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Studies of radiation carcinogenesis in animals allow detailed
investigation of how the risk depends on age at exposure and
time since exposure and of the mechanisms that determine this
risk, e.g., induction of new pre-malignant cells (initiation) and
enhanced proliferation of already existing pre-malignant cells
(promotion). To assist the interpretation of these patterns, we
apply a newly developed biologically based mathematical model
to data on several types of solid tumors induced by acute whole-
body radiation in mice. The model includes both initiation and
promotion and analyzes pre-malignant cell dynamics on two
different time scales: comparatively short-term during irradia-
tion and long-term during the entire life span. Our results
suggest general mechanistic similarities between radiation
carcinogenesis in mice and in human atomic bomb survivors.
The excess relative risk (ERR) in mice decreases with age at
exposure up to an exposure age of 1 year, which corresponds to
mid-adulthood in humans; the pattern for older ages at exposure,
for which there is some evidence of increasing ERRs in atomic
bomb survivors, cannot be evaluated using the data set analyzed
here. Also similar to findings in humans, initiation dominates the
ERR at young ages in mice, when there are few background pre-
malignant cells, and promotion becomes important at older
ages. g 2010 by Radiation Research Society

INTRODUCTION

Most mathematical models of spontaneous and
radiation-induced carcinogenesis either emphasize com-
paratively short-term processes and make simplistic
assumptions about long-term ones [e.g. refs. (1–5)] or
vice versa [e.g. refs. (6–15)]. In two previous articles (16,
17) we presented a new model that integrates relatively
detailed analyses of those processes that operate during

or shortly after irradiation (i.e. cell initiation, inactiva-
tion and repopulation, abbreviated as iir) with analyzing
processes that operate on typically longer time scales
before and after exposure (e.g., the growth kinetics of
stem cell niches filled with pre-malignant initiated cells).
The assumptions for the short- and long-term parts of
the formalism are similar to those used in other models
[specifically in the stochastic iir model (2) and a
deterministic version of the two-stage clonal expansion
model (18), respectively], so the combined model can
generally describe the short- and long-term data as well
as these other formalisms (16, 17). The advantage of a
unified approach is that interactions between short- and
long-term processes, such as modulation of the shape
and magnitude of the initial dose response over the long
period after radiation exposure before cancer develop-
ment, are analyzed directly and in more detail than
would be possible using short- or long-term models
alone.

We previously applied our model to the task of
predicting radiotherapy-induced cancers, using second
cancer data for nine solid cancer types—stomach, lung,
colon, rectal, pancreatic, bladder, breast, CNS and
thyroid—in patients treated by radiotherapy for various
primary cancers (17). Some of the model parameters
were obtained from fitting radiogenic risks at compar-
atively low doses for Japanese atomic bomb survivors or
from background U.S. cancer incidence data. The focus
was on the shape of the radiation dose response at high
fractionated radiation doses typical for cancer radio-
therapy. Here we apply the same model to radiation-
induced tumors in mice with an emphasis not as much
on the dose response but on the dependences of the
cancer risk on age at exposure and time since exposure
and on the underlying mechanisms that determine this
risk. The specific mouse data sets (described below)
selected for this analysis are particularly well suited for
investigating the patterns of such dependences due to the
experimental design used to generate them. Understand-
ing these patterns within the context of a biologically
based mathematical model is potentially useful because
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it can shed some light on the individual contributions of
different carcinogenic mechanisms to the overall cancer
risk (6–10, 19, 20).

These mechanisms can be grouped into two general
categories: (1) induction of alterations such as mutations
in normal stem cells, either spontaneously or by
radiation, which shifts the altered cells into a pre-
malignant state, with the potential of becoming fully
malignant upon acquiring additional alterations, and (2)
radiation-induced increases in the number of already
existing pre-malignant cells, for example due to acceler-
ation of their proliferation. The first process is usually
labeled initiation, and the second promotion. As we
discuss below, the contributions of each of these
mechanisms to radiogenic cancer risk can have quite
different dependences on age at exposure and on other
relevant variables. We believe that the insight about
these phenomena gained by analyzing animal data can
subsequently be used, at least conceptually or qualita-
tively, to better understand the mechanisms of radiation
carcinogenesis in humans.

