
Abstract DNA double-strand breaks (DSBs) produced
by densely ionizing radiation are not located randomly in
the genome: recent data indicate DSB clustering along
chromosomes. Stochastic DSB clustering at large scales,
from >100 Mbp down to <0.01 Mbp, is modeled using
computer simulations and analytic equations. A random-
walk, coarse-grained polymer model for chromatin is
combined with a simple track structure model in Monte
Carlo software called DNAbreak and is applied to data
on alpha-particle irradiation of V-79 cells. The chromatin
model neglects molecular details but systematically in-
corporates an increase in average spatial separation be-
tween two DNA loci as the number of base-pairs be-
tween the loci increases. Fragment-size distributions ob-
tained using DNAbreak match data on large fragments
about as well as distributions previously obtained with a
less mechanistic approach. Dose-response relations, lin-
ear at small doses of high linear energy transfer (LET)
radiation, are obtained. They are found to be non-linear
when the dose becomes so large that there is a significant
probability of overlapping or close juxtaposition, along
one chromosome, for different DSB clusters from differ-
ent tracks. The non-linearity is more evident for large
fragments than for small. The DNAbreak results furnish
an example of the RLC (randomly located clusters) ana-

lytic formalism, which generalizes the broken-stick frag-
ment-size distribution of the random-breakage model
that is often applied to low-LET data.

Introduction

Double-strand break clustering along chromosomes

High linear energy transfer (LET) radiation consists of
tracks (i.e., events) which are statistically independent of
each other [1]. Recent high-LET pulsed field gel electro-
phoresis (PFGE) experiments [2, 3, 4, 5, 6] measured
distributions of DNA fragment sizes, where “size” is
used, here and throughout, to mean DNA content. PFGE
fragment-size data are informative about the clustering
of double-strand breaks (DSBs) along DNA, dependent
on the chromosome geometry during the G0/G1 phase of
the cell cycle and on LET or other aspects of the radia-
tion track structure [7, 8, 9, 10, 11, 12, 13].

To elucidate the implications of the observed frag-
ment-size distributions for DNA DSB locations along
chromosomes, numerical and/or analytical modeling is
required [2, 3, 4, 5, 12, 14]. In many cases, modeling has
used Monte Carlo computer simulations based on the de-
tailed track structure and the detailed geometry of chro-
matin [8, 12, 13, 14, 15, 16, 17. 18, 19, 20, 21, 22]. For
high LET, such models have usually emphasized one-
track action. They have been applied mainly to data on
comparatively small sizes, analyzing ‘locally multiply
damaged sites’ on the 10 base-pair (bp) scale of the un-
derlying DNA double helix [22, 23, 24, 25] or ‘regional-
ly multiply damaged sites’ on chromatin scales of 10 bp
to several kbp (= 103 bp), corresponding to nucleosomes
and the 30 nm chromatin fiber [12, 13]. For low-LET ra-
diation and soft x-rays, Friedland and co-workers have
considered much larger scales [17, 18].

The recent high-LET PFGE data on mammalian cells
also include results on large fragment sizes. There are
‘globally’ multiply damaged sites. Given that a particular
locus on a chromosome has a DSB, the probability that
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another locus has a DSB from the same high-LET track is
enhanced, even if the second locus is several Mbp 
(=106 bp) away from the first. Such enhancement is not
surprising because an intact chromosome is based on a
continuous thread of DNA. The DNA is multiply folded
and winds tortuously during interphase, but even on large
scales DNA loci which are separated by fewer base-pairs
along the DNA contour tend, at least on average and ne-
glecting fine-structure, to be closer in space [26]. This ge-
ometry means that if one high-LET particle produces sev-

eral DSBs on the chromosome, there will be a bias for
DSBs to be close to each other along the DNA [14]. Fig-
ure 1 shows the basic phenomenon. For large sizes, there
are, however, complications: the chromatin geometry is
not well known, and along a chromosome a significant
overlap of clusters from different tracks can occur in
high-dose experiments. An interesting method of circum-
venting these complications predicts fragment-size distri-
butions without requiring much information on the chro-
matin structure [3, 5], but it does not explicitly character-
ize DSB patterns resulting from the superposition of one-
track DSB clusters along an entire chromosome.

Randomly located clusters formalism

Standard mathematical techniques can give information on
the overlapping or close juxtaposition of different one-
track DSB clusters along a chromosome. A recent discus-
sion of high-LET PFGE data [14, 27] analyzed cluster
overlapping with the ‘randomly located clusters’ (RLC)
formalism, some of whose equations are summarized in
the Appendix. The main intuitive ideas underlying the
RLC formalism are: (1) each track can make a stochastic
cluster of DSBs along a chromosome; (2) different clus-
ters, due to different tracks, can be treated as statistically
independent; (3) the location of different clusters in the ge-
nome, unlike the highly correlated location of DSBs within
one cluster, is random (hence the term randomly located
clusters); and (4) the probabilistic structure of a one-track
cluster does not depend on the cluster’s location in the ge-
nome.

