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Abstract As the number of cancer survivors grows,

prediction of radiotherapy-induced second cancer risks

becomes increasingly important. Because the latency per-

iod for solid tumors is long, the risks of recently introduced

radiotherapy protocols are not yet directly measurable. In

the accompanying article, we presented a new biologically

based mathematical model, which, in principle, can esti-

mate second cancer risks for any protocol. The novelty of

the model is that it integrates, into a single formalism,

mechanistic analyses of pre-malignant cell dynamics on

two different time scales: short-term during radiotherapy

and recovery; long-term during the entire life span. Here,

we apply the model to nine solid cancer types (stomach,

lung, colon, rectal, pancreatic, bladder, breast, central

nervous system, and thyroid) using data on radiotherapy-

induced second malignancies, on Japanese atomic bomb

survivors, and on background US cancer incidence.

Potentially, the model can be incorporated into radiother-

apy treatment planning algorithms, adding second cancer

risk as an optimization criterion.

Introduction

Ionizing radiation is a well-known cytotoxic and carcin-

ogenic agent. As such, it is effective as a treatment for

cancer, but can also induce secondary malignancies

(Travis et al. 1996, 1997, 2002, 2003, 2005; van Leeuwen

et al. 2003). As more patients undergo cancer radiother-

apy and live longer after treatment, the number of cancer

survivors has tripled over the past three decades and

continues to increase, reaching more than 10 million in

the US (Editorial 2004). The lifetime risk of radiation-

induced second cancers in these individuals is not negli-

gible (e.g. Brenner et al. 2007), and these second cancers

can result in high mortality and morbidity—for example,

breast cancer radiotherapy can cause lung cancer (see

below), and lung cancer has a poor prognosis. Conse-

quently, second malignancies induced by radiotherapy are

becoming a growing concern (Brenner et al. 2000; Ron

2006). This is the case particularly for patients irradiated

in childhood, who have a long life expectancy during

which second cancers can develop, and in whom the

relative risk of some radiogenic second cancers is on the

order of 10–100 (Ron 2006; Ronckers et al. 2006; Neglia

et al. 2006).

It has only recently become apparent (Lindsay et al.

2001; Sachs and Brenner 2005) that even at high radiation

doses—tens of Gy—radiation-induced cancer risk remains

substantial, presumably due to cellular repopulation,

instead of dropping essentially to zero due to cell inacti-

vation (killing), as was previously thought (Bennett et al.

2004; Dasu et al. 2005). Thus, tissues surrounding the

tumor, which unavoidably receive doses not much smaller

than the prescribed treatment dose, may be a source of

much of the second cancer risk attributable to radiotherapy

(Hodgson et al. 2007; Koh et al. 2007).
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A reasonable approach to minimizing radiation-induced

second cancers would be to compare radiotherapy proto-

cols of equal efficacy against the primary tumor, and

identify the ones with the lowest second cancer risk.

However, because the latency period for radiation-induced

solid tumors is long (e.g. Tokunaga et al. 1979; Brenner

et al. 2000; Ivanov et al. 2004, 2009), the carcinogenic

effects of radiotherapy have been directly measured only

for regimens used several decades ago. The risks that may

be associated with newer treatment methods are for the

most part not yet observable. Biologically motivated

mathematical/computational models, calibrated using data

from older protocols, can address this problem by pre-

dicting risks of current/prospective treatment regimens.

In the accompanying article (Shuryak et al. 2009), such a

model is presented. To our knowledge, the model is the first

comprehensive attempt to integrate a detailed analysis of

pre-malignant cell dynamics during the comparatively short

period of radiotherapy with a long-term model of carcino-

genesis over the entire human life span. By comparison,

existing models either emphasize the long-term processes

and make simplistic assumptions about short-term ones (e.g.

Armitage and Doll 1954; Moolgavkar 1978, 1980; Armitage

1985; Moolgavkar and Luebeck 2003), or vice versa (e.g.

Upton 2003; Sachs and Brenner 2005; Shuryak et al. 2006;

Sachs et al. 2007). A formalism that integrates both time

scales is advantageous in terms of biological realism and

should increase the accuracy of predictions.

In the accompanying article, the focus was on biological

assumptions and mathematical implementation. Here, we

apply our model specifically to the task of predicting

radiotherapy-induced cancers, using second cancer data for

nine solid cancer types—stomach, lung, colon, rectal,

pancreatic, bladder, breast, CNS (central nervous system),

and thyroid—in patients treated by radiotherapy for various

primary cancers. Some of the model parameters are

obtained from fitting radiogenic risks at comparatively low

doses for Japanese atomic bomb survivors, or from back-

ground US cancer incidence data.