METHODS

Model Used

The detailed assumptions and mathematical implementation of
our model were described elsewhere (16). Briefly, the model assumes
that normal organ-specific stem cells, which reside in stem cell
niches or compartments, referred to generically as ‘‘niches’’, can be
initiated to a pre-malignant state, either spontaneously or by
radiation, and can then be transformed into fully malignant cells,
which form tumors after some lag time. The parameters needed to
apply this formalism to the selected data sets (discussed below),
where a single acute radiation dose was administered, are presented
in Table 1. To reduce the number of adjustable constants, we
restricted some parameters to biologically plausible values or ranges
(Table 1).

The equation for the mean expected number of new fully
malignant cells per individual per unit time under background
conditions (Abac, units 5 time21), which is an approximation for the
cancer hazard function L time units later, was derived previously
(16, 17). It is repeated below, using the notation where age is
defined as the sum of age at exposure (Tx) and the time after
exposure (Ty):

Abac~ a=bð Þ exp b TxzTy

� �� �
{1

� �
exp {c TxzTy

� �2
h i

: ð1Þ

The expression for 1the radiation-induced excess relative risk
(ERR) after a single acute radiation dose D is:

ERR~ Q1Q2zQ3ð Þ=Q4½ �{1, where :

Q1~ 1zY Dð Þ
�

1zY D 1{exp {d Ty
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Data Sets and Model Fitting Procedure

The data used in this analysis were derived from two papers by
Sasaki and Fukuda (21, 22) on the incidence of and mortality from
several tumor types in female B6C3F1 mice exposed to acute doses of
c rays. These specific studies were chosen because they measured
tumor incidence not only at several radiation doses but also at several
ages at exposure and times after exposure, so that relatively detailed
information on the temporal trends of the risk is available. As noted
previously, investigating and interpreting these trends within the
context of our model is the main aim of this paper.

Fitting of the model (Eqs. 1 and 2) to the data was carried out
using a customized random-restart simulated annealing algorithm
implemented in FORTRAN. First, the best-fit values of those
parameters that determine background tumor risk (i.e. a, b, c) were
generated for the age- and time-dependent mortality from all solid
tumors combined in unirradiated mice. This was done because the
data for this lumped category were more detailed and statistically
robust than those for individual tumor types. Second, the model was
fitted to the ERRs at various doses, ages at exposure and times since
exposure for (1) mortality from all solid tumors combined and (2)
incidences of four specific tumor types—bone, liver, lung and
pituitary. These organs were chosen because they presumably do
not undergo dramatic modulation by sex-related hormones, and so
the simplistic model assumptions, which do not account for
hormones, may be more applicable. In contrast, ovarian carcinogen-
esis is probably strongly affected by hormones and may exhibit a
complex dose response where some degree of oocyte killing is
necessary for carcinogenesis [e.g. ref. (23)]. Also, the four selected
tumor types were more common in the mouse strain used by Sasaki
and Fukuda than some other neoplasms (e.g. renal, harderian gland),
so the data on these types were more robust. Only the data for
exposures after birth were used, setting the time of birth as age zero.
Data for the in utero period, which have a very different behavior,
were not included because analyzing them may require more

TABLE 1
Summary of Model Parameters

Units Interpretation Restrictions

a time22 Spontaneous stem cell initiation and transformation none
b time21 Pre-malignant niche replication none
c time22 Pre-malignant cell aging none
d time21 Homeostatic regulation of pre-malignant cell number per niche none
Z cells/niche Carrying capacity for pre-malignant cells per niche Z 5 1
X time/dose Radiation-induced initiation none
Y dose21 Radiation-induced promotion none
a, b dose21, dose22 Stem cell inactivation by radiation 0.2 , a , 0.6 Gy21; b 5 0
L time Lag period between the first fully malignant cell and cancer L 5 100 days for cancer incidence, 200

for mortality
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complicated model assumptions. This issue is discussed below in
more detail.