The main results of the RLC formalism are to derive
high-dose, multitrack DSB clustering patterns from in-
formation on one-track action. Dose-response relations
are obtained [27]. Fragment-size frequencies are linear in
dose only at doses so low that overlap on one chromo-
some of DSBs or DSB clusters from different tracks can
be neglected. The formalism facilitates extrapolations of
the high-LET PFGE data, often obtained using large dos-
es, to the much smaller doses relevant for most radiobio-
logical applications. It generalizes the standard random-
breakage model [28, 29] which is applicable to most
low-LET data (e.g., [11]). The RLC equations fit high-
LET PFGE data better than does the ‘broken stick’ equa-
tion of the random-breakage model [27].

However, the RLC formalism has been problematical
as the stochastic DSB pattern for one-track action is de-
termined in principle by the radiation track structure and
the geometry of chromatin [7], but the analysis instead
uses less complicated and less well motivated one-track
DSB cluster models, chosen primarily for mathematical
convenience.

Preview

In the present paper, a direct multitrack computer simu-
lation of fragment-size distributions which addresses this
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Fig. 1A–C Double-strand break (DSB) clustering. A Two-dimen-
sional projection of an interphase chromosome, whose geometry
was calculated as a three-dimensional random walk on a lattice by
DNAbreak software (see text). This polymer model and other,
somewhat more realistic ones involve neglecting the fine-structure
on the scale of several kilobase-pairs or less, and emphasizing
simple average properties of situations which individually are very
complicated. Radiation tracks (arrows), located at random, inter-
sect the chromatin in three-dimensional space by striking a lattice
site the chromosome occupies, creating a DSB with probability p.
We here took p=0.36 as a convenient example. DSBs or clusters of
DSBs too tight to resolve visually are shown as stars. In B, the
chromosome is shown schematically straightened out, on a greatly
reduced scale, to show the DSB clustering. Each track creates a
DSB cluster along the chromosome, with some clusters from dif-
ferent tracks overlapping. The total number of simulated DSBs in
this case was 47, some of which are too tightly clustered to be re-
solved visually. The DSB pattern is indicative of the fact that one-
track clusters are located randomly on the chromosome even
though within each one-track cluster there are strong correlations
among the DSB locations. C Five examples of the one-track clus-
ters whose superposition generates B. The numbers show the num-
ber of DSBs in subclusters too tight to resolve visually. Even if
there are two or more tight subclusters separated by large sizes, we
regard the entire one-track DSB pattern for any one chromosome
as a single cluster by definition. At the bottom, a magnified view
of one subcluster is shown



problem will be presented, compared to PFGE data on
fragment sizes for alpha-particle irradiation of V-79 cells
[4], and used as a specific example of the general RLC
formalism.

We shall replace one-track DNA fragment-size distri-
butions chosen for mathematical convenience with
mechanistically calculated distributions, using the sim-
plest available geometric model of large-scale chromo-
some structure, namely a random walk. The geometric
model is what polymer physicists call ‘coarse-grained’
[30]: it neglects all of the molecular details of the chro-
matin. The model does take into account the continuous
nature of the DNA thread, i.e. the fact that even at large
scales loci separated by fewer base-pairs tend to be clos-
er in space at least on average, as well as the multiple
doubling back and folding which interphase chromo-
somes show. The random walk model and some exten-
sions to include chromatin loops have been applied to
aberrations and mutations (see overview in [31]).

There is in fact evidence of considerable randomness
in chromatin structure at scales from 0.1 Mbp to more
than 100 Mbp [26, 32, 33, 34]. However, there is also
evidence for more regular structures such as loops (e.g.
[34, 35, 36, 37, 38, 39]). Thus, the random walk model is
an intentionally oversimplified idealization, which cap-
tures some of the main features of large-scale interphase
chromosome geometry in a well-known, systematic, con-
sistent, comparatively elementary construct. Very much
more detailed chromatin models have been used (e.g.,
[12, 17, 22]). However, apart from a recent model of
Friedland et al. [18], these neglect spatial correlations
among chromatin regions separated by more than
0.1 Mbp, so they are not directly applicable to DSB clus-
tering on larger scales, spanning more than three orders
of magnitude, up to >100 Mbp.

Quite sophisticated track codes are now available
(survey in [40]), but we suggest that an appropriate DSB
model is one which has about the same level of detail for
radiation track structure as for chromatin structure. The
coarse-grained polymer chromosome geometry model
(implemented as a discrete random walk on a cubic lat-
tice [41]) will be combined with a very simple model of
an ionizing radiation track. Essentially, we shall assume
that each intersection of track and chromatin has a prob-
ability p of producing a DSB, where p is an adjustable
parameter which summarizes the effects of track struc-
ture and radiochemistry in a single number. Bridging the
gap between this coarse-grained approach, useful for
large DNA fragment sizes, and the more detailed chro-
matin/track-structure calculations applicable to smaller
sizes will be briefly discussed as a generalization of our
track-structure model within the framework of a coarse-
grained approach.

The models for chromatin and track will be used to
determine one-track DNA cluster patterns by Monte Car-
lo simulations, checked with analytic formulae. Multi-
track Monte Carlo computer simulations, cross-checked
by combining the one-track simulations with the RLC
equations, will be compared to PFGE data. Estimates for

the number of DSBs per Gy and for multitrack cluster
patterns will be obtained. The domain of validity of the
RLC formalism’s approximation that clusters due to dif-
ferent tracks are statistically independent will be investi-
gated in this special example of the formalism.