Materials and methods

Model

The model used emphasizes initiation, either by radiation

or by spontaneous processes, of normal stem cells to

produce pre-malignant stem cells, the cell kinetics of

pre-malignant stem cells, and their transformation into

malignant cells; it assumes the pre-malignant (i.e. initiated)

cells to reside in stem cell niches or compartments, referred

to generically as ‘‘niches’’; and it emphasizes those niches

that are ‘‘fully pre-malignant’’, i.e. containing as many pre-

malignant stem cells as the niche carrying capacity allows.

The model uses a total of 11 parameters, which were

introduced in Table 1 of the accompanying article (Shuryak

et al. 2009). Three parameters, which characterize spon-

taneous stem cell initiation and subsequent malignant

transformation (a, units = time-2), pre-malignant niche

replication (b, units = time-1), and age-dependent stem

cell senescence (c, units = time-2), can be determined

with relatively high precision from background cancer

incidence. Seven other parameters describe radiation-rela-

ted effects: constants X (units = time 9 dose-1) and Y

(units = dose-1) characterizing the dose-dependences of

initiation and promotion, respectively; a parameter for

homeostatic regulation of the number of pre-malignant

stem cells per niche d (units = time-1); the carrying

capacity, Z (units = cells 9 niche-1), for the number of

pre-malignant stem cells in a niche; the stem cell radiation-

inactivation constants a (units = dose-1) and b (units =

dose-2); and the maximum net stem cell repopulation rate

Table 1 Best-fit parameter values for background incidence of all analyzed cancer types

Cancer Sex a 9 10-8 (years-2) b (years-1) c 9 10-3 (years-2)

Stomach M 0.402 (0.380, 0.425) 0.222 (0.219, 0.226) 1.10 (1.08, 1.14)

Lung M 0.00291 (0.0028, 0.0030) 0.460 (0.459, 0.462) 2.91 (2.89, 2.92)

Colon M 1.78 (1.57, 2.10) 0.204 (0.197, 0.208) 0.944 (0.892, 0.985)

Rectum M 1.01 (0.852, 1.49) 0.217 (0.201, 0.224) 1.23 (1.09, 1.28)

Pancreas M 0.0732 (0.0397, 0.255) 0.293 (0.156, 0.315) 1.67 (0.174, 1.85)

Bladder M 0.0600 (0.0600, 0.0601) 0.282 (0.279, 0.283) 1.54 (1.51, 1.56)

Breast F 58.1 (55.6, 60.2) 0.199 (0.197, 0.201) 1.35 (1.34, 1.37)

CNS Both 0.243 (0.230, 0.259) 0.257 (0.254, 0.260) 1.66 (1.61, 1.68)

Thyroid Both 120 (105, 124) 0.0768 (0.0740, 0.0872) 0.669 (0.646, 0.770)

Parameter interpretations are: a proportionality constant for spontaneous stem cell initiation, b pre-malignant niche replication rate, c age-

dependent pre-malignant stem cell senescence constant

The numbers in parentheses represent the 95% confidence intervals for the corresponding parameter
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k (units = time-1). The last parameter—the lag period

from the appearance of the first fully malignant cell until

development of cancer, L (units = time)—can be esti-

mated from the literature.

The equation for the mean expected number of new fully

malignant cells per individual per year under background

conditions (Abac, units = time-1), which is an approxima-

tion for the cancer incidence hazard function L years later,

was derived in the previous article. It is repeated below,

using the notation where age is defined as the sum of age at

exposure (Tx) and the time after exposure (Ty):

Abac ¼ ða=bÞðexp½bðTx þ TyÞ� � 1Þ exp½�cðTxþ TyÞ2�
ðEq: 6 in Shuryak et al: 2009Þ

For data fitting, the exact hazard defined as H =

A/(1�
R t

0
A du) is used, but we use the simpler expression

for A in the equations below, keeping in mind its interpretation

and limitations.

The expression for the radiogenic excess relative risk

(ERR) was also derived previously and is repeated below,

where D is the total radiation dose, Sf(Z, D) is the proba-

bility that a pre-existing fully pre-malignant niche survives

radiation, i.e. that not all the pre-malignant stem cells in the

niche are inactivated, and ISf(D) (units = dose) represents

a net outcome of initiation, inactivation, and cell repopu-

lation (iir) during radiation exposure:

ERR ¼ ½ðQ1Q2 þ Q3Þ=Q4� � 1; where

Q1 ¼ ð1þ YDÞ=½1þ YDð1� exp½�dTy�Þ�;
Q2 ¼ ½ðexp½bTx� � 1ÞSf ðZ;DÞ þ bX ISf ðDÞ� exp½b Ty�;
Q3 ¼ exp½b Ty� � 1; Q4 ¼ exp½bðTx þ TyÞ� � 1

ðEq: 15 in Shuryak et al: 2009Þ

For a single-dose acute exposure, where there is no cell

repopulation during irradiation, the functions ISf(D) and

Sf(Z, D) simplify to the following expressions: Sf(Z, D) =

1 - (1 - exp[–aD - bD2])Z and ISf(D) = D exp[–aD -

bD2]. For multi-fraction radiotherapy protocols, where

substantial repopulation occurs between dose fractions,

these functions are evaluated by the stochastic process

formalism described in detail in the previous article.