Because of the structure of our model, the parameters a and c

cancel out of the ERR expression (Eq. 2). Consequently, only five
adjustable parameters (b, d, X, Y and a) are needed to describe the
ERR for either cancer incidence or mortality. To further reduce this
number, we attempted to keep the values of as many parameters as
possible in common across tumor types rather than allowing them to
attain specific values for each type. Exploratory calculations

suggested that reasonable fits for all the data could be generated by
keeping in common the values of the parameters for pre-malignant
niche replication (b), estimated from fitting the background mortality
data for all tumors combined, and radiation-induced initiation (X)
and homeostatic regulation of the number of pre-malignant stem cells
per niche (d), both estimated from fitting the ERRs for mortality from
all solid tumors combined and incidences of individual tumor types.
The number of tumor-specific adjustable parameters needed to fit the
ERR data for any individual tumor type was therefore reduced to
only two: the radiation-induced promotion constant (Y) and the cell
killing constant (a).

Clearly the approach of selecting cross-tumor parameters based on
fitting results is imperfect. Improved estimates of all of these
parameters may become possible in the future due to advances in
experimental studies of mouse carcinogenesis. The main goal of the
current procedure was to reduce the number of parameters, so that
the results could be interpreted more easily and potential mechanistic

patterns identified. Reducing the parameter space is also beneficial
because it increases the probability of finding the global rather than a
local minimum. This probability was enhanced by running the fitting
algorithm several times using different random number initiation
‘‘seeds’’ and monitoring the deviance as a function of number of
iterations. The obtained best-fit parameter combination was deemed
to be the global minimum because the algorithm converged on it
regardless of the initial random number and regardless of increases in
the number of iterations beyond a certain value.

For all tumor types the model-predicted ERRs were estimated for
attained ages that corresponded to the mean survival ages of the mice
in each experimental group, which approximated lifetime ERR. As
the radiation dose increased, the mean survival age decreased, as
expected. Hence the effects of both age at exposure and time since
exposure, the sum of which comprises attained age, were accounted
for.

Ninety-five percent confidence intervals for all adjustable param-
eters were estimated by generating multiple synthetic data sets based
on the experimental data set and fitting the model to these synthetic
data sets. The simulated data sets were produced using the data points

and standard errors reported by Sasaki and Fukuda (21, 22),
assuming the normal distribution.

RESULTS

The best-fit model parameters for mortality from all
solid tumors and for incidences of bone, liver, lung and
pituitary tumors are listed in Table 2. The analyzed data
can be adequately described even with multiple restric-
tions on model flexibility, such as keeping several
parameter values in common for all tumor types and
restricting some others to biologically plausible ranges
or values. A possible interpretation of these findings is
that in the studied mouse strain the net replication rate
for niches filled with pre-malignant cells (b) may be
similar regardless of the organ in which these pre-
malignant cells are found, and the same can be said
about the homeostatic regulation of the number of cells
per niche (d) and about the dose-dependent ability of
radiation to initiate new pre-malignant cells (X) relative
to the spontaneous initiation rate for each tumor type.
The major differences between the mouse tumor types
may therefore be attributable to differences in radio-
genic promotion (Y) and cell killing (a). The ratio
between the initiation and promotion parameters (X/Y)
varies considerably between cancer types, suggesting
that in these mice promotional mechanisms may be
much more important for some cancers than for others.

