (41)) As an example, if 
the parameter set used above is changed to one typical for 
late-responding tissue (dPdecreased from 8.8 to 3 Gy, and 
TI, increased from 0.35 to 1h), the difference in isoeffect 
brachytherapy dose between the saturable repair formalism 
and its LQ form (using the example in Fig. 3) increases from 
less than 2% to 4%.  In an extreme situation where the 
a/@ ratio is very small (<2 Gy) and the repair time is also 
very long (>3 h), Eq. (7) would not represent a good descrip- 
tion of the saturable repair formalism (using our criterion of 
requiring isoeffect doses to differ by less than 1-3%) at dose 
rates relevant to brachytherapy-though the equivalence 
would still hold for fractionated external-beam regimens. 

Other Saturable Repair Models 
While we have investigated the practical equivalence of 

a particular saturable repair formalism to the LQ formalism 
(specifically including the time factor, G), formalisms de- 
scribing other saturable repair models also show this equiva- 
lence. For example, for the saturable repair model described 
by Sontag (29), which is conceptually similar, though de- 
scribed by a slightly different formalism, a corresponding 

theorem on equivalence to the LQ formalism can be 
proved by similar manipulations. More generally, we show 
in Appendix I1 that the formalisms describing a very broad 
class of radiobiological reaction rate models, whether 
based on binary misrepair or saturable repair, all lead to 
the same generalized Lea-Catcheside time factor, G, for 
dose protraction. 

An exception to this equivalence for fractionationlpro- 
traction concerns saturable repair models which relate sur- 
vival to damage fixation at a time before repair and misre- 
pair have run their full course (so that the limit t + ~used 
above becomes inapplicable). Saturable repair models 
based on a finite damage fixation time include those of 
Calkins (20) and the "suicide enzyme" model suggested by 
Goodhead (21), in which repair proceeds after an acute 
exposure only for a finite time, after which unrepaired 
lesions become "fixed". To date, however, such finite-time 
damage-fixation models have not been quantified for pro- 
tracted exposures because of the inherent ambiguity 
involved in specifying an appropriate fixation time for 
lesions during a prolonged exposure. Thus formalisms 
describing these finite-time damage-fixation models, in 
which perturbation calculations do not lead to an LQ for- 
malism with the standard time factor, G, represent models 
whose application to protracted regimens is ambiguous. 

The Underlying Basis for the Equivalence of Predictions of 
the LQ and Saturable Repair Formalisms 
Having demonstrated that most saturable repair for- 

malisms do show similar fractionation/protraction effects to 
the LQ formalism, at least at most clinically relevant doses 
and dose rates, we now discuss the underlying basis for this, 
prima facie, surprising result. We consider the special case of 
two acute dose fractions, Dl and D2, separated by a time T. 
Then, using the LQ formalism, Eqs. (2) and (3), the surviv- 
ing fraction is (1) 

In terms of the LQ model, the components of this equation 
can be understood as follows: 
1. The two linear time-independent terms refer to produc- 

tion of lethal lesions by a single X or y ray, from either 
the first (aD,) or the second (aD,) dose. The two 
quadratic terms refer to production of lethal lesions from 
pairs of DSBs produced by different X or y rays from 
within either the first ( P D ~ ~ )  dose.or second ( P D ~ ~ )  

2. The time-dependent term 2PD,D2 exp(-XT) in Eq. (10) 
refers to production of lethal lesions from pairs of DSBs, 
one of which is produced in the second dose fraction 
(DSB yield x D2), and one of which is produced in the first 
fraction (at time T, remaining DSB yield Dl exp[-AT I); 
overall this produces the final DID2 exp(-AT) term. 
By contrast, in saturated repair models, pairs of DSBs or 

other "initial lesions" do not interact directly in a reaction 
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such as binary misrepair. However, there is an indirect 
interaction in the sense that repair of one DSB results in 
reduced repair capability for other DSBs. Under these cir- 
cumstances the interpretation of Eq. (10) in a saturable 
repair model is: 
1. The average number of lethal lesions made by the first 

dose is aD,, plus an additional quadratic term PD,,; this 
latter dose synergism is due to competition for repair 
enzymes among DSBs made by the first dose. Similarly 
for the second dose, D,. 