As noted in the previous article, the term Q2 in Eq. 15 of

(Shuryak et al. 2009) is proportional to the number of fully

pre-malignant stem cell niches shortly after exposure; Q1 is

the normalized size of such a niche, which can differ from

the background carrying capacity Z due to radiation-pro-

motion effects; Q3 is proportional to the number of new

niches spontaneously initiated, after exposure/recovery, by

endogenous processes independent of radiation; and Q4 is

proportional to the total number of fully pre-malignant

niches under background conditions. The parameters a and

c cancel out of the ERR expression.

Data used

Here the model is applied by fitting it to data on nine

cancer types: stomach, lung, colon, rectal, pancreatic,

bladder, breast, CNS, and thyroid. These particular types

were selected because for them radiation-induced ERR

data are available both at comparatively low doses (ERR/

Gy estimates based on Japanese atomic bomb survivors)

and at high doses—second cancer ERRs estimated for

patients treated with radiotherapy for existing malignan-

cies, with at least two different high-dose points. There is a

large body of second cancer data, and detailed comparisons

to data on the atomic bomb survivors have been made

previously (e.g. Little 2001). For our present purposes, the

multiple dose points criterion for second cancer data was

important because the analysis presented here was inten-

tionally focused on modeling the shape of the radiation

dose response at high doses.

The low-dose ERR/Gy estimates at attained age 70 and

various ages at exposure were taken from an analysis of

atomic bomb survivors by Preston et al. (2007), Tables 11

and 12. Gender-averaged ERR/Gy numbers were adjusted

by sex-specific incidence ratios provided by the same

authors. We used these particular ERR estimates because

they approximate lifetime risk, were adjusted for several

potential confounding variables, and were based on the most

recent version of individual radiation dose calculations.

An important goal of our model development is second

cancer risk estimation in Western populations. Conse-

quently, we fitted the model to background incidence data

for the selected cancers in the US, using the Surveillance

Epidemiology and End Results (SEER) database (http://

seer.cancer.gov), instead of using the incidence data from

Japan provided by the Radiation Effects Research Foun-

dation (RERF) (http://www.rerf.or.jp/). This raised the

issue of risk transfer between the Japanese and Western

populations. For simplicity, we used the fully multiplica-

tive approach by directly transferring the ERR. Adequate

fits were obtained (see below), which suggests the direct

ERR transfer to be adequate for the present purpose and for

the cancer types chosen, at least as a first approximation.

The high-dose radiotherapy-induced ERRs were taken

from the following data sets which are, we believe, rep-

resentative of currently available comprehensive second

cancer epidemiologic studies that considered more than

one dose:

• Separate ERRs for bladder, colon, rectal, pancreatic,

and stomach cancers reported from a case–control

study embedded in a cohort of 28,843 patients, who

were treated with radiotherapy for testicular cancer and

survived for at least 1 year (Travis et al. 1997, 2005).

The patients were gathered from 16 population-based
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tumor registries in North America and Europe. The

mean age at radiotherapy was approximately 35 years,

and the mean latency time before second cancer

diagnosis was 18 years. Over 3,300 patients survived

for more than 20 years. The particular five cancer types

listed above were selected because they showed the

most substantial radiation-induced ERRs, whereas the

risk patterns for other cancer types, e.g. prostate,

analyzed by the same studies were less clear. The data

were transcribed from Table 3 in (Travis et al. 1997). A

dose response could be constructed because radiother-

apy regimens for non-seminoma testicular cancer

typically involved a twofold higher dose, given in

twice as many fractions, compared with regimens for

seminoma testicular cancer [see Appendix Table 1 in

(Travis et al. 1997)]. Error bars (95% CI) were

estimated using Poisson assumptions about the distri-

bution of cancer cases.

• Separate ERRs for breast and lung cancers reported in

patients treated with radiotherapy for Hodgkin’s dis-

ease (Travis et al. 2002, 2003; van Leeuwen et al. 2003;

Gilbert et al. 2003). The breast cancer data were

obtained from a case–control study within a cohort of

3,817 female patients, who were diagnosed with

Hodgkin’s disease at an age of \30 years (mean age

at radiotherapy = 22 years) in North America and

Europe, and survived for at least 1 year after radio-

therapy (mean latency time before second cancer

diagnosis = 18 years) (Travis et al. 2003); and from

another study of 650 patients treated for Hodgkin’s

disease at an age of \41 years (mean age at radiother-

apy = 21 years) in the Netherlands, who survived for

at least 5 years (mean latency time before second

cancer diagnosis = 18 years) (van Leeuwen et al.