This scheme may be plausible to some extent, for
example because (1) radiogenic promotion is interpreted
in the context of our model as deregulation of cell-cell
signals that maintain stem cell niche sizes, (2) cell-cell
signals can be modulated by radiation-induced oxidative
stress and other processes [e.g. refs. (24–26)], and (3) the
magnitude and nature of the modulation may be organ/
cell type-dependent. Consequently, radiogenic promo-
tion may be more organ-specific than initiation.
Differences in radiosensitivity (a) between stem cells
from different mouse organs are also likely, for example

TABLE 2
Best-Fit Parameter Values (and 95% Confidence Intervals) for all Analyzed Tumor Types

Tumor type Data 108 3 a day22 102 3 b day21 106 3 c day22 L day

All solid tumors Mortality 1.42 (0.9, 2.1) 1.59 (1.2, 2.1) 6.54 (4.5, 8.5) 200
Bone Incidence – 1.59 (0.6, 2.2) – 100
Liver Incidence – 1.59 (1.1, 2.3) – 100
Lung Incidence – 1.59 (1.1, 2.7) – 100
Pituitary Incidence – 1.59 (1.1, 2.5) – 100

Tumor type 104 3 d day21 X day 3 Gy21 Y Gy21 X/Y days a Gy21

All solid tumors 2.11 (0.2, 3.9) 79.7 (20, 250) 12.2 (0.1, 170) 6.5 0.60 (0.3, 1.1)
Bone 2.11 (0.5, 7.6) 79.7 (22, 340) 1.99 (0.2, 15) 40 0.20 (0.1, 0.5)
Liver 2.11 (0.2, 12) 79.7 (53, 160) 0.596 (0.3, 4.6) 130 0.273 (0.1, 0.6)
Lung 2.11 (0.5, 5.5) 79.7 (5.0, 950) 1.77 (0.1, 25) 45 0.60 (0.4, 0.9)
Pituitary 2.11 (0.3, 8.4) 79.7 (56, 130) 0.459 (0.2, 2.6) 170 0.283 (0.0, 0.8)

Notes. Parameter interpretations and restrictions are listed in Table 1. The ratio X/Y is shown for easier comparison of initiation/promotion
balance between different cancer sites; it is not a model parameter.
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because the stem cells in rapidly renewing tissues may be
much more mitotically active, and hence more radio-
sensitive, than stem cells in tissues where cell turnover is
slower; e.g. hematopoietic stem/progenitor cells are
more radiosensitive (27) than breast stem cells (28).

The estimates of 95% confidence intervals for the
adjustable parameters are also provided in Table 2.
Notably, these estimates can be quite asymmetric
around the best-fit values. This is due in part to the
fact that the best-fit values for some parameters (d, X, b)
were determined by analyzing all tumor types together
rather than individually. Consequently, the best-fit
values listed for a given tumor type do not represent
the optimal combination for that particular tumor type
(which would be based on a deviance minimum for that
type alone) but were obtained by optimizing the total
deviance for a larger data set that includes information
on other tumors. The confidence intervals, however,
apply specifically to each selected tumor type, to provide
a sense of how the fit for each type is affected by altering
the default parameter values.

The greatest model sensitivity, represented by the
tightest confidence intervals, occurred for the pre-
malignant niche replication rate b because this param-
eter strongly affects both the background risk and the
radiation-induced risk (see Eqs. 1, 2). The model was
also relatively sensitive to the value of the cell killing
constant a, because this constant has a substantial effect
on the shape of the radiation dose response. Sensitivity
to other parameters was generally less pronounced. For
example, confidence intervals for the radiation initiation
constant X were often very wide (Table 2), which is
consistent with the fact that this parameter could be kept
in common across tumor types without altering the fit
dramatically. These results suggest that the formalism
can adequately fit the selected data sets using many
possible parameter value combinations, so that conclu-
sions based on specific parameter values should be
interpreted cautiously without additional information
about these values, e.g. from other experimental data.

The model fit to the age-dependent mortality rate
from all solid tumors in unirradiated mice is shown in
Fig 1. Figure 2 shows the data and best-fit model
predictions for the ERR for mortality from all solid
tumors at a dose of 1.9 Gy as function of age at exposure
and time since exposure. Generally, the model describes
the data reasonably, considering the uncertainties in the
data points. The decreasing trend in the ERR with time
since exposure is well accounted for.