2. The time-dependent term 2PD1D2exp(-AT) reflects 
competition for repair enzymes between DSBs produced 
by the first dose and those produced by the second. 
Among the DSBs made by the first dose, only a fraction, 
approximately exp(-AT), is still present at the time of the 
second dose, due to repair, accounting for the last term 
in Eq. (10). [This estimate of the remaining DSB fraction 
is itself an approximation, since saturated repair does not 
give rise to strictly exponential decay. However, devi- 
ations of the remaining DSB fraction from exp(-AT) are 
themselves approximately linear in dose. From Eq. (10) 
this implies that the corresponding correction to -In ( S )  
is cubic in dose, and is thus neglected in the LQ approxi- 
mation to the saturable repair formalism]. 

DISCUSSION 

The LQ formalism is by far the most commonly used 
tool to analyze radiation response data both i n  vitro and 
i n  vivo. There is nevertheless a persistent school of thought 
that the underlying assumptions of the model are not those 
responsible for the bulk of dose-response and dose-protrac- 
tion relationships, with the suggestion that saturation of 
repair capability is more important. In this paper we have 
investigated the relationship between the formalisms 
describing these very different models for predicting 
time-dose relationships. 

We emphasize again that the LQ formalism, as applied 
to time-dose relationships, does not merely represent a 
truncated power series in dose. Rather, its key feature here 
is a specific functional form for the Lea-Catcheside time 
factor (Eq. 3), which takes into account dose protraction or 
fractionation. 

There is some intrinsic interest in the question of the 
relationship between binary misrepair and saturable repair 
models, in terms of designing critical experiments to distin- 
guish between these two very different explanations of 
basic radiobiological effects (42). However, the most press- 
ing application of this issue is in the field of radiotherapy: 
There is a clear need here for a reliable formalism that pre- 
dicts isoeffect doses when the time course of the radiation 
exposure changes-for alternative fractionation schemes, 
for different dose rates in brachytherapy, or to correct for 
treatment interruptions. For this purpose, the most com- 
mon current approach is use of the LQ formalism, which 
makes specific predictions as to the effects of changing the 

time course of the treatment, i.e. the fractionation or pro- 
traction. The LQ formalism involves only three parameters, 
and, in isoeffect calculations, only two. The small number of 
parameters is essential to its practicality, but does limit the 
capability of the formalism to describe a more complex and 
possibly more realistic model. Its widespread application in 
radiotherapy therefore does necessitate critical analysis and 
comparison with other possible formalisms that are practi- 
cal in the sense of using limited numbers of parameters. In 
this paper, we have addressed the question of whether the 
particular form describing fractionation1protraction effects 
which is embedded in the LQ formalism is still valid for 
other practical radiobiological models. 

We have shown that, remarkably, the formalisms 
describing many commonly considered mechanistically 
based models do reduce to the LQ formalism, including the 
same t ime factor, G, describing time-dose relationships. 
This equivalence is true (and perhaps not surprising) for 
models which involve binary misrepair and so are concep- 
tually similar to the LQ model, but it also holds for models 
which embody an entirely different explanation of fraction- 
ationlprotraction effects-saturation of cellular repair 
capacity. The fact that both binary misrepair and saturated 
repair formalisms lead, at low or intermediate doses, to the 
same (LQ) behavior for any type of dose fractionationlpro- 
traction explains in part the otherwise somewhat puzzling 
similarity (21,43) between the predicted consequences of 
the two mechanisms. 

Numerically, we estimated virtual equivalence between 
the formalisms of LQ and most saturable repair models, in 
terms of calculating isoeffect doses relating to changes in frac- 
tionation in external-beam radiotherapy. This equivalence 
applies to both early- and late-responding end points. It also 
applies to early-responding tissues in brachytherapy; depend- 
ing on the parameters, the equivalence for late-responding 
end points in brachytherapy would be less reliable. 

It should be emphasized that there is considerable, albeit 
indirect, evidence that binary misrepair mechanisms do 
influence fractionation and protraction (12). There is much 
less evidence that saturable repair mechanisms are impor- 
tant at the doses and dose rates of relevance to radiother- 
apy, and several experiments have suggested that saturable 
repair may be of only minor importance (44), except possi- 
bly at very high doses (30). However, contributions to frac- 
tionationlprotraction effects from saturable repair mechan- 
isms have not been excluded (21),and so the fact that they 
would affect fractionationlprotraction in largely the same 
ways as LQ mechanisms is of some significance. 