Methods

We describe the computer programs used. These have
been combined into a software package called DNA-
break [42].

Programming random walks

Random walk models for chromatin, motivated in the In-
troduction section, can be continuous or discrete [43].
For computer use, we here adopt a discrete version, as
follows. Consider ‘monomers’ (in the terminology of
polymer physics) equally spaced along a chromosome.
The monomers are regarded as DNA segments, num-
bered from 1 to N and then used to specify locations
along the chromosome, from one telomere to the other.
When CPU resources are sufficient, the number of
monomers per chromosome can be increased to a maxi-
mum, determined by a condition that the monomer size
is about the persistence length of chromatin, which is at
least 5 kbp and perhaps more [32, 33, 39, 44]. The scales
at which chromatin behaves more nearly like an elastic
rod [45] are presumably at the lower margin of the ex-
perimental data (≈10 kbp) and need not be resolved in
this calculation. For monomers which are sufficiently
big, the chromatin stiffness does not have a major effect
on scales larger than one monomer. We used N=52,500
such monomers per chromosome, so that for a typical
V-79 chromosome, of size S=245 Mbp [11], each mono-
mer has size ≈4.7 kbp. This scale determines the lower
limit of resolution of the calculation; at such sizes ‘dis-
crete-size’ effects, i.e., artifacts due to the discrete ap-
proximation, become significant.

Chromosome geometry is approximated by using a
random walk rule and a random number generator to
place the monomers at the points (X,Y,Z) of a cubic lat-
tice. X, Y, and Z are integers, and a length scale L for the
distance between nearest neighbors is implied. For in-
stance, for the data considered below, we will estimate L
to be about 50 nm. The random walk rule is that if one
monomer is at (X,Y,Z), the next monomer has a location
given by one step of the random walk, with probability
1/6 for each of the 6 nearest neighbors, i.e., a 1/6 chance
of being at (X+1,Y,Z) 1/6 for (X–1,Y,Z), etc.

Radiation tracks

For alpha-particles at LET ≈100 keV/µm, a radiation
track is modeled as follows. It is assumed that the track
follows a lattice line in the Z-direction and has probabili-
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ty p of placing one DSB on any monomer that has a
matching set of (X,Y) coordinates. For example, one track
might have a chance p=0.5 of making one DSB on any
monomer located at any lattice site of the form (20, 30,
Z), where Z is an arbitrary integer. The probability of one
track making more than one DSB on one monomer is tak-
en as zero; this amounts to saying that two or more one-
track DSBs spaced at less than the monomer scale of sev-
eral kilobase-pairs are not resolved, being counted as a
single DSB in our calculation for larger-scale fragments.

It is in effect assumed that no DSBs are made at a
distance more than L/2 from the track center. For
≈100 keV/µm alpha-particles, whose tracks have a core
radius <1 nm and a penumbra maximum radius of
≈71 nm [8, 12], this is a reasonable approximation for a
coarse-grained approach. The single adjustable parame-
ter p replaces the complicated details of the track struc-
ture and radiochemistry much as random walk parame-
ters like L and N replace complicated molecular details
of DNA and chromatin.

Multitrack action and periodic boundary condition boxes

DNA fragment-size distributions for multitrack action
are obtained by Monte Carlo computations, in the fol-
lowing steps: simulation of a chromosome as a random
walk; simulation of irradiation; recording the sizes of the
resulting fragments; and then repeating simulation many
times (e.g., at least 10,000) with different random walks
for Monte Carlo averaging.

The simulation of irradiation assumes that tracks
strike lattice locations in the (X,Y) plane at random. For
example, the number of tracks hitting an A×A square
[e.g., with corners (1,1), (A,1), (A,A), and (1,A)] is as-
sumed to be Poisson distributed; the average of the Pois-
son distribution is taken to be proportional to A2 and to
radiation dose; and if the number of tracks that hit the
square in simulating a particular irradiated chromosome
is m (chosen probabilistically in accordance with the
Poisson distribution), then each of the m tracks is equally
likely to hit any of the A2 sites, independently of what
the other m–1 tracks do. Figure 1 shows a schematic ex-
ample.

In the multitrack simulations, PBC boxes of 100×100
in the (X,Y) plane were used for computational conve-
nience. That is, the number and location of tracks in one
PBC box were determined as described above, with
A=100, and then extrapolated periodically over the entire
(X,Y) plane. Use of PBC boxes for radiation is an exten-
sion of a standard trick [30]. In the present calculation, it
means some artificial correlations in number and loca-
tion for tracks located far apart; however, sample calcu-
lations with larger values of A, up to 1000, showed that
with A>100 the results do not depend on A significantly,
i.e., the artificial correlations with periodicity 100 lattice
units have a negligible effect.

Once simulated irradiation of a chromosome has been
finished, the number of fragments of a given size j is

counted, where j=0,1, ..., N, N=52,500. Here j=0 corre-
sponds to the situations, possible though quite rare at the
doses of interest, in which two or more tracks each make
one DSB on the same monomer, and size 0 is interpreted
as any size smaller than the monomer size, ρ, of several
kilobase-pairs. For example, suppose there is one DSB
on monomer 20, two DSBs on monomer 26, and one
DSB on monomer 36. Then for the fragments between
adjacent DSBs we count the respective sizes 6, 0, 10.
Size N corresponds to an intact chromosome.