There is, however, some qualitative discrepancy
between the data and predictions for the effects of age
at exposure: The model predicts a monotonic decrease in
ERR with age at exposure for a fixed attained age (some
effect of attained age is also seen because of progressive
life shortening at increasing radiation doses, but this
effect is not dominant in the data analyzed here). The
mouse data, however, suggest that ERR actually grows
during the late in utero period (not included in the
analysis here) and the first days of life and begins to
decrease only after 35 days. A similar pattern has
recently been observed in humans using data from
Japanese atomic bomb survivors (29). A possible
interpretation is that the ERR is affected by the
physiological processes during active organ growth,
which occur in utero and during the neonatal period
both in mice and in humans, e.g. changes in the number
and/or the radiosensitivity of stem cells available for
oncogenic transformation, and/or more efficient elimi-
nation of pre-malignant cells by cell-cell interactions.
The model in its current form does not account for these
processes and assumes that the target cell numbers and
dynamics are the same regardless of age; such assump-
tions were made for simplicity.

Figure 3 shows the data and best-fit model predic-
tions for the ERR for incidence of specific tumor types
as a function of age at exposure (estimated for an
attained age corresponding to the mean survival age for
each experimental group) for mice irradiated with
1.9 Gy. For these tumor types, the data support a
relatively monotonic decrease in ERR with age at
exposure to a better extent than the data for all solid
tumors combined referred to earlier. For this reason,
qualitative agreement with model predictions is better as
well. The explanation for a decrease of the ERR with
age at exposure within the context of our model has been
described in detail in previous papers (16, 17). If excess
risk is dominated by radiation initiation rather than
radiation promotion, it occurs mainly for the following
reasons: (1) cells initiated at an early age have longer to
exploit their growth advantage over normal cells (if the
attained age of maximal cancer incidence is relatively
constant); (2) cellular proliferation rates early in life can
be more rapid, making target cells more sensitive to
radiogenic initiation. The number of ‘‘background’’ pre-
malignant cells increases with age, increasing the cell
population on which promotional processes can act but

FIG. 1. The data and best-fit model predictions for the back-
ground mortality rate from all solid tumors combined. The data in
this figure and the following figures are from refs. (21, 22). In this and
the following figures, error bars represent standard errors.
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decreasing the fractional contribution of initiated cells to
total cancer risk by increasing the denominator of the
ERR. When irradiation occurs at a young age, there are
few existing pre-malignant cells, so promotion of these
cells (i.e. multiplicative amplification of their number) is a
small effect compared with the much larger number of
new pre-malignant cells created by radiation. For
irradiation at a much older age, the reverse is true: there
are many already existing pre-malignant cells compared
with the number of new cells initiated by radiation, and
promotion of the existing large pre-malignant cell
population becomes much more important.

The radiation dose responses for the selected tumor
types are shown in Fig. 4. The structure of Eq. (2)
produces a dose–response shape that is essentially linear
at low doses and then peaks and turns over at higher
doses due to cell killing. This generic shape describes the
data reasonably well, particularly for mouse liver and
pituitary tumors, among those analyzed here. For mouse
lung tumors, the model underestimates the slope of the
dose response at low doses and the rate of decline at high
doses. The predicted decline at high doses is determined
by the cell killing constant a and could be enhanced by
allowing the value of this parameter to be .0.6 Gy21

FIG. 2. The data and best-fit model predictions for the excess relative risk (ERR) for mortality from all solid
tumors combined at a dose of 1.9 Gy. In this and the following two figures, the model predictions
corresponding to the data points are represented by points (filled circles), which were generated using the
corresponding combinations of dose, age at exposure, and time since exposure. The lines connecting the
predicted points are shown for convenience only.
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FIG. 3. The data and best-fit model predictions for the excess relative risk (ERR) for incidence of specific
tumor types as function of age at exposure for mice irradiated with 1.9 Gy. The model was fitted to data for all
doses used (see next figure), not just to the points shown here.