Our results here may also have an impact on the issue of 
designing "critical experiments" (42) to distinguish between 
binary misrepair and saturable repair mechanisms. If the 
dose-effect and dose-protraction patterns predicted by 
both are the same, then efforts to distinguish between mod- 
els on these bases (29) may not be feasible, and attempts 
may need to be redirected, perhaps toward identifying 
appropriate enzymatic processes. 
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We conclude that the use of the LQ formalism to predict 
dose-time relationships is a notably robust procedure, 
depending less than previously thought on knowledge of 
detailed biophysical mechanisms, since various conceptually 
different biophysical models lead, in a reasonable approxi- 
mation, to the LQ relationship including the standard form 
of the generalized Lea-Catcheside time factor, G. 

APPENDIX I 

The L Q  Equivalence of a Saturable Repair Formalism 
We show in this Appendix how the LQ formalism, including the func- 

tional form of the generalized Lea-Catcheside time factor, G, describing 
the effects of dose protraction, arises as an approximation to the particular 
saturable repair formalism described in the text by Eqs. (6A) and (6B). 

We assume that the yields of "initial" and "lethal" lesions as a func- 
tion of time are U(t) and L(t), described by the differential equations 
(6A and 6B). These equations do not have simple explicit solutions for 
an arbitrary dose-rate function D(t). However, for small numbers of ini- 
tial lesions, U, as would occur at clinically relevant doses, the denomina- 
tors in Eqs. (6), such as 1 + clU, are approximately 1; for denominators 
exactly 1the equations are soluble. This behavior means that it is possi- 
ble to generate a systematic approximation procedure by regarding E,  

and c2 in Eqs. (6A) and (6B) as small parameters in the sense of nonsin- 
gular (i.e. "regular") perturbation theory (45). To generate an approxi- 
mation whose inaccuracy is small to second order, first-order nonsingular 
perturbation theory can be used as follows. 

The first step is to expand the functions for lesion numbers as the first 
two terms of a formal power series: i.e., 

U(t) = Ufl(t)+ E U , ( ~ )+ o ( E ~ ) ,  L(t) = LO(()+ EL,(()  + 0(c2) ,  (Al) 

where E is a formal perturbation parameter having the same order of 
smallness as c1 and E,. Next the expressions (Al)  are substituted into the 
differential equations (6A and 6B), expanding these equations formally 
into a power series, and neglecting terms of order E~ (45). For example, 
the term AIUl(l + E,U) in Eq. (6A) has the approximation 

where the first term on the right is zeroth order, i.e. is O(cfl), and the next 
two terms are first order, i.e. are O(cl); the remainder is higher order and 
is treated as negligible. Terms of the same order are then grouped, to get 
separate differential equations for Uo, U,, Lo and L1, which turn out to be 
explicitly soluble. After solving, the formal expansion parameter E is set 
to unity. More details on the general procedure are given in standard 
texts (45). The procedure gives the differential equations for U corre- 
sponding to the expansion in Eq. (A2), namely 

where A = A, + A, and x = A,E, + h2c2. The explicit solutions of Eqs. (A3) 
are (46) 

To compute the surviving fraction, L(m) is needed (Eq. 6C). Expanding 
and integrating Eq. (Al )  for L(t) gives, for the first two terms Lo(=) + 
L,(m) in the perturbation series (i.e. neglecting terms of order E'), 

where Uoand Ul are given explicitly by Eq. (A4). The integral in Eq. (AS) 
can be evaluated by using the following auxiliary formula. Suppose g(t) 
is a smooth function which vanishes for t sufficiently negative, and sup- 
pose v is a positive constant. Then integration by parts gives 

Applying this auxiliary formula. with v = A and g = idt' ~ ( t ' ) ex~(h t ' ) ,  to 
the first term on the right in Eq. (A5) gives --

/d t  U,, = 8I dt b(t)  = SD. 
-- -- (A71 

where D is the total  dose delivered during the entire irradiation 
regimen. Next, the auxiliary formula is applied with v = A and g = 

Id f  ~ , ] ( t ' )ex~(ht ' ) ,  to rewrite the second term on the right in E q  (AS) 
- m  

as follows: 

Combining Eq. (As) with the last term on the right in Eq. (AS) shows 
that the following quantity needs to be evaluated: 

Applying the auxiliary formula (A6) a third time, with v = 2h and with 

gives 

w - I 

1 
I d t  U: (t) = -A j d t  e-*' ~ ( t ) I d t '  e*' ~ ( t )  = GD' /2A, (Al l )  

where G is the generalized Lea-Catcheside time factor, Eq. (3). 
Collecting results from Eqs. (6), (A5), (A7), (A8), (A10) and (All) ,  and 

comparing with Eq. (2), it is clear that for the saturable repair formalism of 
Eqs. (6A) and (6B), the zeroth and first orders of non-singular perturbation 
theory give the LQ formalism with the following parameter identifications: 

It can be proved that the perturbation series, if carried to infinite order, 
would converge to the true solution. The underlying reason is that U is a 
non-negative function bounded from above by SD. 