Repeating simulated irradiation for many chromo-
somes and averaging give the cumulative size probabili-
ty Bj, i.e., the probability that a fragment has size ≤j.
Here Bj≤1 and BN=1. The average number of DSBs per
chromosome is also computed.

Telomere effects

Most of the DNA fragments determined in the multitrack
simulations have DSBs at both ends. However, a few
fragments have a telomere at one end, and there is even a
theoretical possibility (with negligible probability at the
doses considered here) of an intact chromosome, with
telomeres at both ends. Thus, the multitrack simulations
systematically incorporate ‘telomere effects’ [14, 27],
i.e., effects due to the finite size of a chromosome. In
most of our calculations, telomere effects are small; for
example, we consider below data for 100 Gy of alpha-
particles acting on V-79 cells and estimate that in this
case less than 1% of the fragments has a telomere at one
end, rather than DSBs at both ends. Throughout we as-
sume for simplicity that all chromosomes have the same
size S, equal to the average V-79 size, S=245 Mbp. Be-
cause the telomere effects are small, using other reason-
able chromosome sizes would not affect the overall con-
clusions.

One-track distributions and RLC formalism

The DNAbreak multitrack simulations are sufficient for
direct comparisons with experiments. However, the sim-
ulations are also useful as examples of RLC formalism,
and that formalism can be used to check the DNAbreak
code. Descriptions of one-track DSB patterns are needed
for comparing the multitrack simulations with RLC for-
malism. As discussed in the Appendix, two quantities are
needed: the one-track fragment-size distribution neglect-
ing telomere effects and the average number of DSBs per
one-track DSB cluster. Taking advantage of the facts that
a random walk has no memory and that a two-dimen-
sional random walk is recurrent (returns to its starting
place sooner or later with probability 1), Monte Carlo
simulations for one-track fragment-size distributions
were carried out as follows.

A three-dimensional random walk is started with
monomer no. 1 located at lattice site (1, 1, 1) and runs
until it either returns in two dimensions, i.e., to a lattice
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site of the form (1, 1, Z), or reaches a cutoff monomer
number J≥N; we here took J=N=52,500. If the walk re-
turns in two dimensions at monomer k<J, there is proba-
bility p of having a second DSB, in which case the frag-
ment size is recorded as j=k–1 and the run is broken off.
Otherwise, with probability 1–p, the walk is continued,
starting with monomer k at (1, 1, Z). Iterating, one even-
tually either reaches a second DSB at monomer number
k'≤J and records the fragment size k'–1, or one reaches
monomer number J and the run is terminated. Repeating
the whole procedure, e.g., 10,000 times, one obtains the
frequencies gj for fragments of length, j, j=1, 2, ..., J–1.

Regarding a cluster as terminating whenever a seg-
ment of size ≥J occurs, a renormalization factor C, the
one-track fragment-size distribution fj, and the cumula-
tive fragment-size distribution Fj are taken to be:

(1)

In this construction, the average cluster multiplicity M
can be deduced from C, as follows. Consider the left-
most DSB in a cluster. We note that (1–C) is the proba-
bility of having a fragment ending at j≥J. To have such a
fragment is the same as having exactly one DSB in the
cluster. The probability of having exactly two DSBs is
(1–C)C. The probability of having exactly three DSBs is
(1–C)C2, and so on. Each of these probabilities should be
multiplied by the cluster multiplicity. Therefore, the av-
erage cluster multiplicity is

M=1–C+2(1–C)C+3(1–C)C2+...=1/(1–C) . (2)

A check on the entire construction is to regard the one-
track cumulative distribution Fj as a discrete version of
F(s) in RLC formalism (Appendix). Then the results
should be independent of J provided J≥N. It can be
proved that this independence in fact holds (calculation
not given).

One-track distributions with telomere effects included

The one-track fragment-size distribution Fj obtained by
the above methods describes only fragments which have
DSBs at both ends, not a telomere at one end (or both),
and is the distribution needed in the RLC formalism
(Appendix). For comparison, and to have some examples
available for intuitive estimates, one-track clusters with
telomere effects included were also generated, as fol-
lows. In a random walk of 52,500 monomers, a mono-
mer was chosen at random and a track was put through
that monomer and therefore through all other monomers
with the same (X,Y) coordinates. The resulting DSB dis-
tribution on the chromosome was recorded. Figure 1
shows some examples.

Cross-checks

With any computational software, it is important to have
benchmarks [30], i.e., independent ways of checking that
the program is working properly, without bugs, and that
the underlying algorithms are consistent and reasonable.
For DNAbreak, the following cross-checks were used.

For a one-dimensional random walk, explicit forms
for the return probability (essentially gj in the case p=1)
are known [41], with gj~j –3/2 for large j. These forms
were checked successfully against gj calculated by a one-
dimensional version of the one-track Monte Carlo pro-
gram described above. For two or three dimensions, pre-
cise checks are possible, at least for small j, using analyt-
ic information on the generating function for gj [43, 46],
and these checks were successfully carried out.