2003). The lung cancer data were obtained from a

case–control study within a cohort of 19,046 Hodgkin’s

disease patients diagnosed in North America and

Europe, who survived for at least 1 year after radio-

therapy (Travis et al. 2002). The mean age at

radiotherapy was 48 years, and the mean latency time

before second cancer diagnosis was 11 years. Addi-

tional lung cancer data were obtained from another

case–control study within the same cohort (Gilbert

et al. 2003). The mean age at radiotherapy was

46 years, and the mean latency time before second

cancer diagnosis was 8 years. In both lung cancer

studies, the subjects were predominantly males, current

or former tobacco smokers.

• ERR for thyroid cancer reported from a case-control

study within a cohort of 14,054 patients of both sexes,

treated for various cancer types in childhood in North

America, who survived for at least 5 years (Ronckers

et al. 2006). The mean age at radiotherapy was

10 years, and the mean latency time before second

cancer diagnosis was 15 years.

• ERRs for CNS cancers, also reported from a case–

control study within a cohort of 14,361 patients of both

sexes, treated for various cancer types in childhood in

North America, who survived for at least 5 years

(Neglia et al. 2006). The mean age at radiotherapy was

5 years, and the mean latency time before second

cancer diagnosis was 10 years. The glioma and menin-

gioma data were pooled in our analysis.

Parameter estimation and data fitting procedure

Fitting of the model to the data was carried out using a

customized random-restart simulated annealing algorithm

implemented in the FORTRAN language (Press 1989).

Standard least-squares inverse variance techniques were

used for weighting individual data points.

To reduce the number of adjustable parameters, the stem

cell inactivation (a and b) and repopulation (k) constants

were restricted to biologically plausible values for each

cancer type, based on the literature (Bentzen et al. 1996;

Challeton et al. 1997; Thames et al. 1989; Thames et al.

1990; Shimomatsuya et al. 1991; Rew and Wilson 2000;

Fowler 2001; Chen et al. 2006; Ogawa et al. 2006; Phillips

et al. 2006; Rachidi et al. 2007; Williams et al. 2008). The

lag period from the appearance of the first fully malignant

cell until development of cancer, L, was set at 10 years,

which is consistent with available data (e.g. Brenner et al.

2000; Tokunaga et al. 1979; Ivanov et al. 2004).

The fitting procedure consisted of two sequential steps:

1. First, the expression for the background cancer hazard

H was fitted to age- and sex-dependent US background

cancer incidence for each cancer type from the SEER

database. The population gender for each cancer type

was chosen to be the same as that reported in the

corresponding epidemiological study of radiotherapy

ERRs. For example, only male patients were studied to

determine ERR for bladder cancer following radio-

therapy for testicular cancer, so the male-specific

background incidence for bladder cancer was fitted.

Gender-averaged background incidence was used

where both sexes were studied after radiotherapy,

such as in the case of CNS tumors. The relevant age at

exposure Tx was defined as Tx = max (0, T – L), where

T is the age at cancer incidence reported by SEER. It

was assumed that L = 10 years, but the results were

not substantially sensitive to variations of L in the

plausible range of 3–15 years, provided the other

parameters were adjusted correspondingly. This fitting

step generated values for parameters a, b, and c for

each cancer type.
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2. The best-fit value of b was used in a second round of

fitting the model-generated ERRs to radiation-induced

ERR data sets: both the comparatively low-dose ERR/

Gy from Japanese atomic bomb survivors, and the

high-dose radiotherapy-induced ERR data for each

cancer type. Mean age at exposure and time since

exposure values from the references cited above were

used for each epidemiological high-dose radiotherapy

data set. Moderate variations in these numbers pro-

duced some corresponding changes in the best-fit

parameter values, but did not alter the main conclu-

sions. This second round of fitting generated values for

the remaining adjustable parameters X, Y, d, and Z.

This two-step procedure was chosen because the back-

ground cancer incidence data have much greater statistical

precision, due to larger sample sizes, compared with ERR

estimates. Therefore, it was deemed advantageous to set

the values for a, b, and c from background data, before

fitting the radiation-induced risks. Only parameter b is

shared by the equations for background and radiation-

induced cancer risks.