FIG. 4. The data and best-fit model predictions for the excess relative risk (ERR) for incidence of specific
tumor types as function of dose for mice irradiated at age 0 days.
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(not shown). However, the rapid increase in lung tumor
ERR observed at relatively low doses (,1 Gy) could not
be well reproduced by our model given the other data
(i.e. an effective plateau of the ERR between 1 and
3 Gy). A possible explanation is that radiogenic lung
tumor risk may be substantially affected by factors such
as the bystander effect, which would tend to produce
plateau-like dose–response shapes at low or moderate
doses [e.g. refs. (30–32)] and has been postulated to be
important for lung carcinogenesis by high-LET radia-
tion [e.g. refs. (33–35)]. For bone tumors, the data may
suggest a linear-quadratic rather than a linear dose–
response shape.

An important goal of the present paper is to
investigate the quantitative roles of different mecha-
nisms, such as initiation and promotion, in the overall
radiation-induced cancer risk. This can be done math-
ematically as follows:

Just after irradiation (i.e. Ty 5 0), and assuming as we
do here that Z 5 1 and b 5 0, the relative risk (RR)
simplifies to

RR~ 1zY Dð Þexp {aD½ � b X Dzexp b Tx½ �{1½ �=

exp b Tx½ �{1ð Þ:
ð3Þ

By setting either X or Y to zero, the RR can be
decomposed into terms that contain only radiation-
induced initiation (RRi), only radiation-induced promo-
tion (RRp), and both initiation and promotion together
(RRb):

RRi~exp {aD½ � b X Dzexp b Tx½ �{1½ �= exp b Tx½ �{1ð Þ,

RRp~ 1zY Dð Þexp {aD½ �,

RRb~exp {aD½ � b X Y D2{exp b Tx½ �z1
� ��

exp b Tx½ �{1ð Þ:

ð4Þ

The pure promotion term RRp is simply the product
of the cell survival probability, exp[2a D], and the dose
dependence of promotion, 1 z Y D. The pure initiation
term RRi involves both cell killing effects and the
number of pre-malignant cells/niches up to age at
exposure. The term RRb, which represents interactions
between initiation, promotion and cell killing, can be
interpreted as radiation-induced promotion of previous-
ly radiation-initiated niches. This interpretation intui-
tively explains the quadratic dose dependence of the
term, considering the linear individual dependences of
initiation and promotion.

The behavior of Eq. (4) was investigated using the
best-fit parameter values for different tumor types. It is
shown using mouse liver tumors as an example in Fig. 5.
The figure graphically illustrates the model property that
the initiation-dependent terms RRi and RRb decline with
age at exposure (panels A, C), for reasons described

earlier, whereas the promotion-only term RRp is
independent of age at exposure, because for a single
acute dose the model analyzes promotion as simply a
multiplicative amplification of the number of pre-
malignant cells. However, when expressed as a percent-
age of total RR, the pure initiation contribution RRi/RR
is constant with age at exposure (panels B, D). It is also
notable that the contributions of initiation, promotion,
initiation-promotion interactions, and cell killing are
also dose-dependent, as Fig. 5 clearly demonstrates.

The negative values for initiation-promotion interac-
tions (RRb) seen at older ages at exposure are, in a sense,
a mathematical artifact of the definition of RR. This can
be clearly seen from the structure of Eq. (4). For
example, assume there is no radiation exposure, so D 5

0. Then RRi 5 1, RRp 5 1, and RRb 5 21, so total RR,
which is the sum of all three terms, equals unity, as
intuitively expected. As radiation dose increases, all
three terms are increased, making RR . 1, but RRb can
still be , 0 at sufficiently old ages at exposure (Tx).

DISCUSSION

Here we presented an analysis of radiation-induced
mouse carcinogenesis using a data set well suited to
investigate the dependences of cancer risk on age at
exposure and time since exposure. The biologically
based mathematical model we developed earlier (16, 17),
which integrates the relatively short-term processes
during irradiation and tissue recovery with more long-
term processes that determine pre-malignant cell dy-
namics throughout the entire lifetime, is able to
adequately describe these data, using a limited number
of biologically plausible parameter values.