In the three-dimensional case, fragment sizes are de-
termined by the two-dimensional projection of a three-
dimensional random walk onto the XY plane. Asymptoti-
cally (at large j), fragments correspond to two-dimen-
sional random walks with average size (2/3)j. The asym-
ptotic behavior of gj for p=1 can thus be deduced from
results on two-dimensional random walks [43] as 
gj~1/(j ln2 j). This equation was also confirmed by a nu-
merical experiment. The best fitting asymptotic line in a
plot of ln(gj ln2 j) against ln j for a very extensive set of
numerical data with p=1 was found to have the slope
–0.97±0.01, close to the theoretical value of –1. A simi-
lar result appears to hold for p<1.

Additional cross-checks were obtained by comparing
the multitrack simulations with RLC formalism in sever-
al ways, as described in the next section.

Results

We discuss the results, first parameter choices in multi-
track simulations and then comparisons of multitrack
simulations for alpha-particles with observations of irra-
diated V-79 cells [4]. The way in which the simulations
exemplify RLC formalism is described next, and then
some benchmarks are considered. Finally, some predict-
ed dose-response curves are discussed and compared to
the data.

Parameters

As described in the Methods section, the parameters
used for the multitrack simulations are the following: the
number N of monomers per chromosome; the nearest
neighbor monomer spacing ρ; the distance L between
lattice sites; the length A of one side of a PBC box; the
average number β of tracks per lattice site; and the prob-
ability p a track makes a DSB when it intersects the
chromosome, with 0≤p≤1. Here ρ is measured, e.g., in
kbp; L has units of length, e.g. nm; the other parameters
are dimensionless. There are two relations among these
six parameters, and it was also found by numerical ex-
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periments that certain changes in the parameters leave
the results essentially unchanged, apart from discrete-
size effects which apply to very small sizes [42]. Over-
all, two relations and two invariance transformations for
six parameters mean that there are essentially only two
independent parameters.

The two relations are:

LET · β /L2=D · density,    ρ=S/N (3)

Here LET, dose D, and density are all measured in some
consistent set of units, and S is again the size of a chro-
mosome.

The two invariance transformations of the parameters
and their interpretations are the following. First, increas-
ing A above 100 and leaving all the other parameters in-
variant has no perceptible effect. The interpretation is that
the use of a PBC box is practically equivalent to assuming
an indefinitely large plane being struck by the radiation, as
one needs for the validation of the PBC box approach.

Second, suppose N is increased, ρ is decreased with
ρN constant, A is increased with A2/N constant, β is de-
creased with β N constant, L is decreased with L2 N con-
stant, and p is held constant. Then there is no change in
the simulation results except for very small sizes. The in-
terpretation is that choosing a finer mesh for the chroma-
tin random walk, and a correspondingly finer mesh for
the lattice, does not change the results except at the scale
of about one mesh unit.

Comparison of multitrack simulations to experiments

This leaves us with two adjustable parameters, which we
take to be the intensity of radiation β at 100 Gy (the av-
erage number of tracks striking one lattice site, here
much less than 1) and p, the probability of creating a
DSB when a monomer is hit by a track. By varying β
and p in the multitrack simulation, the best least-square
two-parameter fit was found for the empirical data ob-
tained for V-79 cells irradiated by 100 Gy of alpha-parti-
cles. The fit exhibits acceptable agreement with the data
(Fig. 2A). The parameters for the best fit, p=0.75, β
=0.0143, were found in the simulations to give about
0.026 DSBs per Mbp per Gy. As discussed above, in the
case of a one-track locally or regionally multiply dam-
aged site on a scale less than 4.7 kbp, only one DSB is
counted as contributing to 0.026 DSBs/(Mbp Gy). If we
count adjacent DSBs (made by the same or different
tracks) which are separated by fragments of size two
monomers or less (i.e., ≈9 kbp or less) as a single DSB,
to take into account the lower limits of resolution of the
experiment and of the calculation, the DSB number de-
creases to about 0.019 DSBs/(Mbp Gy).

Inserting the value of β into Eq. (3) gives the dis-
tance L between nearest neighbor lattice sites as L≈
50 nm. Thus, in the present calculation, the value of L is
determined from a fit to the data. L in turn can be used to
characterize the chromosome geometry. For large j, the
average end-to-end distance for a segment of j mono-

mers is j1/2L [47]. For a 1-Mbp DNA segment, the corre-
sponding end-to-end distance is about 0.7 µm. For a
whole chromosome, one obtains about 12 µm.