Estimation of parameter uncertainties

For each data set (SEER, atomic bomb survivors, and

second cancers), 100 synthetic data sets were generated by

Monte-Carlo simulation. For the SEER data, the simula-

tions were based on the Poisson distribution (which is well

approximated by the Normal distribution because the

observed number of cancer cases for each 5-year age cat-

egory is typically [100). For the atomic bomb survivors

data, the simulations were based on the Chi-squared dis-

tribution with one degree of freedom, because this distri-

bution was used by (Preston et al. 2007) to generate

confidence intervals for their summary ERR values, which

are used here. For the second cancer data, the Poisson

distribution was used.

We fitted the model (the hazard function for background

cancer incidence) first to the simulated SEER data, gen-

erating a distribution of values for each background

parameter (parameters a, b, and c). For each parameter,

95% CI were generated based on these distributions. Then,

the model-predicted ERR expression was fitted simulta-

neously to the simulated atomic bomb and second cancer

data sets, generating distributions and 95% CI for the

remaining adjustable parameters.

Results

The best-fit model parameters and predictions are shown in

Tables 1 and 2 and Figs. 1, 2, 3. In general, the fits were

adequate, particularly considering the uncertainties in the

data and the biologically motivated constraints placed on

four parameters (a, b, k, L). We next highlight some fea-

tures of the results on background cancers (Fig. 1), cancers

in atomic bomb survivors (Fig. 2) and second cancers after

radiotherapy (Fig. 3).

Special features of the results

The cancer type-specific background incidence rates were

usually fitted well, using the three relevant parameters a, b,

and c (Fig. 1). At older ages some of the fits were quali-

tatively better than those produced by the commonly used

two-stage clonal expansion (TSCE) model with the same

number of parameters (e.g. Heidenreich et al. 2007). The

reason for this difference is that the TSCE model generates

an incidence hazard function that asymptotically levels off

at old age at some high value (e.g. Denes and Krewski

Table 2 Best-fit parameter values for radiation-induced excess relative risk (ERR) of all analyzed cancer types

Cancer X (years 9 Gy-1) Y (Gy-1) d 9 10-3 (years-1) log10 Z a (Gy-1), b (Gy-2) k (day-1)

Stomach 6.53 (1.94, 13.5) 0.120 (0.089, 0.145) 0.206 (0.00, 0.364) 3.58 (2.65, 3.66) 0.25, 0.025 0.05

Lung 0.860 (0.276, 10.5) 0.387 (0.279, 0.690) 9.49 (1.38, 23.3) 4.99 (3.80, 5.56) 0.25, 0.025 0.05

Colon 1.71 (0.010, 9.63) 0.872 (0.465, 1.39) 0.572 (0.00, 3.01) 0.301 (0.00, 0.628) 0.25, 0.025 0.10

Rectum 2.40 (0.048, 7.20) 0.0717 (0.041, 0.246) 0.0193 (0.00, 1.54) 2.09 (0.978, 3.05) 0.25, 0.025 0.10

Pancreas 3.12 (0.069, 10.7) 0.107 (0.073, 0.370) 0.019 (0.00, 28.6) 3.23 (2.73, 4.09) 0.25, 0.025 0.10

Bladder 0.151 (0.102, 13.1) 0.626 (0.439, 0.878) 1.68 (0.00, 3.92) 1.96 (1.72, 2.13) 0.25, 0.025 0.05

Breast 4.75 (0.880, 10.1) 0.938 (0.653, 1.11) 3.05 (0.00, 3.08) 6.65 (5.47, ?) 0.25, 0.050 0.05

CNS 1.45 (0.046, 13.5) 0.620 (0.273, 1.15) 0.0316 (0.00, 20.5) 5.69 (4.27, ?) 0.25, 0.025 0.10

Thyroid 34.4 (5.40, 69.1) 0.237 (0.097, 0.809) 0.0156 (0.00, 0.369) 4.03 (3.02, 6.15) 0.30, 0.030 0.05

Parameter interpretations are: X radiation-induced initiation constant, Y radiation-induced promotion constant, d parameter for homeostatic

regulation of the number of pre-malignant stem cells per niche, Z carrying capacity for pre-malignant stem cells per niche, a, b stem cell

inactivation constants by radiation, k maximum net stem cell repopulation rate

The numbers in parentheses represent the 95% confidence intervals for the corresponding parameter
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1996), whereas the recent data from SEER suggest the

incidence of many cancers to decrease at the oldest

recorded ages. Our model is based on the assumption that

this decrease is due to age-dependent loss of stem cell

function (senescence), although other causes, e.g. quality

of diagnosis, birth-date cohort effects, or selection due to

populations with heterogeneous risks (‘‘frailty’’), cannot be

excluded.

Our model did not fit the background incidence of CNS

cancers as well as that of other cancer types, because it

underestimated the data at young ages, below 40 years.

The incidence of CNS cancers at young ages may be

produced by a different biological mechanism than that at

older ages, and/or occur in a sub-population of genetically

predisposed individuals, and therefore may require a sep-

arate set of parameters.