A partial check on these perturbation manipulations can be obtained 
by considering the solutions of Eqs. (6A) and (6B) for the special case of 
a single acute dose, where the exact solution and the corresponding LQ 
approximation have been discussed by Kiefer and Lobrich (24). In this 
special case, 

L(m) = ( a  + 265-')D - 2~5- ,  In(1 + CD), where 5 = 8(X2c,-h,&,)/A, (A13) 

where a and are defined in Eq. (A12). 
Expanding Eq. (A13) in a power series gives L(m) = u D  + PD' -

( 2 1 3 ) ~ ~ ~ ~+ .... In the special case of a single acute dose, the generalized 
Lea-Catcheside time factor obeys G = 1, so the first two terms of the 
power series expansion [aD + PD,] are the appropriate LQ expression. 
This argument shows that the LQ approximation, in addition to requiring 
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that there be enough time for repair and misrepair to run their full 
course, is a low-dose approximation. The criterion of its validity in the 
special case of Eq. (A13) is that the cubic term in the dose be small, i.e., 
PD' S 2 ~ 5 ~ ~ 1 3 ,equivalent to D 4 3/(2(). A numerical criterion can be ob- 
tained by assuming that e2 = 0, which is often a good approximation (29). 
In this case, algebraic manipulations of the equations above show that 
the criterion of validity becomes 

Typically,A, S h2,so, in view of standard estimates for the ol1P ratio (38,39), 
Eq. (A14) does not represent a very stringent limitation in practice. 
Adopting the parameter values discussed in the text, Eq. (A14) would 
always hold at clinically relevant doses. 

For continuous low-dose-rate irradiation, we may likewise obtain a 
rough estimate of the constant dose rate, D, below which the LQ approxi- 
mation to the saturable repair formalism would be expected to be close to 
the exact saturable repair formalism. In the LQ approximation, the terms 
in the denominators of Eq. (6A) are nearly 1. Since c2 < e, in all cases, the 
relevant criterion is elU(t) 4 1 for all times t. At a constant low dose rate, 
the size of U(t) is initially zero, gradually rising toward an equilibrium 
value during the irradiation (without ever quite attaining this equilibrium 
value) and then declining after irradiation is complete. Thus the equilib- 
rium value, say U,, is larger than any value that U attains at any time, so a 
sufficient criterion for the validity of the approximations is elUe 4 1. The 
equilibrium value. U,, can be estimated by the standard technique (45) of 
setting dU/dt = 0; using the approximation that the denominators are 1, the 
equation for the equilibrium value becomes 6D = AU,. Combining results, 
a sufficient criterion for the LQ approximation to the saturable repair for- 
malism to be reasonable is that D < Ai(e,6). For e, = 0, this can be 
expressed in terms of the a/P ratio as 

Here A, is typically close to the observed repair rate, i.e. A, - 0.25-2.5 h-'. 
For the parameter set considered in the Results section, we obtain 
D 6 9 Gylh. 

APPENDIX I1 

The LQ Equivalence of Formalisms Describing a Broad Class of 
Radiobiological Models 

A generalization of the argument we have given is possible, covering 
the formalisms describing many radiobiological reaction rate models, 
including as special cases the saturable repair formalism of Eqs. (6A) 
and (6B), the RMR formalism (14) and the LPL formalism (15). As 
before, we assume that the yields of "initial" and "lethal" lesions as a 
function of time are U(t) and L(t) ,and that survival is given by the for- 
mula S = exp [-L(x)].Suppose the equations for U and L have the form 

where e is a small parameter, but where 6, A, K, 4, x and K* are O(eO),i.e. 
are not necessarily small. Then, neglecting terms of 0(c2). i.e. accurate to 
first order, the LQ expression for Sholds; i.e., 

where G is the generalized Lea-Catcheside time factor (Eq. 3) formed 
using A, and 

The proof of this result involves manipulations similar to those given in 
Appendix I. 
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