Also shown in Fig. 2A for comparison is a two-
parameter fit previously given [27], based on RLC for-
malism (Appendix) with a one-track fragment-size distri-
bution chosen as Weibull for mathematical convenience.
It shows fewer small fragments (<200 kbp), more inter-
mediate-size ones (between 200 kbp and 6 Mbp), and
fewer large ones (>6 Mbp); intuitively speaking, it is
thus less clustered. The two fits are comparable in quali-
ty. The third curve in Fig. 2A is a one-parameter fit using
the standard random-breakage model. Symptomatic of
the fact that DSBs are clustered, not random, this third
fit is much less accurate than the other two.
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Fig. 2 Comparison of the empirical data to models. In A, the size-
fraction, in percent, of DNA is shown plotted against DNA frag-
ment-size bins (in Mbp) on a log-log plot. The boxes are experi-
mental data [4] for V-79 cells, irradiated with 100 Gy of He-4
ions. The best fit obtained from multitrack DNAbreak simulations,
with adjustable parameters β=0.0143 tracks per lattice site and
DSB probability p=0.75, is shown as the solid line. The fit is
about as good as the two-parameter fit [27] previously obtained
using RLC formalism (dashed line), based on a Weibull fragment-
size distribution function (chosen ad hoc). The dot-dashed line is
the best (one-parameter) fit for the random-breakage model (Ap-
pendix), which disregards complex cluster structure, with λ
=0.0056 DSB per Mbp. In B, a cross-check, described in the text.
Solid curve repeats the multitrack simulation from A. Dashed
curve was obtained using one-track simulations and the RLC for-
malism. Near agreement is seen. The discrepancies at small sizes
are due to discrete-size artifacts (see text). Those at larger sizes re-
sult from the fact that only a finite number of runs are made dur-
ing the simulations



Multitrack simulations compared to the RLC formalism

The DNAbreak software was cross-checked using the
RLC formalism. Using the parameter p=0.75, deter-
mined from the comparison of the multitrack simulations
to experiment, the distribution gj of Eq. (1) was calculat-
ed as described in the Methods section, with the results
shown in Fig. 3. The fragment-size distribution Fj and
the one-track cluster multiplicity M were then calculated
from Eq. (1). Fj was interpreted as the discrete approxi-
mation to the one-track cumulative fragment-size distri-
bution function F(s) of the RLC formalism (Appendix).
The RLC parameter λ (Appendix) was taken as 1/M
times the average number of simulated DSBs per unit
size, determined by simulations for the above parameter
values p=0.75 and β=0.0143.

Given F(s), M, and λ, the RLC formalism determines,
via Eq. (4), corresponding DNA fractions for the given
size bins. Figure 2B shows the comparison of these frac-
tions to the fractions obtained from the multitrack simu-
lations. As required for consistency, there is agreement
within the accuracy of the calculations.

Proportionality of β and dose

Conceptually, β, the average number of tracks per lattice
site in the (X,Y) plane, should be directly proportional to
dose. This expectation was checked as follows. Let P be
the probability that a given stretch of chromatin contains
no DSBs. A proportionality between lnP and dose is
found experimentally [2], predicted by the random-
breakage model [29], and predicted by the RLC formal-
ism [27]. The DNAbreak multitrack simulations showed

that lnP is proportional to β, i.e., that choosing β propor-
tional to dose is consistent.

Dose-response relations

With the parameter p fixed as described in the caption to
Fig. 2, the multitrack simulations determine the dose-
response relations for fragment-size distributions. The
relations are obtained by taking β proportional to dose.
Examples of dose-response relations are shown in Fig. 4.
For sufficiently low doses, the relations are linear, but
they become nonlinear when the dose is high enough for
significant overlapping or close juxtaposition on a chro-
mosome of different one-track DSB clusters.

Discussion

Review

In the present paper, we used Monte Carlo simulations
for a geometric model of chromatin on large scales and a
corresponding track-structure model, to analyze DNA
fragment-size distributions after high-LET radiation. The
approach was coarse-grained: chromatin was represented
by a random walk, in which all molecular details are hid-
den behind ρ, the number of base-pairs per monomer.
Similarly, details of the track structure and radiochemis-
try were hidden behind an adjustable parameter p, the
probability that a DSB will be created if a track hits the
chromatin. Such an approach has a number of weakness-
es, some of which are discussed below, but it can cope
with two high-LET phenomena which have not been ad-
equately analyzed up to now: high-LET DSB clustering
at large chromatin scales, up to the full length of a chro-
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Fig. 3 Fragment sizes. The one-track fragment-size distribution gj
with p=0.75 for a 3-dimensional random walk, found by DNA-
break simulations described in the text, is shown (stars). The
choice of vertical axis was suggested by the asymptotic behavior
for large j discussed under ‘cross-checks’ in the Methods section.
The standard error of each computer-generated point is of the or-
der of the fluctuations seen on the figure. For comparison, a curve
for the standard random-breakage model, which assumes each
track makes at most one DSB, is also shown (pluses). The parame-
ter of the random-breakage model was adjusted to give the same
average number of DSBs. It is seen that the random-breakage
model predicts fewer small and more intermediate-size fragments

Fig. 4 Predicted dose-response curves for two different fragment-
size bins. The percentage of DNA in each size bin is plotted vs
dose. Squares show sizes in the bin 1.0–1.8 Mbp. It is seen that for
relatively small doses, the response is linear. There is superlinear
behavior (i.e., upward curvature) at somewhat larger doses, due to
several tracks cooperating in making fragments of the appropriate
sizes for this bin. For still larger doses, the predicted response lev-
els off and ultimately decreases, as multiple tracks cooperate to
cut the chromatin into sizes smaller than those in this bin. Circles
show the relation for small sizes in a bin 20–60 kbp. Also shown
are experimental points for the two different size bins, from the V-
79 data [4]



mosome (e.g. Fig. 1); and dose-dependent, nonlinear,
multitrack DNA fragment-size distributions (e.g., Fig. 4).