As expected, the parameter proportional to the sponta-

neous initiation rate (a) varies by orders of magnitude for

the different cancer types, since the observed incidence

rates for these cancers are also very different. The rates (b)

for replication of pre-malignant stem cell niches, however,

are much more tightly dispersed; most fall in the range of

0.2–0.46 years-1. The values qualitatively agree with the

best-fit clonal expansion rates (birth minus death) found

using the TSCE model (e.g. Heidenreich et al. 2007), and

support the intuitive idea that pre-malignant stem cells

have only a small net growth advantage over normal ones,

so that their number increases only on the scale of years to

decades. Numerically, the estimates of b tend to be

somewhat larger than the net clonal expansion rates in the

TSCE model, because in our formalism clonal growth by

niche replication is partially offset by stem cell senescence
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Fig. 1 Best-fit model predictions for US background incidence of each cancer type, from the SEER database. The sex of each population and the

model parameter values are listed in Table 1. Error bars represent 95% confidence intervals
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(parameter c), which reduces the number of potentially

carcinogenic stem cells in each niche.

Altering the model assumptions by postulating that more

than one mutation is necessary to initiate a stem cell results

in some reduction in the best-fit values of b. This is

expected because the number of mutational stages and the

rate of clonal expansion have somewhat similar effects on

the predicted age-dependent hazard function (e.g. Kopp-

Schneider and Portier 1991; Little and Wright 2003; Little

and Li 2007), so that increasing the first results in a cor-

responding decrease in the second. However, the model

variant with more than two mutational stages did not fit the

data substantially better than the default two-stage for-

malism (not shown), and was not used because it requires

an extra adjustable parameter (i.e. the number of mutations

necessary for stem cell initiation).

The stem cell senescence parameter (c) is also relatively

tightly distributed for most cancers, such that c/b = 6 -

7 9 10-3 years-1. These findings support an intuitive

picture that the senescence rate is roughly proportional to

the cell division rate—hence, the constancy of the c/b ratio.

The ERR/Gy estimates from Japanese atomic bomb

survivors at age 70, as function of age at exposure, were

also fitted quite well for all cancer types (Fig. 2). In the

context of our model, the shape of the dependence of

radiation-induced ERR on age at exposure provides

insight into whether this ERR is dominated by initiation

or promotion. As noted in the accompanying article

(Shuryak et al. 2009), initiation-driven ERR should

decrease markedly with age at exposure. In contrast,

promotion-driven ERR should be relatively constant as

function of age.
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Fig. 2 Best-fit model predictions for sex-adjusted ERR/Gy estimates

from Japanese atomic bomb survivors for each cancer type, from

(Preston et al. 2007). The error bars represent 95% confidence

intervals. For rectal, pancreatic and CNS cancers, the ERR/Gy

estimates had no statistically-significant age-dependence, as shown by

dashed horizontal lines in the corresponding figure panels. The sex of

each population and the parameter values are listed in Table 1
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The atomic bomb survivor data (Preston et al. 2007)

suggest that a substantial decrease in ERR/Gy with age at

exposure occurs only for stomach and thyroid cancers,

among those analyzed here. Consistently with the above

arguments, the lower bounds of the 95% CI for the radia-

tion-induced initiation parameter X for these particular

cancers were substantially[0 (Table 2). For the seven other

cancer types, ERR/Gy appears to be independent of age at

exposure, or even to increase at older ages. For these can-

cers, the lower bounds of the 95% CI for parameter X were

approaching zero. Indeed, restricting X to zero worsened the

model fit only marginally in many of these cases.

The ERR/Gy data for lung cancer stand out from the

others by apparently increasing with age at exposure

(Fig. 2). This may be due to residual confounding by the

rapid changes in smoking rates in Japan (Preston et al.

2007). However, since our model does not include the

effects of smoking, the trend in the data points was attrib-

uted by the model to effects of both age at exposure and

time since exposure: because the ERR/Gy was measured at

a fixed age of 70, age at exposure and time since exposure

were not independent—their sum had to equal 70. In the

context of our model, an apparent increase in ERR with age

at exposure was interpreted as a decrease in ERR with time

since exposure, which occurs if radiation-induced promo-

tion is reversible due to homeostatic regulation of the

number of pre-malignant cells per niche, i.e. if parameter d
is[0. This explains why the best-fit value for d was[0 for

lung cancer, and the lower bound for its 95% CI was also[0

(Table 2). In contrast, the lower bounds for the 95% CI for d
were zero for the other cancers, and setting d to zero did not

alter the fits substantially in these cases.