The best-fit model parameters generated by this
analysis are of course mouse-specific and cannot be
applied to humans because of life-span differences and
other factors. However, our results suggest that the
general patterns of radiation carcinogenesis may be
relatively similar for mice and humans, at least for the
cancer types analyzed. Some conclusions drawn from
analyzing the mouse data sets selected here, and which
can have some importance for human risk estimation
and carcinogenesis mechanisms, are presented below:

1. At young ages at exposure, the model suggests that
mouse ERR is dominated by radiogenic initiation,
whereas at older ages promotion becomes more
important. Similar conclusions have been reported
earlier by authors using the two-stage clonal expan-
sion (TSCE) model on data from human atomic
bomb survivors (9, 36). This implies that humans
exposed to radiation as children are at risk mainly due
to generation of new pre-malignant cells from normal
ones by radiation-induced mutagenesis (i.e. initia-
tion), whereas individuals exposed in adulthood are at
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risk mainly due to radiation-induced increases in the
sizes of already existing pre-malignant cell clones (i.e.
promotion). Non-targeted radiation effects mediated
by intercellular signaling may be involved in both
initiation and promotion.

2. For exposure at very young ages, around the time of
birth, mouse cancer risks are actually lower than at
somewhat older ages, corresponding to childhood (21,
22). This finding is supported by recent analyses of
human atomic bomb survivors irradiated in utero (29)
and suggests that irradiation of the fetus and neonate
may not be as dangerous in terms of cancer risk as
previously thought. As noted earlier, our model in its
current form does not predict this trend adequately.
Further model development is needed to address this
issue.

3. The mouse ERR tends to decrease with both age at
exposure and time since exposure. The oldest age at
exposure was 1 year, which is about one-third of the
maximum life span of the mice studied and thus
roughly corresponds to mid adulthood in humans.
Similar trends have also been found in atomic bomb
survivors, e.g. (9, 36–39). Some recent data analyses,
which focus more attention on the older age-at-

exposure subgroups of atomic bomb survivors (39–
42), suggest that the radiation-related ERR for cancer
induction decreases with age at exposure only until
exposure ages of 30 to 40, while for older ages at
exposure the ERR may not decrease further and, for
many cancer sites (as well as for all cancers
combined), the ERR may actually increase, generat-
ing ‘‘U-shaped’’ age-at-exposure dependences. If true,
these findings can have significant societal implica-
tions where radiation exposure of adults is involved,
for example for occupational radiation exposure
limits and for new CT-based screening modalities of
asymptomatic adults. Our formalism can describe
either a decreasing or an increasing ERR trend at
older ages at exposure, depending on parameter
values, and is therefore potentially useful for analyz-
ing data sets with both types of ERR patterns.
According to the model, promotion-related ERR can
increase as a function of age at exposure if the
parameter for homeostatic regulation of the number
of pre-malignant stem cells per niche (d) is greater
than zero. ‘‘U-shaped’’ age-at-exposure patterns for
the ERR and for excess lifetime risk can therefore be
generated by the model, where the initial decline is

FIG. 5. Contributions of initiation, promotion and initiation-promotion interactions (i.e. promotion of
radiation-initiated pre-malignant cells), all influenced by cell killing, to predicted liver tumor relative risk (RR)
just after irradiation. Panel A shows total RR and its components for a dose of 1 Gy, and panel B shows the
percentage contributions of these components as a function of age at exposure. Panels C and D show the same
analysis at a dose of 5 Gy. Best-fit parameter values from Table 2 were used. In Panels A and C the x axis starts
at 50 days because for younger ages at exposure the predicted RR is too large to conveniently show on the same
vertical scale with the RR at older ages at exposure, and a logarithmic vertical scale is not possible because of
negative values.
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dominated by initiation and the subsequent increase is
dominated by promotional effects (Shuryak et al.,
submitted for publication).

In conclusion, mechanistic analysis of animal and
human data, using biologically motivated formalisms
that model both initiation and promotion on both a
short and a long time scale, may enhance the under-
standing of radiation-induced carcinogenesis. Our find-
ings are consistent with the hypothesis that the general
mechanistic patterns of radiation carcinogenesis may be
relatively similar for mice and humans but that the
balance between initiation and promotion may vary
considerably among different cancer types.
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