Using the DNAbreak software, multitrack DSB pat-
terns and the associated fragment-size distributions were
determined, compared to experiments, and compared to
other models (Fig. 2). Dose-response relations were de-
termined (Fig. 4). The Monte Carlo simulations were
cross-checked in a number of ways (e.g., Fig. 2B), there-
by validating the DNAbreak software to a large extent,
and also supplying a specific example of RLC formal-
ism. As discussed in the Appendix, it was found that in
this example, one of the main approximations of RLC
formalism, statistical independence of different clusters,
holds to high accuracy but not exactly.

Some numerical results

Agreement with experiments was adequate, but for al-
pha-particles the estimated total number of DSBs per
Mbp per Gy is larger than in other models (e.g., [4, 14]),
corresponding to an overestimate of the number of com-
paratively small fragments (Fig. 2A). Presumably, the
reason is that a random walk doubles back very frequent-
ly at small scales; in other words, the data suggest that
the persistence length of the chromatin fiber may be con-
siderably larger than 5 kbp.

The fit to the data gave the average end-to-end dis-
tance of a 1 Mbp stretch in a V-79 chromosome as about
0.7 µm. This estimate is roughly in line with direct, non-
radiobiological determinations of chromatin scale (e.g.,
[26]). It is substantially larger than the diameter estimate
of 0.4 µm for a region containing several Mbp, recently
made for V-79 cells with different radiations and a dif-
ferent model [5]. The corresponding average end-to-end
distance for a whole V-79 chromosome is unexpectedly
large, about 12 µm. We can suggest a plausible reason
for this large value. In our calculation, the chromatin
scale is determined mainly by data near 1 Mbp or less.
However, at still larger scales, the spreading out of chro-
matin appears to be decreased by very large-scale loops
or other structure [26, 48]. This feature would have com-
paratively little influence on the data, due to the upper
cutoff on DNA that escapes from the plug. Thus, our es-
timate of total chromosome size, based on extrapolations
from the 1-Mbp scale, is apparently an overestimate.

Limitations

The present approach has a number of problems and lim-
itations. One limitation, intrinsic to the entire coarse-
grained approach, is similar to that of corresponding ap-
proaches to polymer physics: Small-scale phenomena,
here phenomena on a chromatin scale substantially less
than ~10 kbp and/or a spatial scale substantially less than
≈100 nm, are not adequately treated. It would be possi-
ble to make the mesh finer, as pointed out at the start of
the Results section, and this would not noticeably strain
CPU resources. There would be no real gain, however,

because then we would be approximating chromatin as a
random walk on a scale where it behaves much more like
a stiff rod instead. In addition, a main feature of the pres-
ent analysis, the systematic interrelation of multitrack
action with one-track action, becomes irrelevant at these
small scales, where, for high LET, one-track action dom-
inates at even the largest doses used in practice. Thus,
when considering comparatively small sizes, one of the
much more detailed approaches (e.g., [8, 16, 17, 22]),
which consider geometry of tracks and chromatin on na-
nometer and subnanometer scales, is superior to the pres-
ent approach. The situation closely parallels the situation
in polymer physics, where one must interrelate a coarse-
grained with a molecular approach (e.g., [49]).

Some other limitations are less basic and could perhaps
be removed by extensions of the formalism without in-
creasing the number of adjustable parameters. Chromatin
at the largest scales should perhaps be represented by a
self-avoiding walk, corresponding to chromatin-chromatin
interactions [47, 48], and/or with loops of somewhat less
than 100 kbp [16], and/or loops on much larger scales of
>1 Mbp [26, 32, 39], and/or as a constrained polymer
[34]. All these extensions are technically feasible using
standard polymer methods [30], provided enough detailed
biological information becomes available.

The limitation, discussed in the Methods section, that
a track creates no DSBs beyond a distance L/2 from the
track center is not very onerous in the case considered
here, where more than 90% of the alpha-particle energy
is deposited within such distances [35]. In the framework
of a coarse-grained approach, this limitation could be re-
moved, without increasing the number of adjustable pa-
rameters, by allowing for a profile of probabilities sur-
rounding the track center, based on the known energy
profile of a track penumbra [8].

Conclusions

In addition to locally and regionally multiply damaged
DNA sites, globally multiply damaged sites also occur at
high LET. They can be analyzed by assuming polymer
models of chromatin. This leads to a coarse-grained ap-
proach, not useful for small DNA fragment sizes but ca-
pable of dealing at least approximately with size scales
spanning more than four orders of magnitude. The analy-
sis gives the patterns for one-track DSB clusters and a
systematic way to see what happens when different DSB
clusters, from different tracks, overlap or come close to
overlapping. It supplies a specific, fairly realistic exam-
ple of a very general, RLC, formalism. It also helps re-
late the high-dose experimental data to the one-track ac-
tion of primary interest in such applications as biodosim-
etry, or risk estimation for carcinogenesis.
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Appendix: RLC formalism

Cluster intensity

The RLC formalism [27] considers situations in which one track
can make a cluster of DSBs on one chromosome. For multitrack
irradiation, consider the average number, λ, of such one-track
clusters per unit size of the genome. λ, called the cluster intensity,
is directly proportional to dose. The RLC formalism uses low-
dose, one-track, one-cluster properties, corresponding to a very
small cluster intensity λ, to derive multitrack, multicluster effects
occurring at higher values of λ.