Recent analyses of atomic bomb survivor data (Little

2009; Walsh 2009) suggest that an apparent increase in
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Fig. 3 Best-fit model predictions for high-dose fractionated radio-

therapy ERRs for each cancer type. The error bars represent 95%

confidence intervals. The corresponding references for each data set

are listed in the ‘‘Methods’’ section. The sex of each population and

the parameter values are listed in Table 1
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ERR/Gy for the oldest ages at exposure may occur for

several other cancer types in addition to lung cancer. This

phenomenon can be due to multiple factors, e.g. activation

of microscopic dormant tumors by radiation. The expla-

nation given by the current model for lung cancer is also a

plausible hypothesis for explaining these new data for other

cancers.

The best fits to the high-dose radiotherapy-induced

ERRs were also generally adequate (Fig. 3). The fits to

colon and bladder cancer data were the poorest. This was

due to an inherent inconsistency in the data between ERR/

Gy from the Japanese atomic bomb survivors, and ERR for

multiple-Gy radiotherapy: at 1 Gy, the mean ERR/Gy for

colon cancer is 0.61–0.75 (atomic bomb survivor data,

Fig. 2), whereas at 6.9 Gy it is 0.03 and at 13.9 Gy it is

0.082 (second cancer data, Fig. 3). The same pattern can be

seen by comparing other recent second cancer data sets

(e.g. Chaturvedi et al. 2007) with atomic bomb survivor

data. In general, the risk estimates of radiotherapy-induced

colon cancer from different sources are highly variable

(e.g. Inskip et al. 1990; Lundell and Holm 1995; Carr et al.

2002). Because of the more than tenfold inconsistency in

the ERR/Gy slopes at different doses using the data sets we

selected, our model overestimates the ERR at radiothera-

peutic doses. A better fit to the high-dose data could be

produced only by allowing unrealistically high cell inac-

tivation, e.g. a[ 1.0 Gy-1. A qualitatively similar picture

was found for bladder cancer, where the ERR observed

after [20 Gy of fractionated radiotherapy is roughly

comparable to the ERR seen at 1 Gy in the atomic bomb

survivors.

For the other seven cancers analyzed here, the atomic

bomb survivors data at 1 Gy and the high-dose radiother-

apy data produced relatively similar ERR/Gy slopes, at

least at doses \20 Gy, so the model fits are substantially

better (Fig. 3). There is a tendency to underestimate the

risk at very high doses for some cancers, but this is prob-

ably due to the default values of a and b being too high for

stem cells—better fits were produced by lowering a to say

0.15 Gy-1.

Discussion

We have presented a biologically motivated mathematical

model of background and radiation-induced cancer risk,

and applied it to data on nine solid adult-onset second

cancer types. The model takes into account initiation,

inactivation, and repopulation of target stem cells (iir

processes) throughout the comparatively short-term period

of radiotherapy and recovery by a stochastic formalism.

This formalism is integrated with a deterministic long-term

two-stage carcinogenesis model, which follows the kinetics

of pre-malignant stem cells throughout the entire human

lifetime, before and after radiation exposure.

Such an approach, unifying short- and long-term mod-

els, has some advantages over currently existing methods,

as discussed in the previous article. Briefly, our model

allows mechanistic risk predictions to be made at high

radiotherapeutic doses as well as at low doses, can track the

age and time dependencies of risk mechanistically, and is

qualitatively better at describing background cancer inci-

dence at old ages than the commonly used two-stage clonal

expansion (TSCE) model, with the same number of

adjustable parameters. Radiation-induced risks are calcu-

lated analytically, using plausible assumptions about

underlying biology.

The current model is an improvement over our previous

models. For example, in our deterministic solid tumor

model (Sachs and Brenner 2005), the shape of the ERR

dose response was determined by the relative proliferation

rate of pre-malignant stem cells compared with normal

ones—parameter r. To describe the data, r had to be

smaller than 1, e.g. 0.8, implying that pre-malignant cells

proliferate more slowly than normal ones, at least over the

short term, i.e. during radiotherapy and for some weeks

afterwards. Such an interpretation is at odds with the long-

term tendency of pre-malignant cells to clonally expand. In

our stochastic analysis of the same problem (Sachs et al.

2007), this inconsistency was removed, and a fit to the data

was possible even if pre-malignant cells were assumed to

proliferate as fast as, or faster than, their normal counter-

parts, i.e. r C 1. However, the stochastic algorithm

involved additional adjustable parameters. In the current

model, repopulation of pre-malignant cells during radio-

therapy is assumed to occur at the same rate as that of

normal ones, i.e. r = 1 implicitly. The reasoning is that any

proliferative advantage that pre-malignant cells have

manifests itself only on the scale of multiple years in

humans. The model describes the data adequately, so there

is no need for r to be smaller than 1, and no need for

additional parameters.

Our model applied to second cancer data can also pro-

vide some insight into the underlying biological mecha-

nisms of carcinogenesis. An important outcome of our

analysis is the finding that for many cancer types, radia-

tion-induced risk, especially at ages [20, may be domi-

nated by promotion, rather than initiation. Such an

important role of promotion in low-LET radiation-induced

risk for many cancers is consistent with the findings of

other authors using the TSCE model on Japanese atomic

bomb survivor data (e.g. Heidenreich et al. 2007). Our

results indicate that promotion is the dominant mechanism

of radiogenic risk for lung, colon, rectal, pancreatic, blad-

der, and CNS tumors; initiation and promotion both con-

tribute to stomach and breast cancer risk; and thyroid

Radiat Environ Biophys (2009) 48:275–286 283

123



cancer risk is dominated by initiation (see best-fit param-

eter values in Table 1). For example, we estimated that a

1 Gy dose leads to almost a doubling in the number of

existing pre-malignant cells in the breast. Of course, this

conclusion about the importance of radiogenic promotion

is dependent on model assumptions, and needs to be tested

experimentally.

For most cancers analyzed here, promotion appears to

be permanent, i.e. pre-malignant niches are not reduced in

size or number over time after irradiation. However, a

gradual reduction in niche size after exposure, at a rate of

*1% per year, is suggested for lung cancer, and at a

slower rate for some other cancers. These findings indicate

that the radiation-induced hyper-proliferation of pre-

malignant cells may be either permanent, or transient,

depending on the organ.

The iir-based models in general, including the one

described here, produce a dose response that has the same

basic shape, with a maximum ERR at some intermediate

dose, as the shape generated by older linear–quadratic–

exponential (LQE) models, which neglected repopulation

by cell proliferation (Little 2001; Bennett et al. 2004; Dasu

et al. 2005). The main difference is in the dose range at

which the maximum occurs. Models without repopulation

predict that maximum ERR would occur at relatively low

doses (below 5 Gy), and at typical clinically used doses

(above 30 Gy) ERR would be essentially zero, due to the

inactivation of nearly all target stem cells. In iir models,

repopulation of both normal and pre-malignant stem cells

between dose fractions compensates for much of the inac-

tivation. Consequently, ERR peaks at much higher doses,

e.g. 20–60 Gy. This prediction is much more consistent

with the recent epidemiological data, which indicates that

ERR can remain substantial even at doses as high as 40–

50 Gy (e.g. Travis et al. 1996, 1997, 2002, 2003, 2005).

In the context of the model presented here, the radiation

dose at which ERR peaks is determined by the carrying

capacity for pre-malignant cells per niche, Z, in addition to

the cell killing parameters a and b and the repopulation rate

k. Physiologically, Z can be interpreted as an estimate for

the number of stem cells that contribute to repopulation

within a given location of the target organ. For most can-

cers analyzed here, the best-fit values of Z (Table 2) sug-

gested that up to several thousand stem cells may cooperate

for local repopulation. The exceptions were breast and

CNS cancers, where the upper bound of the 95% CI for the

best-fit value of Z is infinity, suggesting that all the stem

cells in the entire organ may participate in repopulation

after irradiation.

The ability to reasonably predict cancer ERR at both

low and high radiation doses using a biologically based

mathematical model, incorporating formalisms for both

short-term (iir) and long-term processes, should enable this

model to be used for optimization of radiotherapy proto-

cols, by introducing second cancer risk as an additional

criterion. This can be done if a dose-volume histogram for

the protocol is available, as is usually the case (e.g.

Hodgson et al. 2007; Koh et al. 2007).

Almost by definition, all mathematical models are

greatly simplified representations of complex and incom-

pletely understood biological processes. Our model has the

main inherent drawbacks of other two-stage and iir carci-

nogenesis formalisms; extension to more stages and pro-

cesses may improve biological realism, but at the cost of

extra parameters. For example, the model can be extended

by treating long-term clonal expansion stochastically

instead of deterministically, by incorporating more detailed

cell–cell interactions other than just a slowdown in net cell

proliferation after filling of a pre-malignant stem cell niche,

by allowing the number of pre-malignant cells at birth to be

greater than 0, by accounting for variability in the lag

period for the development of clinical cancer after the

appearance of the first malignant cell, etc.

In the future, we intend to apply the model to additional

second cancer data sets, where only a single estimate of

radiation dose is available, but more information can be

gained about age/time dependencies of radiation-induced

risk. For example, some such studies with long follow-up

times and large numbers of patients (e.g. Chaturvedi et al.

2007; Brown et al. 2007) suggest that these age/time

dependencies may have different trends from the age/time

dependencies suggested by Japanese atomic bomb survi-

vors data, which is used here. Using data on older radio-

therapy protocols optimally will be an important step in

credibly projecting second cancer risks of current and

future protocols decades into the future.
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