The basic pattern of the argument is somewhat similar to the
microdosimetry argument [1], which derives a multitrack, dose-
dependent specific energy distribution f(z,D) from a (dose-inde-
pendent) one-track specific energy distribution f1(z). However, the
detailed arguments are quite different [27]. Mathematically, the
RLC formalism uses the stochastic point processes called station-
ary Poisson cluster processes, which have been studied extensive-
ly over the years [50, 51].

Properties of individual clusters

For the moment, consider only DNA fragments from those chro-
mosomes which are hit by just one track, so by assumption there is
one and only one cluster, containing one or more DSBs, on the
chromosome. For a small enough λ, virtually all damaged chro-
mosomes would obey this criterion. Temporarily ignore telomere
effects, i.e., imagine a one-track DSB cluster near the middle of a
long chromosome, and consider only DNA fragments with DSBs
at both ends, rather than a telomere at one or both ends. Telomere
effects are put into the formalism later. Thus, for the time being,
any DNA fragment considered has a DSB at each end, both com-
ing from the same cluster made by one radiation track.

There will be a certain average cluster multiplicity M≥1. M is
one more than the average number of DNA fragments per one-
track cluster. Moreover, suppose one chooses a DNA fragment at
random, where the choice is from among all the one-cluster frag-
ments, as described above, i.e., the chances of using a particular
cluster is proportional to the number of fragments in that cluster.

There will be a certain probability F(s) that the fragment has a
size less than or equal to s. Here F is a cumulative probability
function, with F(0)=0 and F(s)=1 for a sufficiently large s. Given
F and the size of a chromosome, the actual one-track cluster distri-
bution, with telomere effects included, is readily obtained [27].
We shall assume for simplicity that all chromosomes have the
same length, which we designate by S. The case of chromosomes
having various lengths is similar and involves no new ideas.

RLC equations

The RLC equations determine multitrack action in terms of the
cluster intensity λ, one-track cluster multiplicity M, one-track
cluster size distribution F(s), and chromosome size S. The result
needed for the main text is the equation giving Φ, the DNA frac-
tion (by size, i.e., by DNA content) for those DNA fragments that
have sizes in the range S1 to S2, where S1<S2≤S. Φ is given by
[27]:

(4)

Here            and, for any function k(s), [k(s)]2
1 denotes

k(S2)–k(S1). Equation (4) involves the dose only via λ; the value of
λ for 1 Gy, i.e., the number of one-track DSB clusters per unit ge-
nomic size per unit dose, is usually taken as an adjustable parame-
ter. The basic one-track quantities F and M are in principle given
by some track-structure/chromatin-geometry model, such as the
DNAbreak one-track simulations.

The function b(s), defined by taking b(S1) as the limit of
Φ/(S2–S1) when S2 ← S1, is the multitrack, dose-dependent, frag-

ment-size distribution, i.e., the relation of b(s) to dF/ds is analogous
to the relation [1] of f(z,D) to f1(z) in standard microdosimetry.

Setting M=1 in RLC equations such as Eq.(4), i.e., assuming
that one track makes at most one DSB on one chromosome, gives
the broken-stick equations, depending only on λ and S, of the fa-
miliar random-breakage model, often applied to low LET [28, 29].
In particular, Eq.(4) becomes

Φ = –[[sλ[1–(s/S)]+1]exp[–λs]]2
1 (5)

Equations (4) and (5) are the results needed for the present paper.

Cluster correlation effects

RLC formalism assumes that different one-track DSB clusters on
the same chromosome, due to different tracks, are statistically in-
dependent [27]. DNAbreak allows one to estimate the actual mag-
nitude of correlations between different clusters, as follows. In the
multitrack simulations described in the Methods section, all hits
produce DSBs on one particular chromatin configuration, and it is
this commonality which produces some correlations between dif-
ferent clusters. We found that these correlations are present, but
are small, by comparing to a simulation where chromatin ‘moves’
between track arrivals so that every successive hit occurs on re-
randomized chromatin. In a multitrack simulation, one introduces
the tracks one at a time and, before each successive track is simu-
lated, simulates a new random walk configuration for the chromo-
some (carrying along whatever DSBs the chromosome already
has). Then different one-track DSB clusters are completely inde-
pendent of each other, since tracks and rearranged chromatin are
both independent.

Specifically, let us introduce a quantity that measures the rela-
tive deviation of the cumulative fragment-size distribution Bj for
the moving and fixed chromatin:

(6)

It was found that ∆ is systematically slightly less than zero for
small values of j and slightly greater than zero for intermediate
values of j, but for the parameters used in Fig. 2A, its magnitude is
substantially less than 1% at all j, i.e., much less than typical un-
certainties in the data. Thus, intercluster dependencies, in contrast
to intracluster dependencies, are negligible in the special example
of RLC formalism given by DNAbreak.
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